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Wikipedia infoboxes is an example of a seemingly structured, yet extraordinarily heterogenous
dataset, where any given record has only a tiny fraction of all possible fields. Such data cannot
be queried using traditional means without a massive a priori integration effort, since even for

a simple request the result values span many record types and fields. On the other hand, the
solutions based on keyword search are too imprecise to exactly capture the user’s intent.

To address these limitations, we propose a system, referred to herein as WikiAnalytics, that
utilizes a novel search paradigm in order to derive tables of precise and complete results from

Wikipedia infobox records. The user starts with a keyword search query that finds a superset of
the result records, and then browses clusters of records deciding which are and are not relevant.
WikiAnalytics uses three categories of clustering features based on record types, fields, and

values that matched the query keywords, respectively. Since the system cannot predict which
combination of features will be important to the user, it efficiently generates all possible clusters
of records by all sets of features. We utilize a novel data structure, universal navigational lattice
(UNL), that compactly encodes all possible clusters. WikiAnalytics provides a dynamic and

intuitive interface that lets the user explore the UNL and construct homogeneous structured tables,
which can be further queried and aggregated using the conventional tools.

Categories and Subject Descriptors: H.3.5 [Information Storage and Retrieval]: On-line

Information Services; H.2.m [Database Management]: Miscellaneous

General Terms: Algorithms, Design, Performance

Additional Key Words and Phrases: ad-hoc querying, heterogeneous structured data, search web
data, keyword search

1. INTRODUCTION

Growing popularity of Wikipedia [Wikipedia ] and other wikis raises the issue of
querying this data to extract insights that span multiple pages. Although most of
Wikipedia is free text, it also contains a large amount of structured information
in tables, lists, categories, and infoboxes. A number of ongoing efforts [DBpedia
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; Cammarano et al. 2007; Bollacker et al. 2007; Powerset ] aim to harness this
information.
We focus on querying Wikipedia infoboxes, which are essentially typed records

of field-value pairs. Infoboxes appear on over a million Wikipedia pages and often
contain the most vital information about the entity described by the page. For ex-
ample, an infobox on Arnold Schwarzenegger’s page (Figure 2) contains information
about his office, family, birthday, party and religious affiliation, and more.
A major challenge in querying infoboxes is the diversity of their structure. Ev-

ery infobox instance has an equivalent of a type – wiki template that renders the
infobox WikiText into HTML. However, new templates can be introduced as well
as old templates can be extended relatively easily. Moreover, enabling query pro-
cessing was never a requirement for the authors of templates and infoboxes. As
a result, templates often allow for many ways of representing the same informa-
tion. For example, a very popular “officeholder” template has both date of birth

and birthdate fields. Figure 1 conveys the heterogeneity of the infoboxes. In the
Wikipedia fragment we analyzed, there are about 2, 500 distinct infobox types (wiki
templates), with over 50, 000 distinct <type, field> pairs. However, there is a clear
long tail in the distribution of the number of occurrences of the fields, with almost
20, 000 fields occurring in exactly one infobox and only 300 fields occurring in over
4, 000.
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Fig. 1: Wikipedia Infoboxes are sparse: Distribution of fields per number of infobox
instances in which they occur.

Many other types of data, such as product catalogs, patient records, and elec-
tronic forms collections, exhibit similar structural diversity. These sources are also
often designed for human consumption with structural flexibility as the key feature
and query processing as an afterthought. As a result, many products in a catalog
may have rare or unique fields, and most fields on any given form may be optional,
and different doctors will fill out the same clinical documents differently.
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Such structural diversity presents only minor problems for point queries, e.g.
“Schwarzenegger’s age”, where the answer is contained in a single infobox. After
all, current state-of-the-art search engines can find Schwarzenegger’s infobox and a
human will be easily able to compute his age. Although “age” is not mentioned in
the infobox text, we assume that synonym expansion will also look for “birthday”.
Structural diversity presents major problems when queries need however to access
many objects (infoboxes) in order to extract lists of results from them. For example,
if a user wants to construct a list of Governors of California, a good heuristic may
be to look for infoboxes of type governor and office field containing value “Gov-
ernor of California.” However, thus constructed list will be only 90% correct. For
example, Ronald Reagan’s infobox has type president, with value “33rd Governor
of California” hidden in the order2 field. We call such results structural outliers.
They are critical for deriving a complete and precise answer.

Supporting such queries can be viewed as an instance of data integration problem,
where results may have multiple schemas, e.g. governor and president, and
the same schema can be used differently in different data instances. Nonetheless,
it is hard to imagine a priori reliable integration of information from all large
clusters and outliers for the entire dataset - either heuristic or manual. The extreme
heterogeneity of the dataset makes automatic or manual integration of the entire
dataset infeasible. Instead, we adopt a “pay as you go” approach, where only the
objects potentially relevant to the result are interactively integrated at query time.

In this paper we present a system, referred to herein as WikiAnalytics, which
enables users to browse multiple clusters of all potential results, and relatively
easily identify the main result cluster(s) as well as the outliers. The clustering
features that we use are based on the names and values of fields that contain the
query keywords. We call such fields and their values features. Conceptually, the
features define the relevant dimensions on the data specifying the matching context
for the query keywords. The resulting clusters allow users to disambiguate the
query based on the structure of the results. The intuition is that occurrence of
the same keyword in different fields or in different values is likely to have different
meanings. For example, a group of governor infoboxes with “California” in the
office field is semantically different from a group where the same keyword occurs
in the birthplace field. Furthermore, even within the “California” ∈ office

cluster, there is a significant difference between infoboxes with values “Governor of
California” in the office field and “Governor of Baja California” in the same field.

In order to give users a full picture of the possible clusters of the query results
we adopt a notion of concept lattice [Ganter and Wille 1999] over the clusters of
infoboxes. Our universal navigational lattice (UNL) encodes all possible ways to
group the records in the query result according to their features. We developed a
GUI that allows users to navigate the UNL and interact with it by including and
excluding the clusters from the result list.

The UNL usually grows super-linearly with the size of the result, so we introduce
a pruning technique that filters out features that occurred fewer times than a user-
defined feature support threshold (FST ). Besides reducing the UNL size, pruning
greatly speeds-up the UNL construction, and makes the result easier for users to
comprehend and work with. In a typical session, FST is initially set relatively high,
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{{ Infobox Governor
| name = Arnold Schwarzenegger
| nick = Governator

| image = Arnold Schwarzenegger 2004-01-30.jpg
| imagesize = 200px
| order = 38th
| office = Governor of California

| term start = November 17, 2003
| lieutenant = {{nowrap|[[Cruz Bustamante]]<small>

(2003-2007)< /small>}}<br/ >{{nowrap|[[John

Garamendi]] <small>(2007-present)< /small>}}
| predecessor = [[Gray Davis]]
| successor =
| order2 = Chairman of the [[President’s Council

on Physical Fitness and Sports]]
| term start2 = 1990
| term end2 = 1993
| president2 = [[George H. W. Bush]]

| birth date = {{birth date and age|1947|07|30}}
| birth place = [[Thal, Austria|Thal]], [[Styria]],

[[Austria]]

| nationality = [[Austria]][[United States|American]]
| party = [[Republican Party (United States)|

Republican]]
| spouse = {{nowrap|[[Maria Shriver]] (1986-present)}}

| religion = [[Roman Catholic]]
. . . }}

(a) Source code with the WikiText markup that generates

Figure 2b.

(b) Infobox visualization in

Wikipedia.

Fig. 2: Sample Wikipedia Infobox: “Arnold Schwarzenegger”
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to filter out the long tail of features and allow the user to focus on large clusters
of structurally homogeneous records. Then, the user can accept or reject some of
these clusters, which consist entirely of results or non-results, respectively. Finally,
the user can recompute the UNL with a lower FST , over the remaining objects after
the exclusion of already accepted or rejected records. The last two steps can be
repeated iteratively allowing the user to zoom in on progressively smaller clusters
in order to look for structural outliers.
The final result of a WikiAnalytics query is a table with a key column (name

of the wiki page) and a value column for every keyword specified as an extraction,
by the special “!” character.

EXAMPLE 1.1. (Running example) For instance, user keyword query “Cal-
ifornia governor religion!” returns a data feed comprising of pairs of governors’
(page) names and their religious affiliations. ⋄

The resulting feeds can be joined and aggregated by mashup tools like Yahoo
Pipes [YahooPipes ] and Damia [Simmen et al. 2008], or visualized by services like
Swivel [Swivel ] and Many Eyes [ManyEyes ].
In this paper, we make the following contributions.

—The WikiAnalytics system which tackles the problem of extracting lists of
homogeneous and precise results from highly heterogeneous set of Wikipedia
infoboxes. The system heuristically finds most of the results, but also effectively
summarizes the potential results. This enables easy verification and modification
of the results by the user.

—A formal framework and the algorithms [Balmin and Curtmola 2010a] for sum-
marizing the search results based on a universal navigational lattice (UNL), which
clusters the infoboxes based on features dynamically defined as fields and values
that match the search terms. Each cluster contains infoboxes that share certain
combination of features, and thus are likely to be semantically similar w.r.t the
query.

—An interactive user interface [Balmin and Curtmola 2010b] that visualizes the
UNL lattice and allows users to disambiguate search results by navigating the
UNL and arbitrarily include and exclude clusters of infoboxes from the result. The
users start the exploration by visiting larger groups of documents corresponding
to single features. From each group, the user may drill down by considering one
or more features to restrict the document set. The interface also enables users to
dynamically prune the lattice, by controlling the granularity of the clusters they
want to see.

—Our experiments with querying Wikipedia infoboxes show that the our prun-
ing heuristics behave well in practice and facilitate on-line querying of highly
heterogeneous data sets. WikiAnalytics enables average users to explore the
search results and construct homogeneous structured tables, which can be further
joined, aggregated, and visualized using the conventional tools.

Paper Outline. The rest of the paper is organized as follows. In the next
three sections, we describe our formal framework. In particular, in the next sec-
tion, we formalize WikiAnalytics data and query model. Section 3 describes
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clustering features whereas Section 4 defines the Universal Navigational Lattice
(UNL). Section 5 describes the WikiAnalytics system architecture built on top
of a Wikipedia snapshot. We introduce our algorithms for UNL construction and
visualization in Section 6. In the next section, we introduce our pruning techniques
and describe the process of interactive query disambiguation. Experimental results
are shown in Section 8. Related work is discussed in Section 9 and we summarize
our study and future work in Section 10.

2. DATA AND QUERY MODEL

We model a Wikipedia infobox as a record that comprises of a set of fields. Given a
record r, we denote by Fld(r) its set of fields: Fld(r) = {(f.name, f.value)|f ∈ r}.
We also denote by r.N the set of all field names of r. Each record has a type, r.type
that identifies a set of possible field names for records of this type; i.e., r.type maps
to a superset of r.N . We assume that records don’t have duplicate field names and
that field values are strings.
We model a collection of records R as a universal table U. This table contains

a column for every distinct field name in R; i.e., the set of column names in U
is Col(U) = ∪{r.N |∀r ∈ R}. In addition, we add a special type column to U to
represent the record type information. Each record r ∈ R corresponds to a row in
U. Therefore, a table cell Uij contains the field value fk.value for field fk under
record ri, such that fk.name = Col(U)j . The cell value is null if no such fk exists
in record ri.

EXAMPLE 2.1. A fragment of the universal table U for Wikipedia infoboxes is
shown in Figure 3. The full universal table would comprise around 18, 000 columns
and approximately 500, 000 rows 1 . However, only 0.08% of its cells would have
non-null values. ⋄

Type Office Order Religion �

Infobox Id1 Governor Governor of 

California

38th Roman 

Catholic

�

Infobox Id2 President � 40th [[President of 

the United States]]

Baptized 

[[Presbyte

rian]]

�

� � � � � �

~18,000 distinct fields

~0.5M

infoboxes

Documents

Fields
Infobox

Fig. 3: Fragment of the Wikipedia infobox universal table.

We consider keyword queries where a query Q = (k1, . . . , kn) defines three cate-
gory of keywords: keywords C(Q) that appear in matching records, keywords N(Q)
that should not appear in matching records, and keywords R(Q) that identify the

1The infoboxes were extracted as a subset of templates embedded in pages of November 2009

snapshot of the Wikipedia.
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query result as columns of U. For our running example defined on page 5, we have
that C(Q) = {“governor”, “California”} and R(Q) = {“religion”}.
A keyword k appears in record r, or k ∈ r, if k appears in either one of its field

names or values: {fi ∈ Fld(r)|k ∈ fi.name ∨ k ∈ fi.value} 6= ⊘. We say that a
record r matches a query Q = (k1, . . . , kn) if ∀ki ∈ C(Q) ∪ R(Q) then ki ∈ r, and
∀ki ∈ N(Q) then ki /∈ r.
Given a data collection of records R, the candidate result set of Q on R, denoted

by Q(R), is the set of records that match Q: Q(R) = {r ∈ R|r matches Q}. We
denote by Fld(R) the set of all field names in the collection across all records in
the collection: Fld(R) = {f.name|∀r ∈ R, f ∈ Fld(r)}.
To derive a complete answer set that satisfies an information need corresponding

to query Q, the user may choose to iteratively refine the candidate result set by
adding or removing groups of records. We denote this feedback selection process
over the candidate set of records for user u with σu(Q(R)). Finally, the query result
is a table T , which is the result of extracting the query specified return values after
the user selection by projecting on the fields matched to R(Q); by abuse of notation,
we also refer to these fields as R(Q):

T = πR(Q)∪key(R)(σu(Q(R)))

The record key key(R) is used only for presentation of records. We usedWikipedia
page title as a key.

3. CLUSTERING FEATURES

To help users identify the final result subset of the candidate set, we cluster the
records that pass the keyword search filter based on their types, as well as field
names and values that contain the keywords. Our goal is to produce clusters that
the user will easily identify as entirely relevant or entirely irrelevant to the query.
Intuitively, the average user is interested to explore and identify useful information
in the corpus based on the properties of fields that match the keywords specified in
a query.
Given a candidate result Q(R) we define the following three categories of clus-

tering features, which will be used to summarize and slice the result set. First, it
is often important to know the type of records in Q(R). We say that Ft : type = k
is a type feature for record r if r.type = k.

Second, the keyword may occur in different fields belonging to various records. In
order to distinguish which is the field f that keyword k hits, we say that Fc : k ∈ f
is a containment feature for record r if f ∈ Fld(r) ∧ (k ∈ f.name ∨ k ∈ f.value).
Finally, the field matching a keyword might correspond to a variety of distinct

textual values s, which may be important in partitioning the search results. Intu-
itively, a partition with value “Governor of California” in the office field, will be
relevant to our running example query, unlike a partition with value “Governor of
Baja California” in the same field. In order to distinguish between such partitions,
we say that Fe : f = s is an equality feature for record r if f ∈ Fld(r)∧f.value = s.
Note that a feature corresponds to the mapping of a keyword on fields of R. It

specifies what is the matching context for query keywords into the set of records.
Logically, a feature can be seen as a dynamic dimension on the whole corpus of
records. For instance, the keyword “president” might represent different match
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contexts such as a person, a US president, a University president etc. If the feature
that a person is a “president” is important, we allow the user to slice on the corpus
on this specific feature of interest.
Therefore, each feature uniquely determines a cluster of records that are char-

acterized by this feature (i.e., records with the same matching context). Formally,
we define a feature association function CR : {Ft,Fc,Fe}∗ → R to cluster the set of
records R according to features. For instance, CR(F ) is the subset of records in R
that have feature F . For a given set of features, CR associates the set of all records
in R that conform with the features as follows:

CR(F1, . . . , Fn) = {r ∈ R|∀i ∈ [1, n], Fi is a feature of r}

Thus, we can say that CR(F1, . . . , Fn) =
⋂

i C
R(Fi).

EXAMPLE 3.1. For instance, the following set of features specifies that the
field office should contain the word “California” and the actual value of the field
is “Governor of California”: Fc

1 : “California” ∈ office and Fe
2 : office =

“Governor of California.” Furthermore, the above selection of features deter-
mines uniquely the cluster CR(Fc

1,F
e
2) of all records from collection R that satisfy

both features. Note that in this case Fe
2 implies Fc

1, thus, C
R(Fc

1,F
e
2) = CR(Fe

2)
⋄

We introduce next the set of all features FQ induced by a query Q on R as
FQ = {Fk|∀k ∈ Q} , where Fk is the feature set induced by an individual keyword
term k. Fk corresponds to all cells of table U that contain a match with keyword
k. It consists of the following components: the type feature set F t over U, the
containment feature set F c, which identifies all fields in U that have a match on
k, and the equality feature set F e, which identifies what values do the fields in U
match with k. Their formal definitions is given below.

Fk = F t ∪ F c(k) ∪ F e(k)

F t = {Ft : type = term|∀term ∈ Πtype(U)}

F c(k) = {Fc : k ∈ f |∀j, f ∈ U∗,j ∧ (k ∈ f.name ∨ k ∈ f.value)}

F e(k) = {Fe : f = f.value|∀j, f ∈ U∗,j ∧ (k ∈ f.name ∨ k ∈ f.value)}

Note that such a feature set FQ might contain features with references to records
that match with one or few keywords specified in the user query. To deliver a
meaningful FQ to the user, we restrict the set of features induced by Q over R to
those features that refer to a subset of records that have a higher relevance to the
query.

DEFINITION 3.1. (Restricted universal table) Let Q be a query and Q(R)
its candidate result. The corresponding universal table restricted to Q(R), UQ,
identifies only the information in U that corresponds to records of Q(R): UQ =
{Ui|∀i, ri ∈ Q(R)}. ⋄

Finally, we revisit the definitions for feature sets Fk and FQ. We restrict them
to apply only on the subtable UQ ⊂ U. For instance, FQ stands for the features
induced by query Q on records Q(R). We show in Section 6.1 how to compute FQ

efficiently.
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EXAMPLE 3.2. Figure 4 shows a subset of the restricted universal table UQ for
our running example query. The columns represent some fields type, f1, . . . , f5 of R
that contain hits with one of the query keywords, whereas the rows represent docu-
ments in Q(R) = {1, 2, 3, 10, 20, 21, 22, 23} that contain all the query keywords. We
have indicated with a check mark the corresponding fields where the keywords hit
the documents (while omitting the actual field contents). Table I shows the match-
ing features FQ together with their associated clusters CQ(R) over the universal
table UQ. ⋄

���� �� �� �� �	 �
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� � �

�� �
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�� �
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��������

������
�������

Fig. 4: Universal table UQ for example 3.2.

Features FQ Clusters CQ(R)

F1 = {Ft : type = governor} {1, 2, 3}
F2 = {Fc : “Governor” ∈ f1} {1, 2, 10}
F3 = {Fe : f1 = “Governor of California”} {1, 2, 10}
F4 = {Fc : “governor” ∈ f2} {2, 3, 20, 21}
F5 = {Fc : “governor” ∈ f3} {20, 22}
F6 = {Fe : f4 = “religion”} {20, 22, 23}
F7 = {Fc : “california” ∈ f5} {20}

Table I: Features and Clusters for Example 3.2

We introduce next the universal navigation lattice (UNL), a data structure that
enables the enumeration of all clusters of records that are viable and that are of
interest based on the user query. The structure ensures that no record is omitted
from being available nor selected by the user.

4. UNIVERSAL NAVIGATIONAL LATTICE

Since we cannot predict which combination of features will be important to the user,
we generate all possible clusterings of records by all sets of features determined by
the user query. In this way, the user can explore the data corpus by navigating
on dynamic dimensions defined at query time as corpus locations where the query
keywords hit. We do this compactly and efficiently, by organizing the clusters into
a lattice structure called the universal navigational lattice (UNL). The clusters
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in UNL are connected with each other based on the subsumption relationship of
features.
Given a set of restricted features FQ that are relevant to query Q, the powerset of

features of FQ forms a lattice (L,≤) with the following two binary operations: (1)
join (∨) is the union of features, and (2) meet (∧) is the intersection of features such
that ∀a, b ∈ L where a = {Fi|Fi ∈ FQ} and b = {Fi|Fi ∈ FQ} then a ∨ b =

⋃
Fi

and a ∧ b =
⋂
Fi, respectively.

The partial order relation, ≤, on the elements of L is defined as the subset
relationship between feature sets. The bottom element of L corresponds to the
empty set, while the top element is the union of all features. Moreover, the way we
defined the join operation implies that the cluster associated with a∨b corresponds
to all records satisfying both feature sets a and b, that is CQ(R)(a∨b) = CQ(R)(a)∩
CQ(R)(b).

DEFINITION 4.1. (UNL) We define the universal navigational lattice UNL
over the meet-semilattice of (L,≤) (i.e., if a, b are feature sets with non-empty
cluster of records then a∧b is also a non-empty cluster feature set) with the following
properties: (i) a feature set a ∈ UNL is the description of a non-empty cluster
of records CQ(R)(a); (ii) no two elements have the same cluster of records, i.e.,
∀a, b ∈ UNL then CQ(R)(a) 6= CQ(R)(b). In other words, each element in UNL is a
unique feature set and has a unique cluster of records. ⋄

Let us note that UNL is not closed under the join operation, i.e., if a, b are non-
empty cluster feature sets it does not mean that a non-empty cluster for a∨b exists
in UNL all the time. We consider that elements of UNL are organized on levels
based on the number of features they contain. For instance, an element with four
features is considered to be on level four in UNL.

5. SYSTEM ARCHITECTURE

In this section, we describe our design goals and the system architecture of Wiki-
Analytics. Our design is constrained by three main requirements: (i) an easy to
use and an effective search interface to explore and disambiguate answers by mak-
ing data selections while navigating heterogeneous collections, (ii) enable the user
to select a complete and precise set of answers according to intentions expressed
initially as a keyword query, and (iii) the search should not modify nor markup the
original data corpus in a way to facilitate data discovery.
Based on these design decisions, we chose the architecture shown in Figure 5

consisting of the following parts: data storage and indexing, query processing, and
a dynamic user interface with cluster selection.
For the first part, we extract the infoboxes from a Wikipedia snapshot of 2009

and we convert them to XML by using the Wiki2XML tool of the Texterra project2.
Note that our model is generic enough that it can capture relational data as well
as semi-structured documents. For example, for relational databases records are
tuples, record types are table names, and fields are attribute-value pairs. XML
data can also be shredded into records if a data modeler provides a set of XPath
expressions to generate field names (unique per record) and string values. Our

2http://modis.ispras.ru/texterra/download/index.html
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Wikipedia

Infoboxes

Universal Table (logically)

DB2 Text Search® Indexer

Input: keyword search query

e.g., California governor religion!

Fields

Documents

Storage & Indexing

(Heterogeneous, 

Sparse data)

DB2 pureXML®

Identify features and clusters on the fly

Type Office Order Religion Born !

Gov Cali Cali Catholic * *

Gov Gov of 

Cali

* * Cali *

* * * * * *

Query Processing

Fields
Docu+

ments

�

� �

�

�
�

�

Dynamic User Interface (flatten to trees)

Interactive 

Selection 

of Final Answers

Query  Answer

Infobox Religion

Arnold Catholic

Ronald Catholic

Pat Roman

Compute Universal Navigational Lattice (UNL)

1 2 3 10 20

n3n2n1

n4 n5

n7

n6

Fig. 5: WikiAnalytics Architecture

choice or representation is XML. For instance, Figure 6 shows a sample record in
XML format of Arnold Schwarzengger’s infobox, which corresponds to Figure 2. In
order to store and query infoboxes, we use an off-the-shelf keyword search system.
Mainly, we store them in IBM’s DB2 pureXML R© database which comes with native
XML storage and querying support. We leverage the power of DB2 Text Search R©

engine for XML full-text search. This allows seamless access to the structural part
as well as to the textual part of the documents. We delegate the text search engine
for query term expansion to handle stemming, case insensitive search, stop words
removal, and other standard recall-enhancing techniques.
The query processing part consists of two modules: feature extraction and con-

struction of the universal navigation lattice UNL. The text index produces a set of
infobox documents that match all query keywords. Note that the keyword search
by itself is not sufficient for building result lists since it cannot provide 100% preci-
sion. Imprecise results are tolerable for “point” queries because the user can browse
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<infobox type="Governor">

<field>

<field_name>name</field_name>

<field_value>Arnold Schwarzenegger

</field_value></field>

<field>

<field_name>nick</field_name>

<field_value>Governator

</field_value></field>

<field>

<field_name>order</field_name>

<field_value>38th</field_value>

</field>

<field>

<field_name>office</field_name>

<field_value>Governor of California

</field_value></field>

...

<field>

<field_name>religion</field_name>

<field_value> Roman Catholic

</field_value></field>

...

</infobox>

Fig. 6: Infobox as an XML document

a few candidates to identify a single result. However, if a user needs to compile
or aggregate a list of tens or hundreds or thousands of infoboxes, browsing each
candidate individually becomes infeasible. In this case, clustering results simplifies
the browsing process and enables users to accept and reject semantically similar
results as a group.
The first module conceptually views these infoboxes as a (sparse) universal table,

with a row for each infobox and a column for every field that occurs in at least one
of them. A feature with a corresponding cluster of documents is created for each
field name and field value that contain a given query keyword. The second module
builds the UNL lattice graph. Intuitively, UNL encodes all possible meaningful
clusters of documents by all sets of features. We create relevant clusters and links
between them so as to use the features as dynamic structural dimensions that slice
and dice in the data collection to facilitate document exploration and selection.
In the third part we introduce techniques for visualizing the UNL lattice and

for interactively allowing the selection of records in order to facilitate discovery of
complete query answers. The lattice itself provides a dynamic interface that lets
users control the navigation and selection over the corpus. UNL lends naturally
to a bottom-up visual representation, which resembles a multi-faceted search like
interface if we follow the links. We use the features defined on the corpus as dynamic
navigational dimensions. The user will follow links in the lattice by selecting feature
sets starting from more general groups of records characterized by less features
toward more specific groups, i.e., more features at nodes therefore, more selective on
the record groupings. In general, this is true since a link between the lattice elements
a to b stands for a ⊂ b (i.e., feature sets inclusion) and CQ(R)(a) ⊃ CQ(R)(b) (i.e.,
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cluster set inclusion). The lattice is exposed into a tree based interface. This
facilitates complete access to the data without dropping any query answers and
enables smart querying as well as easy data selection.
Lastly, we extract the final result for further data processing, e.g., business in-

telligence data analytics or data mashups. Figure 7 shows our target search GUI
interface. On the left side, the interface allows users to interact and navigate over
clusters of records, whereas on the right side it shows the current data feed selection.

Fig. 7: GUI: Faceted Search-like Interface over the Documents Clustered by Feature Sets

We underline the difference with the traditional faceted search. Our choice of
clustering features, which depends on the query is a key difference between our
approach and prior works on concept lattice and faceted search. These works
cluster objects only based on field values that are known a priori. In contrast, our
“facets” are dynamically defined at query time. The novelty of our approach is that
the record clusters capture the context of where the keywords match in the corpus.
We call these matches to be dynamic features as opposed to statically predefined
hierarchies of data properties, e.g., size, color, price etc. We enable browsing the
data corpus and discovering meaningful records using the matching context as a
guide, where the context is defined by the query keyword hits in the corpus. We
describe pruning heuristic techniques for the data exploration and selection process
in Section 7.
WikiAnalytics provides a web-based interface to the data. We implemented

the backend using Java servlet technology to extract the features from DB2 and to
construct the UNL in memory. For presentation, the lattice is flattened into trees
and serialized to a Adobe Flex frontend application. The GUI allows interactive
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visualization of the UNL with support for (de)selection of record clusters. For more
details on our system, please see [Balmin and Curtmola 2010a].

6. ALGORITHMS

In this section, we elaborate on the lattice-based algorithm called MakeGroups that
computes the UNL and navigates on it. The algorithm works in three phases as
follows.
Phase 1 identifies the features FQ induced by query Q over record collection R,

and computes clusters CQ(R)(F ) corresponding to each feature F ∈ FQ. That is, all
the categories of features (type, containment, and equality) are computed based on
the location where query keywords hit in the records R. For each distinct feature,
we create a cluster comprising of all the records this feature appears in. The set
of features FQ and their clusters are the basis for the UNL generation which is
described in the next phase.
Phase 2 computes the UNL lattice starting with the initial set of features FQ and

their associated clusters CQ(R) over R.
Finally, phase 3 facilitates navigation on the UNL lattice and generates a tree like

user interface in order to enable exploration, discovery, and selection of records of
interest. We describe next each phase in details.

6.1 Computation of FQ

We show in this section how to compute the set of features FQ and the associated
clusters CQ(R)(F ) for each feature F ∈ FQ over the corpus. The corresponding
pseudocode is presented in function compute features of Figure 8. One possibility
to derive the features is to materialize the universal table U first, and later collect
the matches with the query keywords. Note that this approach is infeasible due to
the size and the sparsity of the data being considered.
To achieve this in practice, we leverage the power of a full-text processor over

XML documents that allows to retrieve all the field value pairs (also called “hits”)
for which there is at least one match with one of the query keywords. Moreover, in
order to increase the precision, the search is restricted to the set of records Q(R)
that contain all keywords in any combination of field names and values. Therefore,
for each keyword k we compute the corresponding fields and their hits as well as
the records they appear in by using the following primitive invertedIndex(k, Q, R) in
lines 2-3. This function has access to the full-text indices and returns all matching
pairs (f, d) for which field f in record r ∈ Q(R) contains a keyword match with
one of the terms of query Q.

Since infobox fields may contain XML content, we store the records in XML
columns of DB2 pureXML database and we access them using SQL/XML language.
For fast access to the keywords inverted indices, we build text indices over the XML
content of the records. The invertedIndex function takes advantage of all these
techniques as well as of the database fielded search capability to filter the fields
in an infobox document. For more details about the index and the data access
technologies please see the system architecture in Section 5.
Each matched pair, a field f in record r, returned by invertedIndex on keyword k

produces one of each feature category: a type feature for r’s type Ft : type = r.type
(lines 4-6), a containment feature Fc : k ∈ f (line 7-8), and an equality feature

IBM Research Report RJ 10466, May 2010.



WikiAnalytics: Disambiguation of Keyword Search Results on Highly Heterogeneous Structured Data · 15

Fe : f = f.value (lines 9-10).
All such discovered features are part of the output of algorithm phase 1. In ad-

dition to computing features, we also keep track of the clusters of records CQ(R)

that have contributed at the creation of each feature in the code of function up-
date features in Figure 8.

algorithm compute features(Q, R)

input: query Q, set of records R

output: initial features FQ, initial clusters CQ(R)

begin
1 FQ = {⊘}
2 for each keyword term k ∈ Q do
3 for each field f in record r such that (f, r) ∈ invertedIndex(k, Q, R)

4 per distinct document r
5 create new feature Ft : type = r.type

6 update features(Ft, r, FQ, CQ(R))
7 create new feature Fc : k ∈ f

8 update features(Fc, r, FQ, CQ(R))
9 create new feature Fe : f = f.value

10 update features(Fe, r, FQ, CQ(R))

11 return FQ, CQ(R)

end

algorithm update features(F , r, FQ, CQ(R))

input: feature F , record r, features FQ, clusters CQ(R)

output: features FQ, clusters CQ(R)

begin

12 if (!FQ.contains(F )) then CQ(R)(F ) = {⊘}
13 FQ + = F

14 CQ(R)(F ) + = r.docid
end

Fig. 8: Phase 1 of Algorithm MakeGroups (computation of FQ)

6.2 Construction of UNL

We now describe an efficient algorithm that constructs a Universal Navigational
Lattice. The pseudocode of this algorithm, called compute unl, is shown in Fig-
ure 9.
We capture the lattice as a direct acyclic graph (DAG) data structure, UNL =

(N,E). Each node n ∈ N is characterized by a set of features n.F and the corre-
sponding cluster of records that have all these features n.I = CQ(R)(n.F ). A link
(n1 → n2) ∈ E connects two nodes such that n1.I ⊃ n2.I and n1.F ⊂ n2.F .

Our algorithm constructs the lattice graph UNL bottom-up, inductively, level by
level such that level Lk−1 generates the next level Lk and possibly some nodes on
the higher levels depending on the outcome of merge nodes. This strategy avoids
generating all combinations of nodes. Therefore, it benefits from pruning the nodes
as early as possible if they do not satisfy the definition of UNL, i.e. they correspond
to duplicate or empty clusters of records. Interestingly, the structural heterogeneity
actually makes UNL construction feasible. In the worst case the number of nodes in
the lattice is a powerset of the number of features, but the sparser the features are,
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algorithm compute unl(FQ, CQ(R))

input: features FQ, clusters CQ(R)

output: universal navigational lattice UNL

begin
1 N = {⊘}, E = {⊘}

2 initial nodes = consolidate features(FQ,CQ(R))
3 for each node n ∈ initial nodes do
4 N+ = n
5 for each level level = 2..|FQ| do

6 for each node n1 ∈ N do
7 if (|n1.F | == level − 1) then
8 for each node n2 ∈ initial nodes do

9 construct newNode : { F = n1.F ∪ n2.F , I = n1.I ∩ n2.I }
10 if (newNode.I == {}) then continue
11 oldNode = find oldNode ∈ N such that oldNode.I == newNode.I
12 if (oldNode exists) then

13 oldNode.F+ = newNode.F
14 E+ = (n1 → oldNode)
15 E+ = (n2 → oldNode)
16 else

17 N+ = newNode
18 E+ = (n1 → newNode)
19 E+ = (n2 → newNode)

20 remove generalized triangles(N , E)
22 return (N,E) as UNL

end

Fig. 9: Phase 2 of Algorithm MakeGroups (construction of UNL)

the fewer clusters are constructed. We observed that the size of the lattice stays
relatively small even for large numbers of infoboxes and features.

Before we start, remember that UNL is a lattice. Thus, when a new UNL node
n is being generated as a result of joining nodes n1 and n2, we insure properties
(i) and (ii) from UNL’s definition. In particular, we keep only non-empty feature
cluster nodes and collapse nodes that represent the same cluster of records into one
node. Intuitively, the lattice should contain elements that correspond to unique set
of records and unique set of features in order to avoid redundant navigation over
the data. We summarize our discussion to add a new node to UNL as follows:

—R1: if C
Q(R)(n) = {} then n /∈ UNL, and

—R2: if ∃y ∈ UNL such that CQ(R)(n) = CQ(R)(y) then merge n into y if y 6= n
and add links from n1 to y and from n2 to y, and

—R3: if such y 6 ∃ then add n to UNL and add links from n1 to n and from n2 to n

The algorithm starts at lines 2-4 by generating the first lattice level, and possibly
other lower rank levels by consolidating the set of individual features FQ, and their
clusters CQ(R), which were previously constructed in phase 1. The consolidation
of features is required by UNL property (ii), as defined in Section 4. In particular,
features are consolidated based on the clusters they represent. Thus, function
consolidate features, in line 2, builds a lattice node for each distinct cluster of records
and groups all features that characterize that cluster onto that node (see Figure 11).
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EXAMPLE 6.1. Building on our running example, the initial feature sets are
computed as in Table I. After going through the consolidation process, the lattice
consists of the following nodes n1 − n6 as displayed in Figure 10a. Each node n in
the lattice has associated two sets: the set of features n.F and the cluster of records
n.I under the context of the features. In particular, node n2 consolidates features
F2 and F3 (i.e., n2.F = {F2, F3}) as a result of characterizing the same cluster set
n2.I = {1, 2, 10}. ⋄

The algorithm continues by considering all possible groups of records by all sets
of features. Lines 5-8 construct all subsequent levels of the lattice by extending the
current level with one more feature as part of the previously consolidated nodes.
At each step, a new lattice node is created. It consists of merging the features sets
of the underlying nodes while taking a set intersection over their clusters (line 9
and merge nodes in Figure 11). For each such new potential node, the algorithm
applies two lattice pruning rules based on properties of the UNL definition. Rule
(R1), in line 10, disregards the node if it stands for an empty cluster. Rule (R2),
in lines 11-15, consolidates all nodes that have the same cluster by merging their
feature sets. Finally, we add the new node to the graph lattice (lines 17-19) in case
the cluster does not exist (the default rule R3).

EXAMPLE 6.2. Construction of the lattice graph starts with the generation
of the following nodes n7, n8, n9 as a result of applying rule R1. This is shown
in Figure 10b. Each node is the result of taking the union of the features sets of
the parents and of set intersecting the record clusters of the parents. For instance,
n7.F = n1.F ∪ n2.F while n7.I = n1.I ∩ n2.I. All combinations for which the
cluster set is empty are not part of the lattice as stated by rule R1. Next, the
algorithm generates the combination between nodes n7 and n3 for which rule R2

applies. Since their cluster intersection coincides with the cluster for node n9.I,
the new combination is merged onto n9 as shown in Figure 10c. Similarly, this is
observed for generating the combination between n8 and n3. Figure 10d shows the
complete lattice graph where new nodes get generated for unique feature sets and
unique clusters, or just merged with existing nodes. ⋄

Note that UNL encodes all sets of features even though not every set corresponds
to a node. For example, the set of features {F1, F2} does not form a node in
Figure 10d. However this set of features corresponds to cluster of records n7.I
since n7.F is their smallest superset in UNL.
In the end, the algorithm eliminates all the redundant edges in line 20. The

UNL edges represent cluster relationship, which is transitive. Consider an edge
e = (n1, n2), such that there is a path from n1 to n2 that does go through e.
This edge does not encode any new information, since it can be reconstructed from
the path. We remove such edges from UNL to keep it compact and simplify its
presentation. We propose a set of effective heuristics that removes the direct links
n1 → n2 ∈ E that close, what we call, generalized triangles

—n1 is a parent node of n2 on path p1 from n1 to n2 (|p1| = 1), and

—n1 is an ancestor node of n2 on path p2 from n1 to n2 such that p1 6= p2 and
|p2| > 1
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(a) Initial lattice nodes after consolidation of FQ.
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(b) Generating nodes n7, n8, and n9 using rule R1.
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(c) Merging new nodes on n9 using rule R2.
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(d) All levels of UNL complete.
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(e) Removing redundant links from UNL.

Fig. 10: Construction of UNL Universal Navigational Lattice Graph.

IBM Research Report RJ 10466, May 2010.



WikiAnalytics: Disambiguation of Keyword Search Results on Highly Heterogeneous Structured Data · 19

algorithm consolidate features(FQ,CQ(R))

input: features FQ, clusters CQ(R)

output: level 1 of the UNL

begin

N
′

= {⊘}
for each feature F ∈ FQ do

if (∃n ∈ N
′

such that n.I == CQ(R)(F ))) then

n.F+ = F
else

n.F = F, n.I = CQ(R)(F )

N
′

+ = n

return N
′

end

algorithm merge nodes(n1, n2)
input: nodes n1, n2

output: result node of merging the input nodes

begin
node.F = n1.F ∪ n2.F
node.I = n1.I ∩ n2.I

return node
end

algorithm remove generalized triangles(N , E)

input: lattice graph (N,E)
output: lattice graph (N,E) without generalized triangle links
begin

queue = empty
for each root node root ∈ N do
queue.add(root)

while (!queue.isEmpty) do

node = get next node from queue whose parents do not exist or have been processed
remove links(node)
for each child c ∈ node.children do
queue.add(c)

end

algorithm remove links(node)

input: currently visited node node
output: remove redundant links leading to node in UNL

begin
node.ancestors = ⊘

for each parent p ∈ node.parents do
node.ancestors+ = p.parents
node.ancestors+ = p.ancestors

for each node anc ∈ (node.parents ∩ n.ancestors) do

E− = (anc → node)
end

Fig. 11: Details of Phase 2 of Algorithm MakeGroups

The rule enforces that if there are multiple paths that reach node n2 from node
n1, then discard the path that bares the “parent” relationship between the nodes.
In other words, if there are ancestors of node n on a path with length greater
than 1 which are also parents of n (presumably on a another path), then the links
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between the node and those parents are to be removed. Therefore, the heuristic
promotes the longer path via other intermediate nodes to the short navigational
path. The heuristic is valid because the algorithm removes redundant navigation
in the lattice, i.e., the possibility to jump from features n1.F directly to features
n2.F is not intuitive for navigation when there is another path with a length bigger
than one that connects the same set of nodes.
Function remove generalized triangles in Figure 11 computes a set of indirect an-

cestors for each node n – the ancestor nodes of n excluding its direct parents. We
do this in one pass over the lattice by employing breadth first search graph traver-
sal starting from the roots (nodes without parents) of the lattice graph UNL, and
processing the nodes only if all their descendants have been visited previously. In
the end, we identify all links in E (“parent” relationships) that are simultaneously
in “indirect ancestor” relationship, and remove them from E. We do this last step
in remove links function.

EXAMPLE 6.3. Our sample lattice graph contains four such redundant links
closing generalized triangles. They are shown with dotted red lines in Figure 10e.
For instance, the direct link n2 → n9 is redundant since n9 can be reached from n2

via n7. Intuitively, this is translates in better user navigation and answer discovery
since the user wants to explore the collection in a gradual manner, i.e., explore
records from very generic groups to more and more focused groups. Jumping di-
rectly from n2 to n9 omits the intermediate group of n7. Otherwise, the user may
go to n7 instead. Eventually, n9 can be reached if the user is not satisfied with n7.
⋄

6.3 Presentation of UNL

UNL lends itself to many ways of presentation and user interaction, such as faceted
search or OLAP style slicing and dicing. To effectively answer the user query, we
display the lattice in a tree like interface that allows easy navigation among all the
groups: clusters are shown as parents of their sub-clusters. For each cluster we
display its size and the full set of features. The user can expand or collapse any
tree node, as well as select or unselect any cluster for the final result.
We obtain the tree shape by a depth-first traversal of UNL, starting from each of

its root nodes. In practice, most of the lattice nodes are well connected so there are
relatively few roots. The order of the child nodes in the tree is determined by the
number of records for each child. We order them in descending order of the cluster
size. A sample user interface is displayed in Figure 7.

EXAMPLE 6.4. In our running example, we allow the user to interact with the
lattice by navigation on each tree in DFS order traversal. The user drills down and
up based on the feature sets over the various clusters. In Figure 10e we distinguish
five root nodes n1 − n5; therefore, there are five trees to explore. Out of the initial
set of six nodes, only five remained roots. For instance, if the user is interested to
find the set of records {20, 2} then the user can go n4 → n10 → n6, select n6.I, and
union this selection with n9.I that was derived by navigation over n2 → n7 → n9.
⋄
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7. USER EXPERIENCE

We describe in this section the pruning techniques in WikiAnalytics which fa-
cilitate effective user interaction to disambiguate query answers and to extract the
necessary fields from the resulting records.
Constructing the Query Result. First, we describe the extraction of return

values from a set of selected records S. In general, users are not necessarily inter-
ested in the full content of matched records. Usually, they are trying to construct a
table with a particular set of fields that are relevant to their information need. For
instance, in our working example, the user wants to compile the religious affiliations
for past and current governors of California. This information can be found in the
religion field of the governors’ infoboxes.
In WikiAnalytics, the user specify a set of keywords R(Q) that describe the

return as part of the query Q’s expression. However, for each k ∈ R(Q) there can be
multiple hits in the same record. By default, for each k ∈ R(Q), WikiAnalytics
picks a single field f that has the largest number of records with k ∈ f . However,
we also give user choice lists with other candidate fields ordered by the number of
field hits for k.
The query result is a table T that is extracted from the content of the fields

matching to R(Q) over S. This is equivalent to a projection over the user selected
records on the query return part and the primary key of the collection, which in
our case is a Wikipedia page name with an optional sequence number used in rare
cases when multiple infoboxes are found on the same page. Thus

T = πR(Q)∪key(R)(S)

User Selection Process. It is rarely practical to present the full lattice as it is
to the user in order to allow for disambiguation of the return records. Therefore,
we propose below techniques to prune down the lattice to a manageable size.
We define the life cycle of a normal query processing for user u as a feedback

process σu in which the user iteratively refines a set of records as part of the output
selection S. This is similar to applying the relational selection operator iteratively
on the candidate result set of the query, or

S = σu(Q(R))

We introduce a technique for pruning features based on the size of the cluster
they describe. Intuitively, features describing small clusters of records are more
likely to be outliers. In order to separate homogeneous patterns from outliers, we
introduce the user-controlled feature support threshold (FST ). That is, all features
with a cluster size smaller than FST are not considered during the initial UNL
clustering.
We formalize this iterative life cycle process of query result disambiguation in

the following steps.

—Step one identifies the larger cluster of structurally homogeneous records in the
collection.
Initially, the selection process starts considering the candidate record set Q(R),
i.e., all the records that match the query. We propose a batch computation of
UNL over Q(R) for fixed FST . That is, we automatically filter out the features
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with a cluster support smaller than FST from the initial UNL construction. In
practice, FST depends on the application domain. For Wikipedia searches, good
initial values are between 5 and 20.

—At lattice presentation time, we display the small clusters that contain fewer than
FST records as a plain list. This list might be overwhelming for the user when
trying to identify the structural outliers. We propose the next following steps as
a solution.

—In step two, we allow automatic and manual record filtering mechanisms. First,
we use a heuristic to identify the largest meaningful cluster of the results. The
heuristic follows the edges UNL by always picking the largest sub-cluster, until
each keyword is found in either the same type or field name for each infobox, or
in the same value of the same field.
Second, the user can manually complement the current record selection with other
clusters of records or individual records. He or she can also remove records from
the current selection by clicking on cluster nodes. At any point, WikiAnalytics
computes and displays the query result T of the current selection S.
Moreover, the user can “accept” or “reject” entire clusters from the lattice presen-
tation thereby asserting that all or none of cluster infoboxes should be present
in the result without affecting the selection. Thus, all infoboxes belonging to
accepted or rejected clusters can be removed from the UNL.
We allow this “accept-reject clusters” user behavior in order to facilitate easy nav-
igation over the lattice presentation, and filtering of non-meaningful or already
processed clusters.

—Step three allows the user to decrease the FST value and refine the selection cycle
by repeating steps two and three. Working on a pruned UNL has the advantage
that the user can now focus on the smaller size clusters to search for the structural
outliers.
The user can opt to visualize the query answers at any time during the selection
process by extracting the actual return values from the selected records. The
final query results are published as a data feed when the user is satisfied with
the results extracted from the current selection of records S.

EXAMPLE 7.1. This example shows how we can find the complete list of an-
swers to our working query. If we fix FST = 5, the automatic heuristic points to
the bigger cluster consisting of the following features {Ft : type = governor, Fc :
“religion” ∈ religion, Fe : office = “Governor of California”}. Indeed, this
cluster accounts for 35 out of 82 search results. However, there are three more
records, somewhere in the outliers list, that belong in the query answer. Even
with good domain knowledge, the user will find it hard to locate them. In or-
der to focus on the outlier answers, let us “accept” the large result cluster and
thus remove it from the presentation. Let us also reject three obviously irrele-
vant clusters: Fe : office = “Governor of Alta California”, Fe : office =
“Governor of Baja California”, and Fe : office = “Military Governor of
California”, which contain 16, 5, and 6 records respectively.
In step three, we recompute UNL for FST = 0. This will force to include in UNL

all the clusters of all 20 remaining records. Analyzing this shorter list of records, it
is easy to spot the three outlier records, which are governors of California that were
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not picked up automatically by the previous step. Ronald Reagan and Earl Warren
are both outliers. They contain the information about being governor of California
in the field order2 and are of types president and judge, respectively. The last
outlier is Washington Bartlett. Even though this record is of type governor, the
state affiliation is given in its field order instead of office, which excludes it from
the largest homogeneous cluster and makes it an outlier for our query. ⋄

8. EXPERIMENTAL EVALUATION

In this section, we evaluate performance of the UNL construction algorithm. We
show that despite the exponential complexity of the algorithm, judicious use of
FST -based pruning helps us achieve on-line level performance. We have not yet
performed a formal user-interaction evaluation, but we have positive experience
from the in-house use of the tool in the context of a larger project [Midas ].

We ran the WikiAnalytics system on a Centrino Duo 2.2GHz laptop with 2GB
of RAM.
We confirm experimentally that FST plays an important role both in the effi-

ciency of the UNL computation as well as in the selection of the complete query
answers.
The tables below show how the lattice parameters vary with FST for queries

with different selectivities on Wikipedia. Table II reports results for our running
example, Q1 =“governor California religion!”. As expected, the construction time
and the size of UNL increase with the decrease of FST since the number of features
after consolidation increases.

FST=20 FST=15 FST=10 FST=5 FST=0

# docs in UQ 82 82 82 82 82

# fields in UQ 19 19 19 19 19

# features after 7 9 11 16 76

consolidation

|N | 19 35 53 79 151

|E| 31 66 106 163 278

# roots 1 1 1 1 1

construct UNL 2ms 5ms 9ms 27ms 163ms

Table II: Query Q1 = “California governor religion!”

To stress WikiAnalytics, we have focused on less selective queries, Q2 and Q3,
as shown in Tables III-IV. Q2 matches to approximately 1,000 documents, while
Q3 matches over 2,000 documents. In general, our tool is designed to extract results
of a few hundred to a couple of thousand of answers at a time, as it is hard to find
larger groups of semantically similar infoboxes.
We present Q2 in Table III and we notice big impact of FST on the size and

construction time of the UNL. Without use of FST , we could not support on-line
ad-hoc querying. Indeed, for FST = 0 there are over 2,000 clusters available for
browsing, and the UNL takes almost 2 minutes to compute. Bringing FST to 15, we
experience reasonable search parameters, i.e., construction time of about 1 second
and 465 nodes.
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FST=20 FST=15 FST=10 FST=5 FST=0

# docs in UQ 1014 1014 1014 1014 1014

# fields in UQ 32 32 32 32 32

# features after 33 40 71 166 1306

consolidation

|N | 395 465 762 1389 2274

|E| 967 1137 1811 3159 4443

# root 2 2 2 2 2

construct UNL 1s190ms 1s200ms 3.5s 15s 1m54s

Table III: Query Q2 = “jazz album artist! released!”

This effect can be noticed more clearly in Table IV illustrating query Q3 as we
decrease the query selectivity even further. In this case, starting with FST = 20
would be a good idea.

FST=20 FST=15 FST=10 FST=5 FST=0

# docs in UQ 2314 2314 2314 2314 2314

# fields in UQ 43 43 43 43 43

# features after 50 75 112 195 2533

consolidation

|N | 927 1273 1750 2338 4325

|E| 2394 3189 4286 5285 8098

# roots 7 7 7 7 7

construct UNL 6s 12s 29s 1m 13m

Table IV: Query Q3 = “hard rock album released!”

9. RELATED WORK

Recently, much effort went into the management of heterogeneous datasets enabling
the average user to browse and query them. On one hand, there are the web search
engines and ranked keyword search with heuristics over relational databases [Bhalo-
tia et al. 2002; Agrawal et al. 2002; Hristidis and Papakonstantinou 2002; Hristidis
et al. 2003; Balmin et al. 2004; Li et al. 2006] as well as over semistructrued data [Co-
hen et al. 2003; Li et al. 2004; Xu and Papakonstantinou 2005; Theobald et al. 2005].
Yet, they are not powerful enough to capture the user’s intention in full [Vagena
et al. 2007]. On the other hand, query languages such as SQL, XPath, XQuery,
and SQL/XML require up-front data integration, are complex and hard to express.
Moreover, these languages require a user to have full schema knowledge, which is
not feasible for highly heterogeneous data. To cover the range between the two
extremes, we identify a list of complementary techniques to our approach.

Extract structure from data. There has been increasing effort directed by var-
ious communities, including semantic web, data mining, and information retrieval,
on designing tools to extract data and structure from heterogeneous collections and
making it available for querying especially from the semantic web, the data mining
and the information retrieval communities.
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Freebase [Bollacker et al. 2007] supports collaborative structured information in-
tegration. However, it forces the users to follow a central predefined schema. ,
which is very limiting. DBpedia [DBpedia ; Auer and Lehmann 2007] is another
effort, which also complements Wikipedia infoboxes with additional information.
Nevertheless, the result is just as heterogeneous as the original. It can be accessed
via keyword-based interfaces or SPARQL[SPARQL ]. Other efforts focus on build-
ing and leveraging ontologies for search and browsing the data [Wu and Weld 2008;
Suchanek et al. 2007; McDowell and Cafarella 2006]. To improve the accuracy of
search results, Powerset [Powerset ] brings in natural language processing. Yet, it
fails to disambiguate query answers and it does not return aggregated information
from multiple pages. Same note applies to WebTables [Cafarella et al. 2008], which
proposes to leverage structured data in HTML tables and return ranked relations.

However, the shortcoming with the above approaches is that once the data is
extracted complex queries need to be formulated over a strict predefined (virtual)
large schema.

Sequential pattern mining. Another related body of work has focused on
using lattice-based techniques [Ganter and Wille 1999] to extraction knowledge.
These methods leverage the formal concept lattice (also called Galois lattice) [Gan-
ter and Wille 1999] and vary by the way the lattice is constructed with different
goals and functionalities. For example, [Zaki et al. 1997; Zaki 1998] deals with
extraction of association rules by mining for frequent itemsets and sequences inside
databases. However, there is no intention to capture the relation between the sets.
Similarly, [Ganter et al. 2005; Godin et al. 1989; Grosser and Ralambondrainy 2007;
Villerd et al. 2007; Carpineto and Romano 1996] use a lattice as an effective tool
for navigation, concept extraction, and hierarchical conceptual clustering. How-
ever, these lattices encode the exploration space over all possible queries of terms.
A query defines a position in this lattice. Browsing is similar to jumping between
query formulations. It does not allow to disambiguate the original query other than
by changing the set of terms in the query. In contrast, our lattice is built dynam-
ically for each user query. It aims to disambiguate answers by navigating on the
structure of the content, i.e., our features represent logical structural points in the
collection where the keywords hit.

Semantic data exploration. On the other hand, semantic data exploration
by traditional faceted search [Auer and Lehmann 2007; Tunkelang 2006; Dakka
and Ipeirotis 2008; Yee et al. 2003] defines a predefined set of “facets” that are
intrinsic properties of the data itself such as color, price etc. The number of facets
per entity is usually manageable given that these engines are very domain specific.
The entities in the dataset are then classified in hierarchical buckets according to
facets. At search time, these systems browse the data and retrieve the entities over
the predefined dimensions. In contrast, our dimensions are dynamic, defined on
the fly, based on where the query keywords hit in the entity fields. In practice,
for heterogeneous data this generates a large number of facets that would make
interaction impractical using the existing faceted search engines. Moreover, faceted
search is best suited for “point” queries while we focus on aggregation of information
from multiple result records.

SEDA project [Balmin et al. 2009; Balmin et al. 2008] has the same goal as ours.
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Nevertheless, the amount of heterogeneity inherent in the data makes it difficult to
reason in terms of lists of structural dimensions of the data. WikiAnalytics uses
a lattice-based approach, a more generic framework than lists, to efficiently and
effectively organize the search space. Similarly, [Dash et al. 2008; Wu et al. 2007]
focus on integrating dynamic faceted search with OLAP processing. However, they
are not suitable for large heterogeneous data or designed to return a complete set
of answers.

10. CONCLUSION

Large quantities of structured data are being created by online communities in wikis
and other highly heterogeneous data sources. The need to query it has sparkled the
interest to enable analysis and integration of Web data. In this paper we presented
WikiAnalytics, a tool to support on-line ad-hoc querying over these data.
We demonstrate effective methods within a smart interactive user interface that

facilitates exploration and disambiguation of search results in order to compile
complete and precise answers that span multiple records or pages. Our methods
and techniques are universally applicable to any collection of loosely typed records,
which characterizes Web data in general. Our approach is to use heuristics that
take advantage of the results’ structure to improve precision and recall. At the
same time we recognize that heuristics can never be 100% correct, so we built
the WikiAnalytics tool that summarizes the results as a lattice of homogeneous
result subsets. This tool enables the user to effectively verify and modify the results
obtained by the heuristics.
We are currently investigating extensions of our techniques to capture more ex-

pressive data models, for instance allowing arbitrary XML fragments in record
fields. We also want to consider hierarchical data dimensions in the attribute val-
ues, as well as to account for the links between documents.
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