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Abstract

It is proved that the supersingular parameters α of the elliptic curve E3(α) :
Y 2 + αXY + Y = X3 in Deuring normal form satisfy α = 3 + γ3, where γ
lies in the finite field Fp2 . This is accomplished by finding explicit generators
for the normal closure N of the finite extension k(α)/k(j(α)), where α is an
indeterminate over k = Fp2 and j(α) is the j-invariant of E3(α). The function
field N is constructed over any field k containing a primitive cube root of
unity whose characteristic is different from 2 and 3, and contains the function
field of the cubic Fermat curve. This is used to study solutions of the cubic
Fermat equation in Hilbert class fields of imaginary quadratic fields in which
the prime 3 splits, as well as solutions in modular functions given in terms of
the Dedekind η-function.

It has been known since Hasse’s 1934 paper [h] that there are only finitely many
isomorphism classes of elliptic curves E defined over the algebraic closure of the finite
field Fp, for which E has no points of order p. Such a curve is said to be supersin-
gular, and Deuring [d] showed that its j-invariant j(E) lies in Fp2 . Supersingular
j-invariants are somewhat sparse: in characteristic p there are roughly (p− 1)/12 of
them. They can be characterized as the roots of a certain polynomial (see [d], [brm],
[m1]), and it is of interest to find other arithmetic relations that they satisfy. For
example, it is proved in [m2] that the j-invariant of any supersingular curve E in
characteristic p is a perfect cube in Fp2 .

For certain families of elliptic curves, the values of the parameters for which
these curves are supersingular also satisfy interesting arithmetic relationships in finite
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fields, as has been shown in [m1]. There it is shown that the Tate normal forms E4(b)
and E5(b), with distinguished points of orders 4 and 5, respectively, have the following
property. The values of b in the algebraic closure F̄p for which

E4(b) : Y 2 + XY + bY = X3 + bX2

is supersingular in characteristic p (�= 2, 3) lie in the finite field Fp2 and are fourth

powers in that field. A consequence of this is that the supersingular parameters λ of
the Legendre normal form

E2(λ) : Y 2 = X(X − 1)(X − λ)

are fourth powers in Fp2 . (See [m1] and Landweber [lw].) Similarly, the values of b

for which

E5(b) : Y 2 + (1 + b)XY + bY = X3 + bX2

is supersingular in characteristic p (�= 2, 3) are fifth powers in Fp2(ζ5), where ζ5 is a
primitive fifth root of unity over Fp.

In the case of E2(λ) there is also a group G24 of linear fractional transformations
in z, isomorphic to the octahedral group, which maps the set of fourth roots z = λ1/4

of supersingular parameters into itself. Similar groups exist for each of the normal
forms E4(b) and E5(b). See [m1] for the precise statements. The existence of these
groups shows that the supersingular parameters for these normal forms exhibit deeper
structural properties.

The analogue of the Tate normal form for points of order 3 is the Deuring normal
form E3(α) (see below), on which the points (X, Y ) = (0, 0) and (0,−1) have order
3. A corresponding arithmetic property for the supersingular parameters of the
normal form E3(α) was stated as a conjecture in [m2]. In this note I shall prove this
conjecture:

Theorem 1. Let p > 3 be a prime and let α be an element of F̄p for which the
elliptic curve in Deuring normal form

E3(α) : Y 2 + αXY + Y = X3

is supersingular. Then α = 3 + γ3 for some element γ ∈ Fp2 . �
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The proof of this theorem depends on knowing the precise algebraic form of the
normal closure N of the finite extension of function fields k(α)/k(j) over the field
k = Fp2 , where α is an indeterminate and j = α3(α3−24)3/(α3−27) is the j-invariant
of the curve E3(α). (See Sections 1, 2.) For an arbitrary field k with char(k) �= 2, 3
containing a primitive cube root of unity, the field N is the function field of a covering
of the cubic Fermat curve

Fer3 : 27α3 + 27β3 = α3β3,

and the genus of N is 10. The curve Fer3 plays a key role in the calculation of

generators for N , as it does in the arithmetic of the curve E3(α) (See Section 1 and
[m2]).

It is shown in [m2] that the set of supersingular parameters α for E3(α) is invariant
under a group G12 of linear fractional transformations in α, which is isomorphic to the
tetrahedral group. Here we find evidence of deeper structural properties by showing
how the Galois group Gal(N/k(j)) acts on the numbers γ in Theorem 1. In Section
4 we prove in a purely algebraic way that if the characteristic of k is not 2 or 3, then
Gal(N/k(j)) is isomorphic to the modulary group Γ̄(9) = SL2(Z/9Z)/{±I}. The
algebraic form of the automorphisms revealed in this proof implies some interesting
new relationships between supersingular parameters of E3(α) in characteristic p.

In Section 3 we work primarily in characteristic zero, and study solutions (α, β)
of Fer3 which are defined over the Hilbert class field Σd of an imaginary quadratic
field K = Q(

√
−d), with −d ≡ 1 (mod 3). Using the normal closure N we prove

that these solutions have the property that

α = 3 + γ3, β = 3 + γ�3, for γ, γ� ∈ Σd.

This is really the analogue of Theorem 1 in characteristic zero, because these solutions

come from elliptic curves E3(α) which have complex multiplication by the ring of
integers in K, and supersingular curves in characteristic p are known to be reductions
of curves with complex multiplication (see [d]). This leads to the existence of points
defined over Σd on the covering C19 of genus 19 of Fer3, whose equation is

C19 : z3w3(z6 + 9z3 + 27)(w6 + 9w3 + 27) = 729,

for any positive, square-free integer d ≡ 2 (mod 3). (See Theorem 7.) We include

the proof in this paper since it makes use of the same idea used to prove Theorem
1, but this time the base field k is a specific abelian extension of Σd.
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The isomorphism of Gal(N/k(j)) with Γ̄(9) also suggests a connection with mod-
ular functions. In Section 5 I use the results of Fleckinger [fle, Sections I, II] to show
that when k = C and j = j(τ) is the modular j-function, N is isomorphic to the field
of modular functions KΓ(9) for the principal congruence group Γ(9). An identity of
Weber [w] is used in Section 5 to give simpler expressions for the functions l(u,v)(τ)
occurring in [fle] in terms of quotients of values of Dedekind’s function η(τ). Com-
bining the results of Fleckinger and Weber with the isomorphism N ∼= KΓ(9) gives
new proofs of several interesting identities for η(τ) (see the corollary to Theorem
11 and Theorem 12), which are equivalent to known identities involving cubic theta
functions (see Section 7). In Section 6 we apply these identities to give a simple
derivation of a recent identity of Berndt and Hart [bh] involving η(τ).

These identities also lead to a parametrization of the curve C19 in terms of modu-
lar functions by finding an explicit solution of Fer3 using modular functions for Γ(9),
for which the relations α = 3 + γ3 and β = 3 + γ�3 continue to hold. (See Theorem
13.)

Thus, the relation α = 3+γ3 will be shown to persist at all three levels: algebraic,
arithmetic, and analytic.

1 The normal closure N of k(α)/k(j).

Let α be an indeterminate and set j = j(α) =
α3(α3 − 24)3

α3 − 27
, the j-invariant of the

curve E3(α). Further, let k be any field whose characteristic is not 2 or 3 and which
contains a primitive cube root of unity ω = (−1 +

√
−3)/2. We will prove the above

theorem by finding the normal closure N of the algebraic extension k(α)/k(j).

Let β be another indeterminate satisfying the equation

Fer3 : 27α3 + 27β3 = α3β3

and let F (x) = x(x − 24)3 − j(x − 27). Then α satisfies the irreducible equation

F (α3) = 0 over k(j), and N is the splitting field of the polynomial F (x3). I will first
prove:

Proposition 2. The normal closure of k(α3)/k(j) is the field k(α3, β) = k(β), and

Gal(k(α3, β)/k(j)) ∼= A4.
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Proof. I will use classical formulas to find the roots of the cubic resolvent of F (x).
We have

F (x) = x4 − 72x3 + 1728x2 − (j + 13824)x + 27j,

and

F (x + 18) = x4 − 216x2 + (1728 − j)x + 9j − 3888 = x4 + px2 + qx + r.

The cubic resolvent is

G(y, j) = y3 − 2py2 + (p2 − 4r)y + q2 = y3 + 432y2 + 36(1728 − j)y + (j − 1728)2,

with discriminant D = −27j2(j−1728)2. I claim that G(y, j) is irreducible in k[y, j].

Note that

G(y − 144, j) = y3 − 36jy + 1728j + j2 = y3 + Py + Q, P = −36j,Q = 1728j + j2.

Writing G(y−144, j) as a polynomial in j gives G(y−144, j) = j2+(1728−36y)j+y3

and the discriminant of this quadratic in j is δ = −4(y − 36)(y − 144)2. Since the
characteristic of k is not 2 or 3, δ is never a square in k(y), and as a polynomial in
j, G(y − 144, j) cannot have a root in k(y). This proves the claim.

Since
√
−3 ∈ k, D is a square in k, and since G(y, j) is irreducible over k(j), we

know the splitting field of F (x) has Galois group A4 over k(j). We find the roots of
G(y, j) = 0 using the Tartaglia-Cardan formulas. If Θi are the roots of G(y, j), then
one root of G(y − 144, j) is

Θ1 + 144 =
1

3

�−27

2
Q +

3

2

√
−3D

�1/3

+
1

3

�−27

2
Q − 3

2

√
−3D

�1/3

. (1)

We have

−27

2
Q +

3

2

√
−3D =

−27

2
(1728j + j2) +

3

2
· 9j(j − 1728) = −26 · 36 · j,

and −27

2
Q − 3

2

√
−3D =

−27

2
(1728j + j2) − 3

2
· 9j(j − 1728) = −27j2,

so
Θ1 + 144 = −12j1/3 − j2/3.
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Note that the product of the cube roots in (1) is (−36j1/3)(−3j2/3) = −3(−36j) =
−3P , as required. Now

j =
α3(α3 − 24)3

α3 − 27
, α3 − 27 =

27α3

β3
,

so that

j1/3 =
α(α3 − 24)

3α/β
=

β(α3 − 24)

3
=

β(β3 + 216)

β3 − 27
,

j2/3 =
β2(β3 + 216)2

(β3 − 27)2
.

Hence,

Θ1 = −144 − 12
β(β3 + 216)

β3 − 27
− β2(β3 + 216)2

(β3 − 27)2
.

and

−Θ1 =

�

β4 + 6β3 + 54β2 − 108β + 324

β3 − 27

�2

.

Thus we take

�

−Θ1 =
β4 + 6β3 + 54β2 − 108β + 324

β3 − 27
, (2)

an element of the field k(β). The other roots of the resolvent cubic are

Θ2 = −144 − 12ω
β(β3 + 216)

β3 − 27
− ω2β2(β3 + 216)2

(β3 − 27)2

and

Θ3 = −144 − 12ω2β(β3 + 216)

β3 − 27
− ω

β2(β3 + 216)2

(β3 − 27)2
,

which are the images of Θ1 under the maps (β → ωβ) and (β → ω2β). These maps
are automorphisms of the field k(β)/k(j), since

j =
α3(α3 − 24)3

α3 − 27
=

β3(β3 + 216)3

(β3 − 27)3
. (3)
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Thus equation (2) implies that

�

−Θ2 =
ωβ4 + 6β3 + 54ω2β2 − 108ωβ + 324

β3 − 27
,

and
�

−Θ3 =
ω2β4 + 6β3 + 54ωβ2 − 108ω2β + 324

β3 − 27
.

From the formulas in van der Waerden [vdw, pp. 190-192] one root of F (x) = 0 is

ξ1 = 18 +
1

2
(
�

−Θ1 +
�

−Θ2 +
�

−Θ3) = 18 +
9(β3 + 54)

β3 − 27
=

27β3

β3 − 27
= α3,

as we know already. A computation on Maple yields the three additional roots

ξ2 = 18 +
1

2
(
�

−Θ1 −
�

−Θ2 −
�

−Θ3) =
(β + 6)3

β2 + 3β + 9
=

(β + 6)3

(β − 3ω)(β − 3ω2)
,

ξ3 = 18 +
1

2
(−

�

−Θ1 +
�

−Θ2 −
�

−Θ3) =
ω(β + 6ω2)3

(β − 3)(β − 3ω)
,

ξ4 = 18 +
1

2
(−

�

−Θ1 −
�

−Θ2 +
�

−Θ3) =
ω2(β + 6ω)3

(β − 3)(β − 3ω2)
.

This shows that the roots of the resolvent cubic G(y, j) and the roots of F (x) are
contained in the field k(β). Since [k(β) : k(j)] = 12, this proves Proposition 2. �

Now N is the splitting field of the polynomial F (x3), and is therefore generated
by the cube roots of the ξi. Since

(β − 3)(β − 3ω)(β − 3ω2) = β3 − 27 =
27β3

α3
,

we have

ξ
1/3
2 =

α(β + 6)

3β
(β − 3)1/3, ξ

1/3
3 =

α(β + 6ω2)

3β
(ωβ − 3)1/3,

ξ
1/3
4 =

α(β + 6ω)

3β
(ω2β − 3)1/3.
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By Proposition 2, N contains the field k(β), so we have

N = k(α, β, (β − 3)1/3, (ωβ − 3)1/3, (ω2β − 3)1/3). (4)

Moreover, α =
3β

(β3 − 27)1/3
, so it is clear that N is generated by the three cube roots

(ωiβ − 3)1/3.

Before proving Theorem 1 we prove:

Theorem 3. If char(k) �= 2, 3 and ω ∈ k, then the normal closure N of the
extension k(α)/k(j(α)) has degree 324 over k(j). N is a Kummer extension of the
normal extension k(β) of k(j) with

Gal(N/k(β)) ∼= Z3 × Z3 × Z3, Gal(k(β)/k(j)) ∼= A4.

Proof. It is clear that the cube roots (ωiβ − 3)1/3 generate independent extensions
over k(β), since

(β − 3)ε1(ωβ − 3)ε2(ω2β − 3)ε3 = r3, r ∈ k(β), εi ∈ {0, 1, 2},

implies by unique factorization in k[β] that εi ≡ 0 (mod 3), for 1 ≤ i ≤ 3. The
assertions of the theorem follow from (4) and Kummer theory. �

Remarks. 1. The automorphisms of G12 = Gal(k(β)/k(j)) have been given in [m2],
and are generated by the mappings

σ1(β) =
3(β + 6)

β − 3
, σ2(β) = ωβ.

Furthermore, by Theorem 3.7 of [m2], the subfield k(α, β) of N is the field generated
by the coordinates of the points of order 3 on the elliptic curve E3(α).

2. By [od, Lemma 1.1], Gal(N/k(j)), as the Galois group of the polynomial
F (x3) over k(j), is isomorphic to a subgroup H of the wreath product Z3 wr A4.
This wreath product has order 34 · 12 = 972, so H has index equal to 3 in Z3 wr A4.
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2 Proof of Theorem 1.

To prove Theorem 1 we use the theory of algebraic function fields in one variable.
For this let k = Fp2 , where p > 3 is prime. We will also need the fact from [m2,
Theorem 1.2(a)] that the values of α for which E3(α) is supersingular lie in the field
Fp2 . Consider such a value, and call it α0, to distinguish it from the indeterminate
α. Let j0 = j(α0) and assume first that j0 �= 0, 1728. Because the discriminant of
F (x3) is

disc(F (x3)) = −327j8(j − 1728)6,

the prime divisor Pj0 of k(j) corresponding to the irreducible polynomial j − j0

is unramified in N . Furthermore, all the roots αi of j(αi) = j0 are supersingular
parameters for E3(α), and therefore all lie in the ground field k. Hence, F (x3) = 0
splits completely (mod Pj0), and therefore the prime divisor Pj0 splits into 12 prime
divisors of degree 1 in the field k(α). It follows that Pj0 splits completely in all the
conjugate fields of k(α) inside N and thus splits completely in N . Let ℘ be the prime
divisor of k(α) for which α ≡ α0 (mod ℘), and let p be one of the prime divisors of
℘ in N . Then α ≡ α0 and β ≡ β0 (mod p), where (α0, β0) is a solution of Fer3 in k.
From [m2] we know that β0, along with α0, is a root of the polynomial Ĥp(z) (the
Hasse invariant) defined by

Ĥp(z) =
�

−z

3

�e−1

W(p−e)/3

�

1 − z3

27

�

, p ≡ e (mod 3), e ∈ {1, 2},

where

Wn(x) =
n

�

r=0

�

n

r

�2

xr.

See also [brm, Theorem 5]. This is because the curves E3(α0) and E3(β0) are isoge-
nous and therefore both supersingular. Furthermore, as α0 runs through all the roots
of Ĥp(z), then the values of β0 for which (α0, β0) lies on Fer3 likewise run through

all the roots of Ĥp(z), in such a way that

β3
0(β

3
0 + 216)3

(β3
0 − 27)3

= j0 =
α3

0(α
3
0 − 24)3

α3
0 − 27

. (5)

(See equation (3).) Now the element (β − 3)1/3 is certainly integral for p, and so
(β − 3)1/3 ≡ γ0 (mod p) for some element γ0 ∈ k, since p has degree 1 over k.
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Therefore,
β ≡ β0 ≡ γ3

0 + 3 (mod p).

In other words, β0 = 3 + γ3
0 for some γ0 ∈ k. In the same way, working with the

elements (ωiβ − 3)1/3, we obtain ωiβ0 = 3 + γ3
i for γi ∈ k. This shows that all the

β�
0s corresponding to α = α0 have the desired property. By the above remarks, if β0

is any root of Ĥp(z), there is another root α0 of this polynomial for which (α0, β0)
lies on Fer3. Since α0 was arbitrary (with j0 �= 0, 1728), this proves the theorem for
all the supersingular parameters corresponding to j-invariants other than 0 or 1728.

It remains to prove the theorem if j0 = 0 or 1728. If j0 = 0 we can check directly that
the values of β0 = 0,−6,−6ω,−6ω2 in (5) are representable as 3 + γ3 with γ ∈ k.
In this case the prime p ≡ 2 (mod 3), so for β0 = 0, the equation x3 + 3 = 0 has one
root in Fp and therefore two more roots in Fp2 = k. The value β0 = −6 = 3 + γ3 for
three values of γ ∈ k for the same reason. Considering the values β0 = −6ωi with
i = 1, 2 together, note that

(x3 + 3 + 6ω)(x3 + 3 + 6ω2) = x6 + 27 = (x2 + 3)(x2 + 3x + 3)(x2 − 3x + 3).

This proves the claim for j0 = 0.

Remark 1. Note that the prime divisor P0 of k(j) corresponding to j − 0 = j
ramifies in the field N . This is because the extension

k(j1/3) = k

�

β(β3 + 216)

β3 − 27

�

is generated by t = j1/3 with minimal polynomial t3 − j over k(j). Since this
polynomial is Eisenstein with respect to the prime element j of P0, P0 ramifies
completely in k(t). It follows that P0 = ℘3

0℘
3
1℘

3
2℘

3
3 in k(β), where ℘0 corresponds to

β − 0 = β and ℘i corresponds to β + 6ωi, for 1 ≤ i ≤ 3. The above argument now
shows that each of the prime divisors ℘i splits completely in N . Thus, P0 splits into
g = 108 prime divisors of degree f = 1 and ramification index e = 3 over P0.

Now consider j0 = 1728. In this case p ≡ 3 (mod 4) and we have

x3(x3 + 216)3 − 1728(x3 − 27)3 = (x2 − 6x − 18)2(x4 + 6x3 + 54x2 − 108x + 324)2

= q1(x)2q2(x)2, (6)
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where the irreducible quartic q2(x) = x4 + 6x3 + 54x2 − 108x + 324 has Galois group
Z2 ×Z2 over Q. That the roots β0 of q1(x) = x2 − 6x− 18 have the form 3 + γ3 can
be seen by considering the polynomial q1(x

3 + 3) = (x2 − 3)(x4 + 3x2 + 9). Since
x4 + 3x2 + 9 likewise has Galois group Z2 × Z2 over Q, it splits into a product of
linear polynomials or a product of quadratics over Fp, for every prime p. Hence,
these values of β0 have the required form.

We also have q2(x
3 + 3) = x12 + 18x9 + 162x6 + 486x3 + 729. The roots of this

polynomial are the cube roots of the roots of q2(x + 3), which over Q are

η =
3
√

3

2
(1 −

√
3)(1 + i) =

√
3

3 (1 −
√

3)(1 + i)

2
(7)

and its conjugates. The root field L = Q(η1/3) of the polynomial q2(x
3 + 3) is a

Kummer extension of the abelian extension K = Q(
√

3, i). A prime p ≡ 3 (mod 4)
is inert in Q(i) and therefore splits into two primes q1, q2 of degree 2 in K. To show
that q2(x

3 + 3) splits modulo p into a product of linear and quadratic polynomials,
we must show that the cubic residue symbols

�

η

q1

�

3

=

�

η

q2

�

3

= 1. (8)

For this we note

�

η

q1

�

3

≡ η(p2−1)/3 (mod q1).

If p ≡ 1 (mod 3), then

�

3

p

�

= −
�p

3

�

= −1, so
√

3 is not rational (mod p), and

we have

(1 −
√

3)(p2−1)/3 ≡ (−2)(p−1)/3 ≡
�

2

p

�

3

(mod q1).

In this case

(1 + i)(p2−1)/3 ≡ 2(p−1)/3 ≡
�

2

p

�

3

(mod q1),

and

�

2

q1

�

3

≡
�

4

p

�

3

, which implies by (7) that

�

η

q1

�

3

= 1.
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On the other hand, if p ≡ 2 (mod 3), then

�

3

p

�

= −
�p

3

�

= +1, so
√

3 is rational

(mod p), and we have

(1 −
√

3)(p2−1)/3 ≡
�

1 −
√

3

1 −
√

3

�(p+1)/3

≡ 1 (mod q1).

In this case we have

(1 + i)(p2−1)/3 ≡
�

1 − i

1 + i

�(p+1)/3

≡ (−i)(p+1)/3 ≡ 1 (mod q1),

since (p + 1)/3 is divisible by 4. Furthermore, 2(p2−1)/3 ≡ (2p−1)
(p+1)/3 ≡ 1 (mod p),

so (7) gives also here that

�

η

q1

�

3

= 1.

This proves that (8) holds, and therefore that the primes q1 and q2 of K split in
L. Hence all the prime divisors of p in the field L have degree 2 over Q, and since
disc(q2(x

3 +3)) = 224378, this implies that q2(x
3 +3) factors modulo p into quadratic

factors. Therefore, all the values of β0 corresponding to j = 1728 have the form
3 + γ3 with γ ∈ Fp2 . This completes the proof of Theorem 1. �

Remark 2. Let P∞ be the prime divisor of k(j) given by the degree valuation. It is
easy to see that P∞ = ℘3

∞,1℘
3
∞,2℘

3
∞,3℘

3
∞,4 in k(β), where each ℘∞,i has degree 1 over

k. By the Hurwitz genus formula [sti, p. 88], the genus g� = 0 of k(β) is related to
the genus g = 0 of k(j) by the formula

2g� − 2 = [k(β) : k(j)](2g − 2) + deg Diff k(β)/k(j), (9)

so the different Diff k(β)/k(j) has degree 22 in k(β). Because

disc(x3(x3 + 216)3 − j(x3 − 27)3) = −3147j8(j − 1728)6

the only ramified primes in k(β)/k(j) are the primes P0, P1728, P∞. The primes di-
viding P0 and P∞ contribute 8+8=16 to the different degree, so the primes dividing
P1728 must contribute 6. On the other hand, P1728 splits into at least 6 prime di-
visors in k(β), by (6). Together, these facts imply that P1728 splits as a product of
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the squares of 6 prime divisors in k(β), all having degree 1 over k. By the above
computations, and the fact that the roots β0 of (6) are invariant under (β0 → ωβ0),
these six prime divisors split completely in the field N . Hence, P1728 splits in N as
the product of the squares of 6 · 27 = 162 prime divisors of N of degree 1 over k.

The proof of Theorem 1, together with Remarks 1 and 2, shows that the following
statement holds.

Theorem 4. If j0 is the j-invariant of a supersingular elliptic curve in characteristic
p, then the numerator divisor Pj0 of the linear polynomial j − j0 of the field Fp2(j)
is divisible only by prime divisors of degree 1 in the normal closure N of the field
extension Fp2(α)/Fp2(j), where α is a root of F (x3) = x3(x3 − 24)3 − j(x3 − 27).

Remark 3. Not all j-invariants j0 ∈ Fp2 for which the divisor Pj0 in Theorem 4
splits completely in N are supersingular. This is shown by the example p = 31 and
j0 = 1. In this case we have

F (x3) ≡ x3(x3 − 24)3 − 1 · (x3 − 27) ≡ (x2 + 16x + 11)(x2 + 17x + 20)(x2 + 18x + 27)

×(x2 + 22x + 7)(x2 + 23x + 4)(x2 + 28x + 24) (mod 31, P1),

so that P1 splits in N/k. As a consequence, the polynomial

f(x, j) = x3(x3 + 216)3 − j(x3 − 27)3

splits completely (mod 31, P1), and all the values of β0 which are roots of f(x, 1)
(mod 31) have the form 3 + γ3 with γ ∈ F312 . Specifically, we have that

f(x3 + 3, 1) ≡ (x2 + 5x + 30)(x2 + 23x + 1)(x2 + 17x + 3)(x2 + 22x + 15)(x2 + 7x + 9)

×(x2 +4x+8)(x2 +23x+3)(x2 +25x+6)(x2 +28x+17)(x2 +18x+23)(x2 +17x+15)

×(x2+16x+22)(x2+20x+14)(x2+22x+25)(x2+23x+13)(x2+x+26)(x2+17x+5)

×(x2 + 22x + 13) (mod 31).
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However, the polynomial F ((x3 + 3)3) splits into 6-th degree factors (mod P1), so
that the values of α0 corresponding to j0 = 1 are not of the form 3+γ3 with γ ∈ F312 .
Hence, j0 = 1 is not supersingular.

It is clear in this example that the quantity (α − 3)1/3 does not lie in N . This is
true more generally. See the remark at the end of Section 3 below.

3 Points on a genus 19 curve.

The following theorem is a consequence of Theorem 1.

Theorem 5. Supersingular parameters α0 of the Deuring normal form E3(α) in
charcteristic p > 3 give rise to points on the genus 19 curve

C19 : z3w3(z6 + 9z3 + 27)(w6 + 9w3 + 27) = 729 (10)

which are defined over Fp2 . The number of points on this curve over Fp2 which arise

from supersingular parameters is

27(p − 1) − 9
�

1 −
�p

3

��

.

Proof. Let (α0, β0) be a point on Fer3. Then α0 = z3
0 + 3 and β0 = w3

0 + 3 for
(z0, w0) ∈ Fp2 × Fp2 , and (z0, w0) is a point on the curve

27(z3 + 3)3 + 27(w3 + 3)3 = (z3 + 3)3(w3 + 3)3.

This equation simplifies to the equation given in the theorem. For every supersingular

parameter α0 �= 0 in Fp2 there are three values of β0 �= 0 for which (α0, β0) lies on
Fer3. Since α0 and β0 are never equal to 3 (otherwise E3(α0) is singular), each of
these points gives rise to 9 points (z0, w0) on the curve C19. If p ≡ 1 (mod 3) there
are p− 1 parameters α0, none of which are 0, and therefore 27(p− 1) corresponding
points (z0, w0). If p ≡ 2 (mod 3) there are p − 2 nonzero values of α0. In this case
the supersingular value α0 = 0 corresponds to β0 = 0 and there are only 9 points
(z0, w0) on C19 corresponding to (0, 0) on Fer3. This gives the count stated in the
theorem. �

Solutions of C19 in Hilbert class fields.

Using results of [m2] and [m3] we will now show that there are points on the
curve C19 defined over the Hilbert class field of any quadratic field K = Q(

√
−d)
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whose discriminant satisfies −d ≡ 1 (mod 3). I first summarize the results we need
from [m3]. In that paper I have studied the elliptic curves Eα = E3(α) in Deuring
normal form which have complex multiplication by the ring of integers RK of the
field K. The parameter α of such a curve satisfies the equation

α3(α3 − 24)3 − j(α3 − 27) = 0, (11)

where j = j(Eα) is a root of the class equation H−d(x) = 0. (Note that α �= 0 since
j = 0 is not a root of H−d(x) = 0.) Furthermore, if β is chosen so that (α, β) is a
point on Fer3, then by (3), β is a root of the polynomial

Gd(x) = (x3 − 27)3h(−d)H−d

�

x3(x3 + 216)3

(x3 − 27)3

�

.

By the corollary to [m3, Prop. 3], all the roots of Gd(x) are contained in the field
Σ(ω), where Σ is the Hilbert class field of K and ω is a primitive cube root of unity.

Furthermore, for each root j of H−d(x) = 0, there is an α satisfying (11), i.e.,
j(Eα) = j, for which α, β ∈ Σ. In this case σ1(β) = 3(β + 6)/(β − 3) = ατ for
a certain automorphism τ in Gal(Σ/K), and α and β are conjugates over Q. (See
Remark 1 following Theorem 3 and [m3, Prop. 4].)

The point (α, β) is related to a Heegner point for X0(3) over K, since there is
a cyclic 3-isogeny φα,β : E3(α) → E3(β) and E3(α) and E3(β) both have complex
multiplication by RK . (See [m2, Prop. 3.5] and [gr].)

We will show that the solution (α, β) of Fer3 in the Hilbert class field Σ of K
has the property that α = 3 + γ3

1 and β = 3 + γ3
0 for certain elements γ0, γ1 ∈ Σ.

This will yield a point (γ1, γ0) on C19 which is defined over Σ.

Lemma 6. Let K = Q(
√
−d), with −d ≡ 1 (mod 3). If Eα : Y 2 + αXY + Y = X3

has complex multiplication by RK , then the coordinates of the points of finite order
on Eα lie in an abelian extension of the Hilbert class field Σ of K. In particular, the
parameter α lies in an abelian extension of Σ.

Proof. This follows from [si, Thm. 2.3, p. 108] in the case that α ∈ Σ, in which case
Eα is defined over the Hilbert class field Σ. (This is an unstated assumption in [si,
Thm. 2.3] which is used in Silverman’s proof on p. 109.) Suppose now that α is an
arbitrary root of (11), for some root j of H−d(x) = 0. We choose another root α� of

15



the same equation which lies in Σ, and for which (α�, β�) lies on Fer3. If α� = ωiα

for some i, then an isomorphism ι : Eα → Eα� is clearly given by

X � = ω2iX, Y � = Y,

and this implies the statement of the lemma for the curve Eα, since ω lies in an

abelian extension of Σ.

Otherwise, by the arguments of [m2, pp. 262-263] we may take β� = σ1(β) =
3(β+6)/(β−3), by replacing β by ωiβ for some i. Then an isomorphism ι : Eα → Eα�

is given by the equations (3.17) in [m2, Prop. 3.10]:

X � = −γ�

γ
X + γ�, (12a)

Y � =

√
−3(β − 3)

9

�

Y −
√
−3ω2 δ

γ
X − ωδ

�

, (12b)

where

γ =
−3β

α(β − 3)
, δ =

β − 3ω

β − 3

are the coordinates of a point (X, Y ) = (γ, δ) of order 3 on Eα, and

γ� = −β + 6

3α�

is the X �-coordinate of a point of order 3 on Eα� . Now, by the choice of α� and

the fact that β is a root of Gd(x) = 0, the element γ� lies in Σ(ω) ⊂ Σab, the
maximal abelian extension of Σ inside Q̄. Furthermore, if (X �, Y �) is a point of
finite order on Eα� , then X �, Y � ∈ Σab by [si, Thm. 2.3]. It follows from (12a) that
−X/γ = αX(β − 3)/(3β) ∈ Σab for every point (X, Y ) of finite order on Eα, which
gives that αX, Y ∈ Σab, by (12b).

We now use [m2, Prop. 3.6, Remark], according to which the roots x of the cubic
equation

x3 − (3 + α)x2 + αx + 1 = 0

are the X-coordinates of points of order 9 on Eα. It follows that

x2(x − 3 − α) = x3 − (3 + α)x2 = −αx − 1 ∈ Σab. (13)

16



On the other hand, α3 = 27β3/(β3−27) = r ∈ Σab, so multiplying the inclusion (13)
by α3 gives that αx − α(3 + α) ∈ Σab, whence it follows that (α2 + 3α) ∈ Σab. Now
form the expression:

(α2 + 3α)2 − 9(α2 + 3α) − 6r = α4 − 27α = (r − 27)α.

This gives that (r − 27)α ∈ Σab. But r − 27 = α3 − 27 is the discriminant of the
curve Eα, which is non-zero by (11), so we get that α ∈ Σab. Hence, X, Y ∈ Σab for
every point (X, Y ) of finite order on Eα, which proves the lemma. �

Now we can prove

Theorem 7. If the discriminant −d of the field K = Q(
√
−d) satisfies −d ≡ 1 (mod

3), then there is a solution of the equation

C19 : z3w3(z6 + 9z3 + 27)(w6 + 9w3 + 27) = 729

in the Hilbert class field Σ of K.

Proof. We use the same argument (suitably modified) as in the proof of Theorem 1
in Section 2. This time we take the field k to be the splitting field of the polynomial

H̃d(x) = (x3 − 27)h(−d)H−d

�

x3(x3 − 24)3

x3 − 27

�

over Q. Then Σ(ω) ⊂ k and k/Σ is abelian by Lemma 6. (Note that ω /∈ Σ since
3 does not divide disc(Σ/Q).) Reverting back to the same notation as in Sections 1
and 2, we take j0 to be a root of the class equation H−d(x). Then j0 �= 0, 1728 and
all the roots of j(αi) = j0 lie in the field k. It follows that the prime divisor Pj0 of
k(j) splits into primes of degree 1 in the field k(α), and therefore splits completely in
the normal closure N of k(α)/k(j). Consider a root α0 of H̃d(x) for which j(α0) = j0

and α0, β0 ∈ Σ, and any prime divisor p of N for which

α ≡ α0 β ≡ β0 (mod p),

so that p|Pj0 . Since p has degree 1 over k, it follows that there is an element γ0 ∈ k

for which
(β − 3)1/3 ≡ γ0 (mod p),
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and therefore β0 ≡ β ≡ γ3
0 + 3 (mod p). Hence, β0 = γ3

0 + 3 in k. However,

γ0 generates an abelian extension of Σ and γ3
0 = β0 − 3 ∈ Σ. This implies that

x3 − γ3
0 is reducible over Σ: otherwise, its splitting would have Galois group S3

over Σ. Therefore, β0 = 3 + γ3
0 for some γ0 ∈ Σ, and applying the automorphism

τ−1 ∈ Gal(Σ/K) to the equation σ1(β0) = ατ
0 we get that

α0 = σ1(β
τ−1

0 ) = 3 +
27

βτ−1

0 − 3
= 3 +

�

3

γτ−1

0

�3

.

Therefore, α0 = 3+γ3
1 , with γ1 = 3/γτ−1

0 ∈ Σ. Now the equation 27α3
0 +27β3

0 = α3
0β

3
0

implies that (z, w) = (γ1, γ0) is a point on C19 defined over Σ, as in the proof of
Theorem 5. �

As numerical examples we give the following points (z, w) on C19 with coordinates
in the Hilbert class field Σd of the field K = Q(

√
−d), for various d with −d ≡ 1

(mod 3) (see [m3]):

d = 8 : z = 1 +
√
−2, w = 1 −

√
−2

d = 11 : z =
1 +

√
−11

2
, w =

1 −
√
−11

2

d = 20 : z = (1 +
√
−1)

�−1 +
√
−5

2

�

, w = (1 +
√
−1)

�−1 −
√
−5

2

�

d = 35 : z =

√
5 +

√
−7

2
, w =

−
√

5 +
√
−7

2

d = 56 : z =
2 − 3

√
2 +

√
−14

4
+

1

2

�

(1 +
√

2)(
√

2 +
√
−7),

w =
2 + 3

√
2 −

√
−14

4
+

1

2

�

(1 −
√

2)(−
√

2 +
√
−7)

d = 68 : z =
3 + 2

√
−1 −

√
17

4
+

3 + 4
√
−1 +

√
17

16

�

2 + 2
√

17,

w =
3 + 2

√
−1 +

√
17

4
+

3 + 4
√
−1 −

√
17

16

�

2 − 2
√

17

Remark. Note that the function field of the curve C19 over the field k is the field
L = k(α, β, (α − 3)1/3, (β − 3)1/3). Since L has genus 19, it cannot be a subfield of
the field N , which has genus 10, as we will see in the next section. This shows that
(α − 3)1/3 /∈ N .
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4 The genus of N and the modulary group Γ̄9.

In this section we return to the situation of Section 1, so that k is any field containing
a primitive cube root of unity ω whose characteristic is different from 2 or 3. It is
not difficult to compute the genus of the algebraic function field N , using standard
arguments. (See [sti].)

For example, from (3) and Remark 2 of Section 2 it is clear that three of the prime
divisors ℘∞,i correspond to the linear factors of β3 − 27 = (β − 3)(β − 3ω)(β − 3ω2),
while ℘∞,4 = ℘∞ is the degree valuation on k(β). We relabel the ℘∞,i for 1 ≤ i ≤ 3
as ℘3ωi , corresponding to (β − 3ωi). Furthermore, from Remarks 1 and 2 of Section
2, none of the prime divisors of P0 or P1728 is ramified in N/k(β). Therefore, the
only primes that can ramify in N/k(β) are the ℘3ωi and ℘∞. In each of the Kummer
extensions k(ti)/k(β) with ti = (ωiβ−3)1/3 it is clear that ℘3ω2i is the cube of a prime
divisor in k(ti), as is ℘∞, while the other ℘3ωj are unramified. It follows that ℘3ωi is
the cube of a product of prime divisors in N having degree 9. On the other hand,
Abhyankar’s Lemma [sti, p. 125] and the fact that ℘∞ has ramification index 3 in
each of the extensions k(ti)/k(β) imply that ℘∞ has ramification index 3 in N/k(β)
also. This can also be seen from the fact that the primes ℘∞ and ℘3ωi are conjugate
to each other over k(j), since k(β) is normal over k(j). Therefore, the different has
degree deg Diff N/k(β) = 4 · 9 · 2 = 72. By the Hurwitz genus formula we have

2g(N) − 2 = 27(2g(k(β)) − 2) + deg Diff N/k(β) = −54 + 72 = 18.

Hence, the genus of N is g(N) = 10.

The data [N : k(j)] = 324 and g(N) = 10 look suspiciously like the data for the
modulary group Γ̄9 given in [kf, p. 398]. (See also [sch, p.76].) In fact, we have:

Theorem 8. If char(k) �= 2, 3 and ω ∈ k, then Gal(N/k(j)) ∼= Γ̄9 = {(az + b)/(cz +
d) : a, b, c, d,∈ Z9, ad − bc ≡ 1 (mod 9)}.

I have been assisted in finding this isomorphism by Rodney Lynch (private com-
munication). Following Lynch’s calculations, let us define elements of Γ̄9 as follows:

F (z) =
z

3z + 1
, G(z) =

5z + 6

3z + 2
, H(z) =

2z + 6

3z + 5
,

A(z) =
−1

z
=

8

z
, B(z) =

z + 4

4z + 8
, C(z) =

8z + 2

3z + 2
.
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Then F, G,H generate an abelian group A isomorphic to Z3 × Z3 × Z3, while A, C

generate a subgroup S of Γ̄9 isomorphic to A4. Moreover, CAC−1 = B and CBC−1 =
AB, where {I, A, B, AB} is a Klein 4-group and C has order 3. Further, the group
S =< A,C > acts on A =< F, G,H > in the following way:

CFC−1 = H2, CGC−1 = F 2, CHC−1 = G, (14)

AFA−1 = F 2GH, AGA−1 = H, AHA−1 = G. (15)

Hence, A is normal in Γ̄9, and a lengthy calculation shows that Γ̄9 = AS is a semi-
direct product of A and S.

In accordance with Theorem 3, we now define elements of Gal(N/k(j)) as follows:
φ, γ, η ∈ Gal(N/k(β)) are defined by

�

(β − 3)1/3
�φ

= ω(β − 3)1/3,
�

(ωiβ − 3)1/3
�φ

= (ωiβ − 3)1/3, i = 1, 2; (16φ)

�

(ωβ − 3)1/3
�γ

= ω2(ωβ − 3)1/3,
�

(ωiβ − 3)1/3
�γ

= (ωiβ − 3)1/3, i = 0, 2; (16γ)

�

(ω2β − 3)1/3
�η

= ω2(ω2β−3)1/3,
�

(ωiβ − 3)1/3
�η

= (ωiβ−3)1/3, i = 0, 1. (16η)

We also define the elements

βσ1 =
3(β + 6)

β − 3
, βσ2 = ωβ

generating G12 = Gal (k(β)/k(j)), as in the remark following Theorem 3. The
automorphism σ1 has order 2, while σ2 has order 3, and σ1 and σ2σ1σ

−1
2 generate a

Klein 4-group. We extend the linear fractional maps σ1 and σ2 to be automorphisms
of N/k(j), as follows. Since

βσ1 = 3 +
27

β − 3
,

we may, on multiplying by a suitable power of φ, assume that
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�

(β − 3)1/3
�σ1

=
3

(β − 3)1/3
. (171)

We also have that

(ωβ − 3)σ1 = ω
3(β + 6)

β − 3
− 3 =

(3ω − 3)β + 18ω + 9

β − 3
= 3(ω2 − ω)

ω2β − 3

β − 3
,

so on multiplying by a suitable power of η we may take

�

(ωβ − 3)1/3
�σ1

= (ω − ω2)
(ω2β − 3)1/3

(β − 3)1/3
. (172)

Reversing the roles of ω and ω2 we may also take

�

(ω2β − 3)1/3
�σ1

= (ω2 − ω)
(ωβ − 3)1/3

(β − 3)1/3
. (173)

Using similar reasoning we may define the action of σ2 on N by

�

(ωiβ − 3)1/3
�σ2

= (ωi+1β − 3)1/3, i = 0, 1, 2. (18)

Using the equations (17) it is easy to see that the automorphism σ1 ∈ Gal(N/k(j))
has order 2, and from (18) it is clear that σ2 ∈ Gal(N/k(j)) has order 3. If we set
σ3 = σ2σ1σ

−1
2 and σ4 = σ2σ3σ

−1
2 , then

�

(β − 3)1/3
�σ3

= (ω − ω2)
(ωβ − 3)1/3

(ω2β − 3)1/3
,

�

(ωβ − 3)1/3
�σ3

= (ω2 − ω)
(β − 3)1/3

(ω2β − 3)1/3
,

and
�

(ω2β − 3)1/3
�σ3

=
3

(ω2β − 3)1/3
;

while

�

(β − 3)1/3
�σ4

= (ω2 − ω)
(ω2β − 3)1/3

(ωβ − 3)1/3
,

�

(ωβ − 3)1/3
�σ4

=
3

(ωβ − 3)1/3
,
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�

(ω2β − 3)1/3
�σ4

= (ω − ω2)
(β − 3)1/3

(ωβ − 3)1/3
.

From these equations it is not hard to check that σ1σ3 = σ4 = σ3σ1. Thus <
σ1, σ3, σ4 > is a Klein 4-group and S1 =< σ1, σ2 >∼= A4

∼= S. It is clear that none of
the nontrivial automorphisms in S1 fixes β since the action of S1 on k(β) coincides
with the action of G12 on this field. Thus S1 has only the identity automorphism in
common with A1 =< φ, γ, η >, which is the invariant group corresponding to k(β)
inside Gal(N/k(j)). Therefore, we know that

Gal(N/k(j)) = A1S1. (19)

To prove the isomorphism of Theorem 8 it suffices to show that under the iso-
morphisms taking A → A1 and S → S1 defined by

F → φ, G → γ, H → η, A → σ1, C → σ2

the action of S on A coincides with the action of S1 on A1. (See [ja, pp. 363-367].)

We first check the equations

σ2φσ−1
2 = η2, σ2γσ−1

2 = φ2, σ2ησ−1
2 = γ (14�)

corresponding to (14). From (16φ) and (18) we see that

�

(ω2β − 3)1/3
�σ2φσ−1

2 =
�

(β − 3)1/3
�φσ−1

2 =
�

ω(β − 3)1/3
�σ−1

2

= ω(ω2β − 3)1/3 =
�

(ω2β − 3)1/3
�η2

.

Since φ does not move either of the quantities (ωiβ − 3)1/3 for i = 1, 2, it follows
that σ2φσ−1

2 fixes (ωi−1β − 3)1/3 for i = 1, 2, and so the last calculation implies that
σ2φσ−1

2 = η2, which is the first identity in (14�). The other two identities follow in
the same manner.

To finish the proof we check the identities

σ1φσ−1
1 = φ2γη, σ1γσ−1

1 = η, σ1ησ−1
1 = γ (15�)
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corresponding to the identities in (15). We have the following calculations, using the
fact that σ−1

1 = σ1:

�

(β − 3)1/3
�σ1φσ−1

1 =

�

3

(β − 3)1/3

�φσ−1

1

= ω2(β − 3)1/3 =
�

(β − 3)1/3
�φ2

;

�

(ωβ − 3)1/3
�σ1φσ−1

1 =

�

(ω − ω2)
(ω2β − 3)1/3

(β − 3)1/3

�φσ−1

1

=

�

(ω − ω2)
(ω2β − 3)1/3

ω(β − 3)1/3

�σ−1

1

= (ω − ω2)(ω2 − ω)
(ωβ − 3)1/3/(β − 3)1/3

3ω/(β − 3)1/3
= ω2(ωβ − 3)1/3 =

�

(ωβ − 3)1/3
�γ

;

and similarly

�

(ω2β − 3)1/3
�σ1φσ−1

1 =

�

(ω2 − ω)
(ωβ − 3)1/3

(β − 3)1/3

�φσ−1

1

=

�

(ω2 − ω)
(ωβ − 3)1/3

ω(β − 3)1/3

�σ−1

1

= (ω2 − ω)(ω − ω2)
(ω2β − 3)1/3/(β − 3)1/3

3ω/(β − 3)1/3
= ω2(ω2β − 3)1/3 =

�

(ω2β − 3)1/3
�η

.

These calculations and the definitions in (16) imply that σ1φσ−1
1 = φ2γη, as required.

The other two identities in (15�) follow in an entirely analogous manner, and this
completes the proof of Theorem 8. �

Action of Gal(N/k(j)) on supersingular parameters.

Once again we take k = Fp2 . If we let

Rp = {r ∈ Fp2 : α = r3 + 3 is supersingular for E3(α)},

then the group Gal(N/k(j)) acts on the set Rp in the following sense. Letting
ti = (ωiβ − 3)1/3 as before, a prime divisor p of N lying over a prime divisor Pj0 of
k(j) for which j0 is supersingular determines a triple (r0, r1, r2) of elements in Rp for
which

ti = (ωiβ − 3)1/3 ≡ ri (mod p), (20)

and r3
i + 3 = ωiβ0, where β ≡ β0 (mod p). Then for any σ ∈ Gal(N/k(j)) we have
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tσi ≡ ri (mod pσ).

By the formulas in (16)-(18) and by (19), for each σ there are constants c
(i)
σ ∈ k

and a product p
(i)
σ (t0, t1, t2) of positive or negative powers of the ti for which

tσi = c(i)
σ p(i)

σ (t0, t1, t2), i = 0, 1, 2. (21)

Now put ti ≡ si (mod pσ−1

) with si ∈ k. Allowing σ to act on this congruence gives

si ≡ tσi ≡ c(i)
σ p(i)

σ (r0, r1, r2) (mod p), i = 0, 1, 2,

so that
si = c(i)

σ p(i)
σ (r0, r1, r2), i = 0, 1, 2.

Thus for any (r0, r1, r2) ∈ Rp × Rp × Rp for which r3
i + 3 = ωiβ0, for i = 0, 1, 2, for

some supersingular parameter β0, we may define

σ(r0, r1, r2) = (s0, s1, s2).

By virtue of the congruence ti ≡ si (mod pσ−1

) and pσ−1|Pj0 we know that s3
i + 3 =

ωiβ1 for some supersingular parameter β1. Using this definition it is easy to see that

στ(r0, r1, r2) = σ(τ(r0, r1, r2)),

so this is definitely a (left) group action of Gal(N/k(j)) on the set

Sp = {(r0, r1, r2) | r3
i + 3 = ωiβ0, β0 ∈ Fp2 , E3(β0) supersingular}.

Since the element j and the prime divisor Pj0 are fixed by any element of the

group Gal(N/k(j)), the value of j0 =
β3

0(β
3
0 + 216)3

(β3
0 − 27)3

is invariant under this action

(see (3)). On the other hand, the value j1 =
β3

0(β
3
0 − 24)3

(β3
0 − 27)

will generally change

under the action, since t =
β3(β3 − 24)3

(β3 − 27)
is not an element of k(j). Therefore,

triples of supersingular parameters in Sp can be mapped to triples corresponding to
different values of j(E3(β)). In general, a given value of j0 will be mapped to four
different values j1 in this manner, since the rational function pair (j, t) parametrizes
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the modular curve Φ3(j, t) = 0, which has degree 4 in both j and t. (See [m2, Section
2] and [d, pp. 239-243].)

As examples, note that

σ1(r0, r1, r2) =

�

3

r0

, (ω − ω2)
r2

r0

, (ω2 − ω)
r1

r0

�

,

σ3(r0, r1, r2) =

�

(ω − ω2)
r1

r2

, (ω2 − ω)
r0

r2

,
3

r2

�

,

σ4(r0, r1, r2) =

�

(ω2 − ω)
r2

r1

,
3

r1

, (ω − ω2)
r0

r1

�

.

From these formulas we conclude the following.

Theorem 9. If ri ∈ Rp, for i = 0, 1, 2, are such that r3
i +3 = ωiβ0 for a supersingular

parameter β0 for E3(β), then for i �= j and some sign δij = ±1 depending on i and j,

si,j = δij(ω − ω2)
ri

rj

∈ Rp.

In other words, s3
i,j + 3 is also a supersingular parameter for E3(β). �

Also note the following regarding the monomials p
(i)
σ (t0, t1, t2) in (21). Write

p(i)
σ (t0, t1, t2) =

�

j

t
εi,j

j , i = 0, 1, 2.

In this way, the automorphism σ determines a 3×3 matrix Mσ = (εi,j). If Mτ = (ρi,j),
then

tστ
i = c(i)

σ p(i)
σ (t0, t1, t2)

τ = c(i)
σ

�

j

t
εi,jτ
j = c(i)

σ

�

j

�

c(j)
τ

�εi,j
�

j

�

�

k

t
ρj,k

k

�εi,j

,

or
tστ
i = c(i)

στ

�

k

t
πi,k

k ,

where

πi,k =
�

j

εi,jρj,k, (22)
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and
c(i)
στ = c(i)

σ

�

j

�

c(j)
τ

�εi,j
. (23)

It follows from (22) that Mστ = MσMτ and σ → Mσ is a complex representation of
Gal(N/k(j)). By the equations in (16), Mφ = Mγ = Mη = I, so this representation
arises from a 3-dimensional representation of the subgroup S1

∼= A4.

We have from (17) and (18) that

Mσ1
=





−1 0 0
−1 0 1
−1 1 0



 , Mσ2
=





0 1 0
0 0 1
1 0 0



 .

The corresponding character χ(σ) = tr(Mσ) satisfies χ(1) = 3, χ(σ1) = −1, χ(σ2) =
χ(σ2

2) = 0, so this representation corresponds to an irreducible representation of A4.

5 N as a field of modular functions.

We will now use the results of Fleckinger [fle] to prove the following theorem. This
will explain the occurrence of the modulary group in Theorem 8.

Theorem 10. Let k = C and j = j(τ) be the modular j-function.

a) The field k(β) = k(ξ1, ξ2, ξ3, ξ4) is isomorphic to the field KΓ(3) of modular
functions for the modular group Γ(3). Thus, β maps to a Hauptmodul for this group.

b) The field N = k(α, β, (β − 3)1/3, (ωβ − 3)1/3, (ω2β − 3)1/3) is isomorphic to the
field KΓ(9) of modular functions for the modular group Γ(9).

Proof. Following Fleckinger [fle] we set

A(u,v)(τ) =
288℘2(uτ + v; τ, 1)

12℘2(uτ + v; τ, 1) − g2(τ, 1)
, (24)

where ℘(z; τ, 1) is the Weierstrass ℘-function for the lattice Lτ = Zτ ⊕ Z; g2(τ, 1) is
the standard coefficient in the Weierstrass equation for ℘(z) and ℘�(z) [kk, p. 40];
and

(u, v) ∈ {(0, 1/3), (1/3, 0), (1/3, 1/3), (1/3,−1/3)}.
For the rest of the proof we drop the explicit reference to the lattice in the notation
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for ℘(z). Then (℘(uτ + v), ℘�(uτ + v)) is a non-trivial 3-division point on the elliptic
curve

E : Y 2 = 4X3 − g2X − g3.

Setting λ = ℘�(uτ + v)−1/3, Fleckinger shows that the functions

x(z; τ) = λ2(℘(z) − ℘(uτ + v)), x1(z; τ) = λ3℘�(z)

satisfy the equation

E � : x2
1 = 4x3 + α2x2 + 2αx + 1,

where α = λ4

2
(12℘2(uτ +v)−g2(τ)). Therefore, the curve E3(α), which is isomorphic

to E � by the substitution x1 = 2y + αx + 1, is isomorphic to the curve E, and it
follows that

j(τ) =
α3(α3 − 24)3

α3 − 27
.

As a corollary of these calculations [fle, Prop. 1.1], Fleckinger deduces that

α3 = A(u,v)(τ).

Thus, the four functions A(u,v)(τ) are solutions of the equation F (x) = 0 considered

in Section 1. Fleckinger proves further that these functions are modular functions for
Γ(3) and that the function (A(u,v)(τ)− 27)2 is a quotient of values of the ∆-function
[kk, p. 53], [si, pp. 59-62]:

(A(0,1/3)(τ) − 27)2 = 312 ∆(3τ)

∆(τ)
, (u, v) = (0, 1/3); (25a)

(A(u,v)(τ) − 27)2 =
∆(uτ + v)

∆(τ)
, (u, v) �= (0, 1/3). (25b)

Since the four functions 312∆(3τ), ∆(uτ + v) are certainly distinct – they have
different q-expansions, for example [kk, p. 82] – it follows that the functions A(u,v)(τ)
are distinct, and therefore represent all the roots of F (x) = 0 in the field KΓ(3). Since
any two splitting fields of F (x) over k(j) = k(j(τ)) are isomorphic, we have that

k(β) ∼= k
�

A(0,1/3)(τ), A(1/3,0)(τ), A(1/3,1/3)(τ), A(1/3,−1/3)(τ)
�

,
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and by identifying k(β) with its image we may assume that k(β) ⊆ KΓ(3). However,
by classical results [sch, pp. 76, 129] we have

[KΓ(3) : k(j(τ))] = [Γ :< ±I > Γ(3)] = 12.

This implies that k(β) = KΓ(3) and proves part a).

Fleckinger’s results also allow us to prove part b). He defines the following func-
tions in terms of the Dedekind function η(τ):

l(0,1/3)(τ) =
108

(2πi)4

g2(τ)η4(3τ)

η12(τ)(A(0,1/3)(τ) − 24)
,

and

l(u,v)(τ) =
12

(2πi)4

g2(τ)η4(uτ + v)

η12(τ)(A(u,v)(τ) − 24)
, (u, v) �= (0, 1/3).

Fleckinger then proves that l3(u,v)(τ) = A(u,v)(τ) and that l(u,v)(τ) ∈ KΓ(9). Since the

cube roots of the functions A(u,v)(τ) generate the splitting field of F (x3) over the field
k(β) = KΓ(3), we may assume as in the proof of part a) that N ⊆ KΓ(9). However,
we also have

[KΓ(9) : k(j(τ))] = [Γ :< ±I > Γ(9)] = |Γ̄9| = 324

by [sch, p. 76]. Since [N : k(j(τ))] = 324 this shows that N = KΓ(9) and completes
the proof. �

We now give simpler expressions for Fleckinger’s functions l(u,v)(τ).

Theorem 11. If η(τ) is Dedekind’s η-function, then we have the following formulas:

l(u,v)(τ) = 3 +

�

η(uτ+v
3

)

η(τ)

�3

, (u, v) �= (0, 1/3); (26)

l(0,1/3)(τ) = 3 + 27

�

η(9τ)

η(τ)

�3

. (27)

Proof. We first prove the formula

l(1/3,0)(τ) = 3 +

�

η( τ
9
)

η(τ)

�3

= f(τ). (28)
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Equations (18), (22), and (24) in Weber’s treatise [w, pp. 255-256] state in our
notation that t = f 3(τ) satisfies

j(τ)(t − 27) = t(t − 24)3,

i.e., that f 3(τ) is a root of F (x) = 0. By the results of [s, p.51], f(τ) is a modular
function for the group Γ0(9). Therefore f(τ) ∈ KΓ(9). But as one of the four roots
of F (x) in the field KΓ(9), the function f 3(τ) must coincide with one of the functions
A(u,v)(τ). From (24) and the q-expansion of the Weierstrass ℘-function [si,p. 50] we
have the beginning q-expansions at τ = ∞i, with q = e2πiτ :

A(0,1/3)(τ) = 27 + 729q + O(q2),

A(1/3,0)(τ) = q−1/3 + 15 + 54q1/3 + O(q2/3), (29)

A(1/3,1/3)(τ) = A(1/3,0)(τ + 1) = ω2q−1/3 + 15 + O(q1/3),

A(1/3,−1/3)(τ) = A(1/3,0)(τ − 1) = ωq−1/3 + 15 + O(q1/3).

(The second expansion corrects an error in [fle, p. 27, (2.8)].) On the other hand,
from the infinite product expansion

η(τ) = q1/24

∞
�

n=1

(1 − qn),

we have that

f(τ)3 = (q−1/9 + 5q2/9 − 7q5/9 + O(q8/9))3 = q−1/3 + 15 + 54q1/3 + O(q2/3).

This proves that f 3(τ) = A(1/3,0)(τ) = l3(1/3,0)(τ). Hence, f(τ) = ωil(1/3,0)(τ), and

since the leading term of the q-expansion of l(1/3,0)(τ) is q−1/9, it follows that f(τ) =
l(1/3,0)(τ), as claimed. Now the relations

l(1/3,1/3)(τ) = l(1/3,0)(τ + 1), l(1/3,−1/3)(τ) = l(1/3,0)(τ − 1)

and (28) imply (26). Finally, the identities

A(0,1/3)(τ) = A(1/3,0)(−1/τ)
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from [fle, p.25, (2.3)] and

η

�−1

τ

�

=

�

τ

i
η(τ) (30)

(see [kk, p. 190]) give that

A(0,1/3)(τ) =



3 +

�

η
�

−1
9τ

�

η
�

−1
τ

�

�3




3

=



3 +

�

�

9τ/i η(9τ)
�

τ/i η(τ)

�3




3

=

�

3 + 27

�

η(9τ)

η(τ)

�3
�3

.

Since the the q-expansion for l(0,1/3)(τ) is 3 + O(q), equation (27) follows. �

Corollary. We have the equivalent identities





�

η
�

τ
9

�

η(τ)

�9

+ 9

�

η
�

τ
9

�

η(τ)

�6

+ 27

�

η
�

τ
9

�

η(τ)

�3




2

=
∆

�

τ
3

�

∆(τ)
,

η3(τ)η3
�τ

9

� �

η6
�τ

9

�

+ 9η3
�τ

9

�

η3(τ) + 27η6(τ)
�

= η12
�τ

3

�

.

In other words, η12
�

τ
3

�

is equal to the quartic form in X and Y given by

Q(X, Y ) = XY (X2 + 9XY + 27Y 2)

evaluated at X = η3
�

τ
9

�

and Y = η3(τ).

Proof. The first identity is immediate from (28) and (25b) with (u, v) = (1/3, 0).
The second follows from the first by taking square roots and comparing leading terms
in the q-expansions of both sides, using the fact that ∆(τ) = (2π)12η24(τ). �

Remark. It can be shown that the second identity in this corollary is equivalent
to an identity given by Zagier [z, p.8, Case B]. I am grateful to Shaun Cooper
(private communication) for making me aware of this fact. See the recent preprint
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by Chan and Cooper [cc], Theorem 3.1 and Table 1 (level � = 9). This identity is
also equivalent to an identity involving cubic theta functions. See the discussion of
equation (40) in Section 7 below.

We will now use the above insights to investigate a specific isomorphism N ∼= KΓ(9)

in detail. In particular, we seek to determine the images of α and β under such an
isomorphism. We will construct this isomorphism in several stages.

It follows from the fact that [k(β) : k(α3)] = 3 that there is an isomorphism
k(β) → KΓ(3) taking

ξ1 = α3 → A(0,1/3)(τ), ξ2 → A(1/3,0)(τ).

To determine how this isomorphism acts on ξ3 and ξ4 we note the following. The
equation

ξ2 − 27 =
(β + 6)3

β2 + 3β + 9
− 27 =

(β − 3)3

β2 + 3β + 9

implies easily that

λ = (ξ2 − 27)(ξ3 − 27)(ξ4 − 27) = β3 − 27.

Since the images of the elements ξ3 and ξ4 lie in {A(1/3,1/3)(τ), A(1/3,−1/3)(τ)}, it

follows from (25) applied to the last equation that

β3 − 27 =
27β3

α3
→ ±

�

∆
�

τ
3

�

∆
�

τ+1
3

�

∆
�

τ−1
3

��1/2

∆(τ)3/2

= ±η12
�

τ
3

�

η12
�

τ+1
3

�

η12
�

τ−1
3

�

η36(τ)
. (31)

On the other hand, the infinite product for η(τ) gives that

a(τ) =
η4

�

τ
3

�

η4
�

τ+1
3

�

η4
�

τ−1
3

�

η12(τ)
= q−1/3

�

n≥1,n �≡0(mod3)

(1 − qn)4 =
η4(τ)

η4(3τ)
. (32)

Thus, β maps to a function b(τ) with leading term cq−1/3, where c6 = 1. Now we
use the fact that

ξ2 + ω2ξ3 + ωξ4 =
3β(β3 − 108)

β3 − 27
,
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so that

β = (ξ2 + ω2ξ3 + ωξ4)
β3 − 27

3(β3 − 108)
.

Consequently, the leading term in the q-expansion of b(τ) is 1/3 times the leading
coefficient in the expansion of the quantity ξ2 + ω2ξ3 + ωξ4. By (29), we have that

A(1/3,0)(τ) + ω2A(1/3,1/3)(τ) + ωA(1/3,−1/3)(τ) = O(q1/3),

while
A(1/3,0)(τ) + ωA(1/3,1/3)(τ) + ω2A(1/3,−1/3)(τ) = 3q−1/3 + O(q1/3).

Hence, we must have ξ3 → A(1/3,−1/3)(τ) and ξ4 → A(1/3,1/3)(τ), and the leading term
of b(τ) is q−1/3.

Now the fact that [k(α, β) : k(β)] = 3 implies that the above isomorphism can be
extended to an isomorphism taking α → l(0,1/3)(τ). Equations (31) and (32) imply
that

3β

α
→ ζ6

η4
�

τ
3

�

η4
�

τ+1
3

�

η4
�

τ−1
3

�

η12(τ)
= ζ6 a(τ),

for some 6-th root of unity ζ6, and then (32) shows that ζ6 = 1, since the leading
term of l(0,1/3)(τ) is 3. In other words

β → b(τ) =
1

3
a(τ)l(0,1/3)(τ) =

η4(τ)

η4(3τ)

�

1 + 9
η3(9τ)

η3(τ)

�

.

This shows that b(τ) ∈ KΓ(3), consequently a(τ) ∈ KΓ(9), and

b(τ) = q−1/3(1 + qs(q)), (33)

where s(q) is a power series in q with integer coefficients.

I claim now that

b(τ) = 3 +

�

η
�

τ
3

�

η(3τ)

�3

= 3 + g(τ)3. (34)

First note that the q-expansion of 3 + g(τ)3 at infinity begins with q−1/3:
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3 + g(τ)3 = q−1/3(1 + 5q − 7q2 + 3q3 + · · ·). (35)

From (31) and (32) we have the identity

27 + a(τ)3 = b(τ)3. (36)

On the other hand, putting 3τ for τ in the above corollary gives

(3 + g(τ)3)3 − 27 =

�

η
�

τ
3

�

η(3τ)

�9

+ 9

�

η
�

τ
3

�

η(3τ)

�6

+ 27

�

η
�

τ
3

�

η(3τ)

�3

=

�

∆(τ)

∆(3τ)
,

where the leading term in the q-expansion of the square-root is q−1. From (32) it is
clear that the right-hand side of this equation is just a(τ)3. Hence, we have

b(τ)3 = 27 + a(τ)3 = (3 + g(τ)3)3,

and using (33) and (35) gives b(τ) = 3 + g(τ)3, as claimed in (34).

As a corollary of this argument we note the following identity, which follows from
equating the two expressions we have derived for the function b(τ).

Theorem 12. For τ in the upper half-plane H we have

3 +
η3

�

τ
3

�

η3(3τ)
=

η4(τ)

η4(3τ)

�

1 + 9
η3(9τ)

η3(τ)

�

,

or equivalently,

η3
�τ

3

�

η(3τ) + 3η4(3τ) = η4(τ) + 9η3(9τ)η(τ).

�

So far we have an isomorphism taking

α → l(0,1/3)(τ) =
3b(τ)

a(τ)
, β → b(τ) = 3 + g(τ)3,

ξ2 → A(1/3,0)(τ) = l(1/3,0)(τ)3, ξ3 → A(1/3,−1/3)(τ) = l(1/3,−1/3)(τ)3,
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ξ4 → A(1/3,1/3)(τ) = l(1/3,1/3)(τ)3.

Since [N : k(α, β)] = 9 and ξ
1/3
2 and ξ

1/3
3 generate independent extensions of k(α, β),

the isomorphism N → KΓ(9) may now be chosen so that it extends the above isomor-
phism and so that

ξ
1/3
2 → l(1/3,0)(τ), ξ

1/3
3 → l(1/3,−1/3)(τ).

Then ξ
1/3
4 → ωrl(1/3,1/3)(τ), for some r. Furthermore, from (33) we have

g(τ + 1)3 = b(τ + 1) − 3 = ω2b(τ) − 3, g(τ − 1)3 = ωb(τ) − 3. (37)

But (ωiβ − 3)1/3 ∈ N maps to a cube root of unity times (ωib(τ) − 3)1/3 ∈ KΓ(9),
hence

g(τ) =
η

�

τ
3

�

η(3τ)
, g(τ + 1), g(τ − 1) ∈ KΓ(9),

and
KΓ(9) = k(g(τ), g(τ + 1), g(τ − 1)).

On the other hand, the function z(τ) = 3
η(9τ)

η(τ)
= (l(0,1/3)(τ)− 3)1/3 lies in KΓ(27),

which follows from the general transformation formula for η(τ). (See [ra, p. 163] or
[fle, p. 28], but beware of two misprints in the first formula for ε(a, b, c, d) in [fle].)
In particular, (30) easily implies that z(−1/τ) = g(τ/3) = (l(1/3,0)(τ) − 3)1/3. Note
that z(τ) does not lie in KΓ(9), since for example,

z

�

τ

9τ + 1

�

= ωz(τ).

This corresponds to the fact that (α− 3)1/3 does not lie in the field N of Section 1.

These observations imply the following theorem.

Theorem 13. The functions

α = l(0,1/3)(τ) = 3 + 27

�

η(9τ)

η(τ)

�3

, β = b(τ) = 3 +

�

η
�

τ
3

�

η(3τ)

�3
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give a solution (α, β) in KΓ(9) of the Fermat equation

Fer3 : 27α3 + 27β3 = α3β3.

Furthermore, z = 3
η(9τ)

η(τ)
, w =

η
�

τ
3

�

η(3τ)
is a parametrization of the curve

C19 : z3w3(z6 + 9z3 + 27)(w6 + 9w3 + 27) = 729

in terms of modular functions for Γ(27). �

The first assertion follows from the computations of Section 1 and the isomor-
phism N ∼= KΓ(9). The second assertion follows as in the proof of Theorem 5, or can
be deduced directly from the Corollary to Theorem 11. The q-expansions at infinity
of the modular functions occurring in Theorem 13, as well as those occurring in (36),
have rational integral coefficients.

By virtue of (37), the generators g(τ), g(τ + 1), g(τ − 1) of KΓ(9) satisfy the rela-
tionships

g(τ − 1)3 = ωg(τ)3 + 3ω − 3, g(τ + 1)3 = ω2g(τ)3 + 3ω2 − 3.

From this and the identity

((y + z)3 − y3 − z3)3 = 27y3z3(y + z)3

it follows that the function X = g(τ) and the primitive element Y = g(τ+1)+g(τ−1)
for the extension KΓ(9)/k(g(τ)) satisfy

0 = (Y 3 −ω2X3 − 3ω2 + 3−ωX3 − 3ω + 3)3 − 27(ω2X3 + 3ω2 − 3)(ωX3 + 3ω− 3)Y 3

= (Y 3 + X3 + 9)3 − 27(X6 + 9X3 + 27)Y 3.

Hence, we have:

Theorem 14. The modular function field KΓ(9) is isomorphic to the function field
for the curve

f(X, Y ) = Y 9 + 3(X3 + 9)Y 6 − 3(8X6 + 63X3 + 162)Y 3 + (X3 + 9)3 = 0.
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�

An explicit covering map (X, Y ) → (α, β) from f(X, Y ) = 0 to Fer3 is given by

α =
3(3 + X3)(9 − 2Y 3 + X3)2

(Y 6 + 7X6 − Y 3X3 + 45X3 − 9Y 3 + 81)XY 2
, β = 3 + X3.

Remark. From Theorem 3 and the computation of the genus of N in Section 4 it
follows that the curve f(X, Y ) = 0 in Theorem 14 has good reduction at any prime
p �= 2, 3.

6 Application to an identity of Berndt and Hart.

In this section we consider an application of the formulas of the last section. This
concerns the following identity first proved in [bh] by Berndt and Hart (see also the
alternate proof in [köh] and a generalization in [cht]):

27η3(3w)η3(3z) = η3
�

w
3

�

η3
�

z
3

�

+iη3
�

w+1
3

�

η3
�

z+1
3

�

−η3
�

w+2
3

�

η3
�

z+2
3

�

, (38)

for w, z ∈ H. We will show how this identity follows easily from the identities (34)

and (37) for the function g(τ) =
η

�

τ
3

�

η(3τ)
, where (37) is a consequence of (33). First

apply (34) and (37) to the expression

g3(w)g3(z) + g3(w + 1)g3(z + 1) + g3(w + 2)g3(z + 2)

= (b(w) − 3)(b(z) − 3) + (ω2b(w) − 3)(ω2b(z) − 3) + (ωb(w) − 3)(ωb(z) − 3)

= (1 + ω + ω2)b(w)b(z) − 3(1 + ω2 + ω)(b(w) + b(z)) + 27,

so that

g3(w)g3(z) + g3(w + 1)g3(z + 1) + g3(w + 2)g3(z + 2) = 27. (39)

Now note that
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g(w + 1) =
η

�

w+1
3

�

η(3w + 3)
=

η
�

w+1
3

�

ζ8η(3w)
,

where ζ8 = e2πi/8, so that

g3(w + 1)g3(z + 1) =
1

ζ6
8

η3
�

w+1
3

�

η3(3w)

η3
�

z+1
3

�

η3(3z)
= i

η3
�

w+1
3

�

η3(3w)

η3
�

z+1
3

�

η3(3z)

and

g3(w + 2)g3(z + 2) =
1

ζ12
8

η3
�

w+2
3

�

η3(3w)

η3
�

z+2
3

�

η3(3z)
= −η3

�

w+2
3

�

η3(3w)

η3
�

z+2
3

�

η3(3z)
.

Plugging these expressions into (39) and clearing denominators yields (38). This
proof shows that the Berndt-Hart identity (38) is a direct result of the q-expansion
(33) for b(τ) = 3+ g(τ)3, which is, in turn, a consequence of the identity in Theorem
12.

7 Connection with cubic theta functions.

The identities in the Corollary to Theorem 11 and in Theorems 12 and 13 are related
to the cubic theta functions a(q), b(q), c(q) introduced by the Borweins in [bb, p. 695]
and developed further in [bbg]. Also see the paper [cp1] and the references given in
[cp2].

Note: In this section we reserve the notation a(q) and b(q) for the functions defined

below. They should not be confused with the functions a(τ) and b(τ) considered in

Sections 5 and 6.

For example, with q = e2πiτ , set

b(q) =
η3(τ)

η(3τ)
, c(q) = 3

η(3τ)3

η(τ)
,

and

a(q) = b(q) + 3c(q3) =
η3(τ)

η(3τ)
+ 9

η(9τ)3

η(3τ)
=

∞
�

n,m=−∞

qm2+mn+n2

.

These relations are from Prop. 2.2 and Lemma 2.1 in [bbg]. With these definitions,
it is straightforward to verify that the identity

a(q)3 = b(q)3 + c(q)3 (40)
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discovered by the Borweins is equivalent to the identities in the Corollary to Theorem
11, with τ replaced by 9τ . Furthermore, the solution (α, β) of Fer3 in Theorem 13
can be expressed in terms of the cubic theta functions as

α = 3
a(q)

b(q)
, β = 3

a(q)

c(q)
.

The equation for α follows from the definition of the functions a(q) and b(q), while
the equation for β follows from

β3 =
27α3

α3 − 27
=

27a(q)3

a(q)3 − b(q)3
=

27a(q)3

c(q)3
.

Alternatively, the relation β = 3a(q)/c(q) is equivalent to the identity in Theorem
12. In addition, note that our equation (36) is equivalent to Corollary 2.5 in [bbg].

I am grateful to Shaun Cooper for several enlightening e-mail messages in which
he clarified for me the connection between the η-identities of Section 5, Zagier’s
paper [z], and cubic theta functions, and for bringing the papers [bbg] and [z] to my
attention.
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