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Shannon Information

In 1948 C. Shannon created a powerful and beautiful theory of information
that served as the backbone to nowadays digital communications.

C. Shannon:

Shannon information quantifies the extent to which a recipient of data

can reduce its statistical uncertainty.

Some aspects of Shannon information:

objective: statistical ignorance of the recipient;

statistical uncertainty of the recipient.

cost: # binary decisions to describe E;

= − log P (E); P (E) being the probability of E.

Context: “semantic aspects of communication are irrelevant”

Self-information for Ei: info(Ei) = − log P (Ei).

Average information: H(P ) = −
P

i P (Ei) log P (Ei)
Entropy of X = {E1, . . .}: H(X) = −

P

i P (Ei) log P (Ei)
Mutual Information: I(X; Y ) = H(Y )−H(Y |X), (faulty channel).



Three Jewels of Shannon

Theorem 1. [Shannon 1948; Lossless Data Compression]

compression bit rate ≥ source entropy H(X).

(There exists a codebook of size 2nR of universal codes of length n with

R > H(X)

and probability of error smaller than any ε > 0.)

Theorem 2. [Shannon 1948; Channel Coding ]

In Shannon’s words:
It is possible to send information at the capacity through the channel

with as small a frequency of errors as desired by proper (long) encoding.

This statement is not true for any rate greater than the capacity.

(The maximum codebook size N(n, ε) for codelength n and error probability ε is

asymptotically equal to: N(n, ε) ∼ 2nC .)

Theorem 3. [Shannon 1948; Lossy Data Compression].

For distortion level D:

lossy bit rate ≥ rate distortion function R(D).
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Beyond Shannon

Participants of 2005/2008 Information Beyond Shannon workshops realize:

Delay: Delay incurred is a issue not adequately addressed in information

theory (e.g., information arriving late maybe useless).

Space: In networks the spatially distributed components raise fundamental

issues of limitations in information exchange since the available resources

must be shared, allocated and re-used. Information is exchanged in

space and time for decision making, thus timeliness of information delivery

along with reliability and complexity constitute the basic objective.

Structure: We still lack measures and meters to define and appraise the

amount of information embodied in structure and organization.

Semantics. In many scientific contexts, one is interested in signals, without

knowing precisely what these signals represent. Is there a general way to

account for the meaning of signals in a given context?

Limited Computational Resources: In many scenarios, information is limited

by available computational resources (e.g., cell phone, living cell).

Representation-invariant of information. How to know whether two

representations of the same information are information equivalent?
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What is Information?

C. F. Von Weizsäcker:

“Information is only that which produces information” (relativity).

“Information is only that which is understood” (rationality)

“Information has no absolute meaning”.

Informally Speaking: A piece of data carries information if it can impact

a recipient’s ability to achieve the objective of some activity in a given

context within limited available resources.

Using the event-driven paradigm, we may formally define:

Definition 1 (Konorski, W.S., 2006). The amount of information (in a faultless

scenario) info(E) carried by the event E in the context C as measured for

a system with the rules of conduct R is

infoR,C(E) = cost[objectiveR(C(E)), objectiveR(C(E) + E)]

where the cost (weight, distance) is taken according to the ordering of

points in the space of objectives.



Example: Distributed Information

1. In an N -threshold secret sharing scheme, N subkeys of the decryption

key roam among A × A stations.

2. By protocol P a station has access:

• only it sees all N subkeys.

• it is within a distance D from all subkeys.

. . . . . . . . . . x . . . . . . .

. . . . . . . x x x x x x x . . . .

. . . . . x x x x x x x x x x . . .

. . . . x x x x x x x x x x x . . .

. . . . x x x x x x x x x x x . . .

. . . x x x x ⋆ x ⋆ x x x x x x . .

. . . x x x x x x x x x x x x . . .

. . . x x x x x x x x x x x x . . .

. . x x x x x x x x ⋆ x x x x . . .

. . . x x x x x x x x x x x x . . .

. . . x x x x x x x x x x x x . . .

. . . . x x x x x x x x x . . . . .

. . . . . . x x x x x . . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

3. Assume that the larger N ,

the more valuable the secrets.

We define the amount of information as

(cf. J. Konorski and W.S.)

info= N × {# of stations having access} .
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Learnable Information

How much useful information can be extracted from a given data set

(then we can ask about amount of knowledge in Google database)?.



Learnable Information

How much useful information can be extracted from a given data set

(then we can ask about amount of knowledge in Google database)?.

Learnable Information:

1. For a fixed n a sequence xn = x1 . . . xn is given to us.

2. Summarizing Property: Let S be a set representing useful information,

structure, regularity or summarizing properties of xn

(e.g., S could be the number of 1 in xn).

3. We can represent xn be describing the set S – we denote it by I(S)
and call it useful information – and position of xn in S that requires log |S|
bits and represents its complexity of xn.

4. Choose Ŝ with the smallest I(S); call I(Ŝ) the learnable information.
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How much useful information can be extracted from a given data set

(then we can ask about amount of knowledge in Google database)?.

Learnable Information:

1. For a fixed n a sequence xn = x1 . . . xn is given to us.

2. Summarizing Property: Let S be a set representing useful information,

structure, regularity or summarizing properties of xn

(e.g., S could be the number of 1 in xn).

3. We can represent xn be describing the set S – we denote it by I(S)
and call it useful information – and position of xn in S that requires log |S|
bits and represents its complexity of xn.

4. Choose Ŝ with the smallest I(S); call I(Ŝ) the learnable information.

Kolmogorov Information: Define

K(xn) = K(Ŝ) + log |Ŝ|.

Example: For xn being a binary sequence, let S be the type of xn that

requires K(Ŝ) = 1
2 log n bits, and

log |S| = log
“n

k

”

= nH(n/k) bits.



Computable Learnable Information (Rissanen MDL)

Statistically Learnable/Useful Information

1. Mk = {Pθ : θ ∈ Θ} set of k-dimensional parameterized distributions.

Let θ̂(xn) = arg maxθ∈Θ − log Pθ(x
n) be the ML estimator.
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3. Two models, say Pθ(x
n) and Pθ′(x

n)

are indistinguishable (have the same useful information)

if the ML estimator θ̂ with high probability

declares both models are the same

(i.e., θ and θ′ are close).

4. The number of distinguishable distributions (i.e, θ̂)

Cn(Θ) summarizes then the learnable information

and we denote it as I(Θ) = log2 Cn(Θ).
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where I(θ) = {Iij(θ)}ij is the Fisher information matrix and dI(θ, θ̂) is a

rescaled Euclidean distance known as Mahalanobis distance.
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1. Mk = {Pθ : θ ∈ Θ} set of k-dimensional parameterized distributions.
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(i.e., θ and θ′ are close).

4. The number of distinguishable distributions (i.e, θ̂)

Cn(Θ) summarizes then the learnable information

and we denote it as I(Θ) = log2 Cn(Θ).

5. Consider the following expansion of the Kullback-Leibler (KL) divergence

D(Pθ̂||Pθ) := E[log Pθ̂(X
n
)]−E[log Pθ(X

n
)] ∼ 1

2
(θ−θ̂)

T
I(θ̂)(θ−θ̂) ≍ d

2
I(θ, θ̂)

where I(θ) = {Iij(θ)}ij is the Fisher information matrix and dI(θ, θ̂) is a

rescaled Euclidean distance known as Mahalanobis distance.

5. Balasubramanian proved that the number of distinguishable balls Cn(Θ)
of radius O(1/

√
n) is equal to (i.e., minimax maximal regret)

I(Θ) = log Cn(Θ) = infθ∈Θmaxxn log
Pθ̂

Pθ

= log
X

xn

Pθ̂(x
n
).



Memoryless Sources

Consider the minimax regret=useful information for memoryless sources of

m-ary alphabet, thus with k = m − 1. Observe that

Cn(Θ) =
X

xn
1

sup
p1,...,pm

p
k1
1 · · · pkm

m =
X

k1+···+km=n

“ n

k1, . . . , km

”

„

k1

n

«k1

· · ·
„

km

n

«km

.
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n!

nn

X
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1
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m

km!
.

Using tree-generating functions and analytic information theory tools, we

find (cf. Clarke & Barron, 1990, W.S., 1998)
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Transfer of Information in Ubiquitous Networks

Information Theory, born 50 years ago, needs a recharge if it is to meet

new challenges of ubiquitous networks.

Fundamental New Problems:

1. Future networks will transport information not data.

2. Information is only useful when delivered in a timely fashion (e.g., new

resource scheduling in inherently unreliable wireless environment).

3. To design scalable networks, node must cooperate (e.g., interference

can be turn into useful signals thru distributive multiantenna processing;

mobility may diffuse traffic but will cause large delays).

4. New Information Theory of dependence is needed to design more

energy efficient communication (i.e., how fast? at what cost?).

5. To turn it into reality, we must seriously consider:

selfishness (it is in each node’s self-interest to cooperate);

channel capacity (to turn interference into useful signals);

delay (mobility can diffuse traffic for large delays).



Speed of Information

Based on P. Jacquet, B. Mans and G. Rodolakis, ISIT, 2008

Intermittently Connected Mobile Networks (ICN):
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1. Nodes move in space with

uniform density ν > 0.

2 Nodes do random walks with speed v

and turn rate τ .

3. Connectivity is achieved in a unit disk.

4. Radio propagation speed is infinite.

Problem statement:
At time t = 0 a node at the origin broadcasts a beacon and nodes

retransmit beacon immediately to neighbors in the ICN network.

Question: At what time T node at distance L from the origin will receive

the beacon? Propagation speed is L
T .



Journey Analysis Through the Laplace Transform

The beacon undergoes a journey C from the origin to some point z. Let

z(C) be the destination point reached at time t(C).

Let p(z, t) be the space-time density of paths C that reaches location

z(C) at time t.
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Example: For p(z, t) = O(exp(−A|z| + Bt + C)), then σ0 = B/A.
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z(C) be the destination point reached at time t(C).

Let p(z, t) be the space-time density of paths C that reaches location

z(C) at time t.

(Probabilistic) Information speed is the smallest σ0 such that for all σ > σ0

lim p

„

z,
|z|
σ

«

= 0.

Example: For p(z, t) = O(exp(−A|z| + Bt + C)), then σ0 = B/A.

The bivariate Laplace transform of z(C) and t(C) is

E[exp(−ζz(C) − θt(C))] =
1

D(|ζ|, θ)

with

D(ρ, θ) =
q

(θ + τ)2 − ρ2v2 − 4πνvI0(ρ)

1 − πν 2
ρI1(ρ)

with Ik modified Bessel functions of order k.

In order to find p(z, t) one needs to inverse the Laplace transform through

the saddle point method.



Main Result on Information Speed

Let K be the set (ρ, θ) of all roots of D(ρ, θ) = 0.

Theorem 1 (Jacquet, et. al., 2008). The information speed is not greater

than the smallest ratio
θ

ρ
where (ρ, θ) belongs to K.
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Figure 1: (LEFT) Time versus distance for ν = 0.1, v = 1 and τ = 0.25;

(RIGHT) Impact on the network capacity.
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Structural Information

F. Brooks, jr. (JACM, 50, 2003, “Three Great Challenges for . . . CS ”):

We have no theory that gives us a metric

for the Information embodied in structure. This is the most

fundamental gap in the theoretical underpinning of Information.
. . . A young information theory scholar willing to spend years on a deeply

fundamental problem need look no further.”

Random graph model:

A graph process G generates a set of graphs G = (V , E), that produces

a probability distribution on graphs.

The (descriptive) entropy of a random (labeled) graph process G is defined

as

HG = E[− log P (G)] = −
X

G∈G
P (G) log P (G),

where P (G) is the probability of a graph G.



Random Structure Model

A random structure model is defined for an unlabeled version. Some

labeled graphs have the same structure.
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Random Graph Model Random Structure Model

The probability of a structure S is

P (S) = N(S) · P (G)

N(S) is the number of different labeled graphs having the same structure.
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labeled graphs have the same structure.
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S1 S2
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Random Graph Model Random Structure Model

The probability of a structure S is

P (S) = N(S) · P (G)

N(S) is the number of different labeled graphs having the same structure.

The entropy of a random structure S can be defined as

HS = E[− log P (S)] = −
X

S∈S
P (S) log P (S),

where the summation is over all distinct structures.



Relationship between HG and HS

Two labeled graphs G1 and G2 are called isomorphic if and only if there is a

one-to-one map from V (G1) onto V (G2) which preserves the adjacency.

Graph Automorphism:

For a graph G its automorphism

is adjacency preserving permutation

of vertices of G.

a

b c

d e

The collection Aut(G) of all automorphism of G is called the

automorphism group of G.



Relationship between HG and HS

Two labeled graphs G1 and G2 are called isomorphic if and only if there is a

one-to-one map from V (G1) onto V (G2) which preserves the adjacency.

Graph Automorphism:

For a graph G its automorphism

is adjacency preserving permutation

of vertices of G.

a

b c

d e

The collection Aut(G) of all automorphism of G is called the

automorphism group of G.

Lemma 1. If all isomorphic graphs have the same probability, then

HS = HG − log n! +
X

S∈S
P (S) log |Aut(S)|,

where Aut(S) is the automorphism group of S.

Proof idea: Using the fact that

N(S) =
n!

|Aut(S)|.



Erdös-Rényi Graph Model

Our random structure model is the unlabeled version of the binomial

random graph model known also as the Erdös and Rényi model.

The binomial random graph model G(n, p) generates graphs with n
vertices, where edges are chosen independently with probability p.

If a graph G in G(n, p) has k edges, then P (G) = pkq(
n
2)−k, where q =

1 − p.

Theorem 2 (Y. Choi and W.S., 2008). For large n and all p satisfying ln n
n ≪ p

and 1 − p ≫ ln n
n (i.e., the graph is connected w.h.p.),

HS =
“n

2

”

h(p) − log n! + o(1),

where h(p) = −p log p − (1 − p) log (1 − p) is the entropy rate. Thus

HS =
“n

2

”

h(p) − n log n + n log e − 1

2
log n − 1

2
log (2π) + o(1).

Proof idea: 1. HS = HG − log n! +
P

S∈S P (S) log |Aut(S)|.
2. HG =

`n
2

´

h(p)
3.
P

S∈S P (S) log |Aut(S)| = o(1) by asymmetry of G(n, p).
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Compression Algorithm called Structural zip, in short SZIP – Demo.



Compression Algorithm

Compression Algorithm called Structural zip, in short SZIP – Demo.

We can prove the following estimate on the compression ratio of S(p, n)
for our algorithm SZIP.

Theorem 3 (Y. Choi and W.S., 2008). The total expected length of encoding

produced by our algorithm SZIP for a structure S from S(n, p), is at most

“n

2

”

h(p) − n log n + n (c + Φ(log n)) + O(n
1−η

),

where h(p) = −p log p − (1 − p) log (1 − p), c is an explicitly computable

constant, η is a positive constant, and Φ(x) is a fluctuating function with a

small amplitude or zero.

Our algorithm is asymptotically optimal up to the second largest term, and

works quite fine in practise.



Experimental Results

Real-world and random graphs.

Table 1: The length of encodings (in bits)
Networks # of # of our adjacency adjacency arithmetic

nodes edges algorithm matrix list coding

R
e

a
l-
w

o
rl
d

US Airports 332 2,126 8,118 54,946 38,268 12,991

Protein interaction (Yeast) 2,361 6,646 46,912 2,785,980 1 59,504 67,488

Collaboration (Geometry) 6,167 21,535 115,365 19,012,861 55 9,910 241,811

Collaboration (Erdös) 6,935 11,857 62,617 24,043,645 308,2 82 147,377

Genetic interaction (Human) 8,605 26,066 221,199 37,018,710 729,848 310,569

Internet (AS level) 25,881 52,407 301,148 334,900,140 1,572, 210 396,060

R
a

n
d

o
m S(n, p) 1,000 p = 0.01 34,361 499,500 99,900 40,350

S(n, p) 1,000 p = 0.1 227,236 499,500 999,999 234,392

S(n, p) 1,000 p = 0.3 432,692 499,500 2,997,99 9 440,252

`n
2
´

2e⌈log n⌉
`n
2
´

h(p)

• n : number of vertices

• e : number of edges

• Adjacency matrix :
`n

2

´

bits

• Adjacency list : 2e⌈log n⌉ bits

• Arithmetic coding : ∼
`n

2

´

h(p) bits (compressing the adjacency matrix)
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Science of Information



Institute for Science of Information

In 2008 at Purdue we launched the

Institute for Science of Information

integrating research and teaching activities aimed at investigating the

role of information from various viewpoints: from the fundamental

theoretical underpinnings of information to the science and engineering

of novel information substrates, biological pathways, communication

networks, economics, and complex social systems.

The specific means and goals for the Center are:

• Prestige Science Lecture Series on Information to collectively ponder

short and long term goals;

• organize meetings and workshops (e.g., Information Beyond Shannon,

Orlando 2005, and Venice 2008).

• encourage and facilitate interdisciplinary collaborations (NSF STC with

Berkeley, MIT, Princeton, and Stanford).

• provide scholarships and fellowships for the best students, and support

the development of new interdisciplinary courses.

• initiate similar centers around the world to support research on

information.



That’s It
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Mobile Ad-hoc Networks

Low bandwidth (≤ 10 Mbps).

High mobility: topology may change every second.

Traffic control floods the network (with classic protocols).

Example: Stadium Network. Undirected network graph G(V, E) with

|V | = 10, 000 mobile nodes, each with 1,000 neighbors: |E| = 107 links;

Classic protocols would need |E|2 = 1014 link advertisements per second.

Shortest Path Routing:

Limits the traffic overhead,

Optimizes the number of packet retransmissions.

Information (and structural compression) issues arise here again, however,

this time the objective function is different, namely to minimize the

number of retransmissions.



Topological Compression

1. Consider an undirected graph G(V, E). The set S ⊂ E is a spanner if

S connects all nodes and every node u computes its shortest path to all

nodes based on S.

2. A spanner is unstretched if the shortest path in G(V, S) is also in G(V, E).

3. S ⊂ E is a remote spanner

if ∀u ∈ V : S ∪ N(u) connects to all nodes,

where N(u) is the neighborhood of u.

4. S is an unstretched remote spanner if ∀(u, v) ∈ V 2 there exists a shortest

path from u to all v in S ∪ N(u).

5. Topological Compression: |S|
|E| is called the topology compression ratio.

6. Theorem: The set S ⊂ E is an unstretched remote spanner iff ∀u ∈ V
N(u) ∩ S s the dominating set of the two hop neighborhood (i.e., N2(u)).



Compression Ratio for Two Graph Models

T = N(u) ∩ S is called the MultiPoint Relay Star of node u.

Then S =
S

u∈V T . Observe that:

Bad news: Computing optimal T is NP-complete.

Good News: Greedy algorithm within factor 1 + log |V | of the optimal T
(Chvátal, 1979).

Erdös-Rényi Graph Model: Edges are added with probability p.

Theorem 4 (Jacquet and Viennot, 2009). In Erdös-Rényi random graph

model the average topology compression ratio is asymptotically equal to
log |V |
p2|V | when |V | → ∞.

Geometric Graph Model: Nodes are uniformly distributed with density ν.

Theorem 5 (Jacquet and Viennot, 2009). In geometric random graph

model, the average topology compression is asymptotically equal to

3

ν
2
3

as ν → ∞.


