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Diabetes is a disease that is characterized by excessive glucose in the blood stream. Cur-
rently, there is an epidemic of diabetes that has resulted from unhealthy lifestyles, which are
dramatically different from how humans survived when they evolved from small nomadic hunter-
gatherer societies, and food was difficult to find. There are two forms of diabetes, Type 1, often
called juvenile diabetes, and Type 2, often referred to as adult onset diabetes (which now occurs
in children as young as 5). For our studies here, we will concentrate on Type 1 diabetes, which
is an autoimmune disease, and represents only 10% of all cases of diabetes. Type 1 diabetes
is a hereditary disease, which occurs in about 4-20 per 100,000 people with peak occurrence
around 14 years of age.

The classical symptoms of diabetes are increased hunger (polyphagia), increased thirst (poly-
dipsia), and frequent urination (polyuria) [3]. These symptoms tend to develop rapidly (weeks
or months) in Type 1 diabetes. The frequent urination results from the poor water reabsorp-
tion in the kidney because of the osmotic imbalance of glucose in the blood. The dehydration
from frequent and dilute urine causes the symptom of being thirsty. Other symptoms include
blurred vision caused by glucose absorption in the lenses of the eyes, fatigue, weight loss, and
poor wound healing. Type 1 diabetes may result is diabetic ketoacidosis, where the urine smells
of acetone.

Diabetes increases the risk of heart disease, especially because of atherosclerosis from low
insulin. Over time, diabetes can damage blood vessels and nerves, which increases the chance
of foot injury and decreases the body’s ability to fight infection. These problems can become
sufficiently severe as to require amputations. The osmotic imbalances over time result is kidney
damage (nephropathy) and nerve damage (neuropathy). The increased pressure in the eye or
on the optic nerve can lead to blindness (retinopathy). Thus, diabetes when untreated has very
serious consequences.

Glucose Metabolism

We begin with a short discussion of glucose metabolism. We ingest food to obtain energy to
sustain our bodies. The carbohydrates in the food are broken down into simple sugars, which
are absorbed into the blood. This raises the concentration of glucose in the blood, where cells
can access it for metabolism into energy.

However, when glucose levels get too high, then pressures (osmotic?) increase that can
cause problems in the tissues. For normal subjects, the rise in glucose concentration causes
the β-cells in the pancreas to release insulin into the blood (along with a number of other
hormones). Insulin affects glucose concentration in several ways, including the facilitation of
glucose transport across cell membranes, especially in skeletal muscles, and conversion of glucose
to glycogen in the liver, which provides a good storage of glucose for future consumption. Thus,
increasing the concentration of insulin results in blood glucose concentration decreasing. This
negative feedback system helps the body tightly regulate glucose levels to maintain a balance.

There are other significant hormones that are involved in the regulation of blood glucose.
In response to high energy demands, epinephrine (adrenalin) is released to break down the
glycogen and produce glucose. This hormone works opposite insulin to increase blood glucose.
The glucocorticoids help metabolize carbohydrates, especially in the liver, and also help increase
blood glucose concentrations. Growth hormone can block the effects of insulin by reducing
the liver uptake of glucose and decrease muscle sensitivity to insulin. There are many other
hormones that regulate glucose levels in the blood, creating a complex regulatory system that
is crucial to maintenance of blood glucose for energy to all cells in the body.



Type 1 diabetes occurs when someone who is genetically predisposed to the disease incurs
some unknown environmental assault that initiates the auto-immune system to attack their
own β-cells. When the β-cells are destroyed, they boost the immune system to further attack
more β-cells, leaving the body without the ability to produce insulin. This severely limits its
ability to regulate glucose and results in the onset of diabetes. Because of the immune response,
the body cannot regenerate new β-cells nor can transplants succeed.

Glucose Tolerance Test

Our modeling efforts begin with a simple model developed by Ackerman et al [1,2] in the
1960s, which is based on the Glucose Tolerance Test (GTT). After a 12 hour fast, subject is
given a large amount of glucose (1.75 mg of glucose/kg of body weight). This sugar is rapidly
ingested, then blood sugar is monitored for the next 4-6 hours. The glucose concentration in
the blood of the subject is measured and these data are fit to a model.

As noted above, the glucose regulatory system in the body is very complex. However, we
want to develop a simple model with a few parameters that can be fit to the data generated
by the GTT. For simplicity, we create a system of differential equations that follow the blood
concentrations of glucose (G(t)) and insulin (I(t)) though the later can be thought of as the
complex soup of hormones in the body regulating blood glucose. The general model is written:

dG

dt
= f1(G, I) + J(t),

dI

dt
= f2(G, I),

where J(t) is the ingested source of glucose. (This is an external control function represented
glucose sources coming from food ingested.) For the GTT, we can think of J(t) as a δ-function,
since we give an initial large quantity of glucose after a fast, then have no other glucose inputted
to the system. More complex models that have been developed and are continually being
improved often examine ideal ways to match J(t) with different foods.

The above model is very general, so gives little insight into the dynamics of glucose and
insulin. We assume that the body wants to maintain a homeostasis for glucose concentrations
in the blood. Also, we are assuming that J(t) is acting like a δ-function, so only affects the
initial conditions and is effectively zero away from t = 0. The homeostasis assumption means
that we want to consider a local perturbation of the dynamical system away from equilibrium.
Thus, create the perturbation variables,

g(t) = G(t) − G0 and i(t) = I(t) − I0,

where G0 and I0 are the equilibrium values for blood glucose and insulin concentrations, re-
spectively. Thus,

f1(G0, I0) = f2(G0, I0) = 0.

We expand the general model to linear terms with these definitions, yielding the linearized
perturbation model given by:

dg

dt
=

∂f1(G0, I0)

dg
g +

∂f1(G0, I0)

di
i,

di

dt
=

∂f2(G0, I0)

dg
g +

∂f2(G0, I0)

di
i,

where g(t) and i(t) now represent the linearized perturbed variables.



For the next step in our analysis, we examine the partial derivatives of the functions, f1 and
f2, with our understanding of the physiology of glucose and insulin. An increase in glucose in
the blood stimulates tissue uptake of glucose and glycogen storage in the liver. Also, increases
in insulin facilitate the uptake of glucose in tissues and the liver. Hence, it is clear that

∂f1(G0, I0)

dg
= −m1 < 0 and

∂f1(G0, I0)

di
= −m2 < 0.

However, increases in blood glucose result in the release of insulin, while increases in insulin
only result increased metabolism of excess insulin. These physiological facts imply that

∂f2(G0, I0)

dg
= m4 > 0 and

∂f2(G0, I0)

di
= −m3 < 0.

With these definitions, the linearized system can be written:

(

ġ
i̇

)

=

(

−m1 −m2

m4 −m3

) (

g
i

)

,

where ġ = dg/dt and similarly for i(t).
The characteristic equation for this linear system is given by
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= λ2 + (m1 + m2)λ + m1m3 + m2m4 = 0.

By our definitions above, this characteristic equation only has positive coefficients. From basic
differential equations (think spring mass system), this implies that the solutions λ are either
complex with negative real part or both eigenvalues are negative reals. Both situations give a
stable equilibrium as we would expected from this self-regulatory system.

We are only measuring the blood glucose level in the GTT, so we only need the linearized
solution for g(t). We expect the underdamped situation with complex eigenvalues. Physiologi-
cally, you can think of the your body’s response to a “sugar high” (maximum of blood glucose),
which is followed after an hour or two by a “sugar low” (minimum of blood glucose below
equilibrium) that encourages more eating. It follows that the general solution is given by

g(t) = e−αt(c1 cos(ωt) + c2 sin(ωt)),

where

α =
m1 + m3

2
and ω =

1

2

√

4(m1m3 + m2m4) − (m1 + m3)2.

If we take
c1 = A cos(ωδ) and c2 = A sin(ωδ),

then we can approximate the blood glucose level by

G(t) = G0 + Ae−αt cos(ω(t − δ)). (1)

This solution has five unknown parameters to be fit to the data. The parameter G0 represents
the equilibrium blood sugar level, α measures the ability of the system to return to equilibrium
state after being perturbed, and ω gives a frequency response to perturbations. One might
expect that measuring α should be the primary measure of whether someone was diabetic, as
people with diabetes should not be able to return rapidly to normal equilibrium levels. However,
the parameter α was found to have large errors from the many subjects tested by Ackerman



et al [1,2]. A more robust measure was the natural frequency of the system, ω0. (Recall the
natural frequency from forced damped oscillators in elementary differential equations.) We
define

ω2
0 = ω2 + α2 and T0 =

2π

ω0
,

where T0 is the natural period of the system. The natural period turns out to be a good
predictor of diabetes from Ackerman et al’s experiments [1,2]. In particular, they found that if
T0 < 4, then a person was generally normal, while if T0 > 4, then the person is likely to have
diabetes. Physiologically, you might relate to this by the idea that normally we get hungry
every 3-4 hours.

Examples

We examine the theory described above with a normal and a diabetic subject given the
GTT. The table below gives the data collected on two subjects.

t (hr) Subject A Subject B

0 70 100

0.5 150 185

0.75 165 210

1 145 220

1.5 90 195

2 75 175

2.5 65 105

3 75 100

4 80 85

6 75 90

Table 1: Data from the Glucose Tolerance Test. Subject A is a normal subject, while Subject
B has diabetes.

The data in the table are fit to the model Eqn. (1). A least squares best fit is performed
using either Excel or MatLab. Below is a table of the best fitting parameters for each of the
subjects, including the least sum of square errors. The MatLab programs and Excel spreadsheet
are put together in a GTT.zip file for anyone interested.

Parameter Subject A Subject B

G0 79.1814 95.2125

α 0.9927 0.6335

A 171.5467 263.1521

ω 1.8127 1.0304

δ 0.90056 1.51604

LSSE 225.6757 718.6180

Table 2: Best Fitting Parameters to GTT Model. Subject A is a normal subject, while Subject
B has diabetes.



The models and the data are graphed in the figure below. One can readily see that the best
parameter fit does very well matching the model to the data. From the definitions of ω0 and
T0 above, we find that for Subject A,

ω0 = 2.0668 and T0 = 3.0401,

so according to the criterion by Ackerman et al [1,2], this subject is clearly normal. For
Subject B, we find

ω0 = 1.2095 and T0 = 5.1947,

so according to the criterion by Ackerman et al [1,2], this subject is clearly diabetic.
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Diabetes in NOD Mice

Since diabetes is such a significant human disease, an animal model has been developed to
gain a better understanding in the scientific community. One important animal with a diabetic
tendency is the non-obese diabetic (NOD) mouse. Type 1 diabetes arises in NOD mice when
T cells from the immune system become primed to specifically target and kill beta-cells. These
cytotoxic T cells belong to a class of lymphocytes displaying a surface marker called CD8
(denoted CD8+ T cells).

T Cell Immune Response

We start with a brief discussion of the T cell immune response, which is central to our
model for the onset of diabetes. The T cells mature in the thymus, and most T cells that
cross-react with self-proteins are destroyed to minimize autoimmune responses. Next the T
cells migrate to the lymph nodes, where they interact with antigen presenting cells (APC’s)
that display small fragments of proteins (about 9 amino acids) primarily from foreign sources,
such as viruses or bacteria. These antigens are held inside a cleft of a larger protein, the
major histocompatibility complex or MHC. Depending on the strength, duration, and number
of interactions that a particular T cell has determines whether it undergoes activation and
issues an immune response.

When a T cell with the appropriate specificity matches a foreign protein, then the activated
T cell proliferates. This activated T cell can rapidly reproduce, undergoing approximately 6



cell divisions, to create effector cells (also called cytotoxic T-lymphocytes or CTL’s), which
seek out and destroy target cells, which protects the host from this foreign invader. These
CTL’s can be dangerous in the body, so are short-lived. Alternately, the activated T cell can
issue a weaker response (mostly when there is not as much of the foreign protein present) and
produce long-lived memory cells, which have the same specificity, but wait until the stimulus is
encountered again in larger quantities to mount an immune response that destroys the target.

Autoimmunity for Type 1 Diabetes

An autoimmune disease, such as Type 1 diabetes, is caused by the immune cells attacking
the wrong targets. In particular, the T cells attack the β-cells in the pancreas that produce
insulin. Early in the development of NOD mice there is a wave of programmed cell death
(apoptosis) of pancreatic β-cells. It is conjectured that the clearance of the apoptotic cells is
reduced in these mice, which triggers an autoimmune response.
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Recent experiments suggest that a specific peptide fragment of the protein IGRP (glucose-
6-phosphatase catalytic subunit-related protein) may be the primary culprate in NOD mice.
Experiments have been designed to track levels of specific T cells circulating in the blood.
Specifically, some experiments of Trudeau et al.[5] track the levels of auto-reactive CD8+ T
cells in NOD mice for several weeks. Surprisingly, the levels of the CTL’s show dramatic
fluctuations over time as seen in Fig 1.

Figure 1: Periodic waves of circulating T-cells occur in mice prone to diabetes (NOD mice) in
the weeks before the onset of the disease. Dark line, circles: T-cell level. Grey line, squares:
percentage of the animals that became diabetic.



Not all NOD mice develop diabetes, but the presence of cyclic T cell waves for individual
animals provide a predictor for the animal becoming diabetic. The data for each one of the
mice were aligned to the time of onset of high-blood sugar symptoms. The the pooled data
show three peaks in the level of T cells. The amplitude of the oscillations increases with time,
and we observe a slight increase in the period of oscillation. Below we present and analyze a
model that could shed some light on this process.

Model for Diabetes in NOD Mice

Our full model examines five state variables. The first variable is the activated T cells,
denoted A(t). These T cells can become killer T cells (CTL’s) or effector cells, denoted E(t), or
memory cells, denoted M(t). The effector cells specifically attack the β-cells in the pancreas,
so we track the fraction of β-cells that remain, B(t). The destruction of the β-cells leads to
the production of the specific antigen peptide, p(t), which feedback and affects the number of
activated T cells. A schematic for this model is presented below.
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This mathematical model assumes that on the time-scale of interest, a system of ordinary
differential equations for a well-mixed compartment model can be applied. More details on
specific assumptions are given in Mahaffy and Keshet [4]. The detailed full model satisfies the
first order system of differential equations given by:

dA

dt
= (σ + αM)f1(p) − (β + δA)A − ǫA2,

dM

dt
= β2m1f2(p)A − f1(p)αM − δMM,

dE

dt
= β2m2(1 − f2(p))A − δEE, (2)

dp

dt
= REB − δpp,

dB

dt
= −κEB,

with nonlinear feedback functions

f1(p) =
pn

kn
1 + pn

,

f2(p) =
ak2

m

km
2 + pm

.

The nonlinear feedback function, f1(p), represents the activation of the T cells by p(t) and
is given the saturation/switching form noted above that includes the Hill coefficient n and
the kinetic constant, k1. The other nonlinear feedback function, f2(p), is a negative feedback
function that represents how many activated T cells become memory cells. This function has



the classic Michaelis-Menten (inhibition) form with a Hill coefficient of m. Below we show the
form of these functions.
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The differential equation for activated T cells in (2) begins with the production of activated T
cells from naive T cells (a constant σ) and memory cells (αM). The activated T cells are lost by
becoming effector and memory T cells (rate β), decaying ( rate δA), and competing with others
(ǫA2). The equation for the memory cells includes the production and amplification (β2m1f2(p))
from activated T cells and the loss due to producing more activated T cells (f1(p)αM) and linear
decay (rate δM ). A similar equation describes the dynamics of the effector cells with production
and amplification (β2m2(1− f2(p))) from activated T cells and linear decay (rate δE). The last
two differential equations describe the dynamics of how the effector T cells, E, destroy β-cells,
B, producing the protein, p, that activates T cells via the feedback function, f1(p). This model
assumes that the β-cells are not replaced and that the peptide is rapidly removed (rate δp).

Model Reduction

The full model is a highly nonlinear model consisting of five differential equations and 17
parameters. Experimental evidence limits the choice of parameters and gives insight into ways
of how this system can be reduced. Biological constraints simplify the analysis to a significantly
smaller region of the parameter space. However, a five dimensional system is too complex for
detailed analysis.

It is important to note that the last two of the differential equations of System (2) operate
on different time scales than the first three differential equations. The loss of β-cells is a long
term process lasting weeks, so the dynamics of B can be considered more like a slow moving
parameter. At the other end of the time scale is the kinetics for the peptide p, which is very rapid
(on the scale of hours). This latter information allows a quasi-steady state (QSS) assumption.
The QSS assumption on a variable is that the dynamics of this variable are sufficiently fast that
it remains effectively in equilibrium relative to the other variables. This allows the differential
equation to be expressed as an algebraic equation. From the equation for p in System (2), the
QSS yields:

dp

dt
= 0, so p ≈

RB

δp

E.

If B is considered a slow moving parameter, then the dynamics reduces to the 3-dimensional
system:

dA

dt
= (σ + αM)f1(p) − (β + δA)A − ǫA2 = F1(A,M, E),

dM

dt
= β2m1f2(p)A − f1(p)αM − δMM = F2(A,M, E), (3)

dE

dt
= β2m2(1 − f2(p))A − δEE = F3(A,E),



where p = RB
δp

E.

Equilibrium and Linear Analysis

The equilibria for (3) are found by solving the three highly nonlinear equations:

F1(Ae, Me, Ee) = 0, F2(Ae,Me, Ee) = 0, F3(Ae, Ee) = 0.

From the form of the equations and the functions f1 and f2, it is easy to see that one equilibrium
is the disease-free or trivial equilibrium:

(Ae,Me, Ee) = (0, 0, 0).

From the nature of the nonlinearities, there may be from zero to four other equilibria. However,
there are relatively stringent biological constraints on the parameters, and in the range of
biologically relevant parameters there are two additional equilibria. These can be readily found
numerically, but have no analytic solution.

A linear analysis of this model is performed in the usual manner, finding the Jacobian matrix
and evaluating it near the equilibria.

J(A,M, E) =







∂F1(A,M,E)
∂A

∂F1(A,M,E)
∂M

∂F1(A,M,E)
∂E

∂F2(A,M,E)
∂A

∂F2(A,M,E)
∂M

∂F2(A,M,E)
∂E

∂F3(A,E)
∂A

0 ∂F3(A,E)
∂E







Provided n > 1 (which is expected, since f1(p) is a type of switch), then the linearization about
the disease-free state gives the characteristic equation:

(λ + β + δA)(λ + δM )(λ + δE) = 0.

Thus, the eigenvalues for the disease-free state are all negative, which makes this equilibrium a
stable node. One would expect the disease-free state to be stable as any small perturbation of
the equilibrium representing a minor assault on the body should result in the body returning
to the disease-free state.

The two non-zero equilibria result in a much more complicated characteristic equation.
However, solutions are readily found numerically. There exists one positive equilibrium that
corresponds to a state with all immune cell levels remaining elevated. In that state, effector
T cells are continuously killing β-cells, and this corresponds to an autoimmune attack, which
eventually results in diabetes. This equilibrium has various stability properties that depend on
the parameters and merit further detailed discussion below. The third equilibrium is a saddle
with a two-dimensional stable manifold, which for some parameters separates the “healthy” and
diseased equilibria. For these parameters, stimuli that fall on the wrong side of this separatrix
will be attracted to the diseased equilibrium. For other parameter values, the unstable manifold
of the diseased state connects to the stable manifold of the saddle point. In this case, almost
all positive initial conditions asymptotically, approach the “healthy” state.

Before continuing the analysis of this 3D model, we examine some solution trajectories of (3)
with parameters in the range predicted for NOD mice. The graph of Fig. (2) on the left shows all
three equilibria with the saddle node very close to the M -axis. One trajectory from the saddle
node (red) along one branch of its unstable manifold connects the saddle node equilibrium with
the disease-free equilibrium at the origin. The other trajectory (green) emanating in the other
direction along the saddle node’s unstable manifold wanders until it eventually approaches a
limit cycle about the diseased equilibrium. The graph of Fig. (2) on the right shows a close up
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Figure 2: 3D Phase portraits for reduced model.

phase portrait near the diseased equilibrium (asterisk) with the solution trajectory approaching
a stable limit cycle.

Bifurcation Analysis

One conjecture for the onset of diabetes is that peptide fragments from the apoptosis of
β-cells in the pancreas are not cleared sufficiently fast, which allows an autoimmune response.
It follows that the bifurcation analysis should center on the parameter δp. Recall that this
parameter appears in the QSS approximation, p = RB

δp

E. Note also that we ignored the
differential equation for the loss of β-cells, B, which also appears in this QSS approximation.
In fact, the loss of β-cells is equivalent to increasing the peptide clearance parameter, δp. The
3D reduced model (3) was analyzed, and bifurcation diagrams were composed with the AUTO
feature of XPP, freely available software written by G Bard Ermentrout1.
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Figure 3: Bifurcation diagram for the peptide decay rate, a15 = δp. The vertical axis is A in
units of 103 cells. (a) A portion of the diagram, enlarged, shows the typical bifurcation: A
Hopf bifurcation occurs at a15 = 0.5707 spawning a stable limit cycle. A homoclinic bifurcation
occurs at a15 = 2.268. (b) Further bifurcations on an expanded scale: another Hopf bifurcation
(to an unstable limit cycle) occurs at a15 = 4.063. This limit cycle vanishes at a15 = 20.28.

The diagram given in Figure 3(a) shows the basic bifurcation behaviour of the model (and
uses the default parameters values given in Tables ?? and ??. Moving across this diagram from

1XPP is freely available at www.math.pitt.edu/~bard/xpp/xpp.html



left to right along the horizontal axis represents increasing values of the peptide decay rate δp,
or equivalently, a decreasing level of beta cells, B. Close to the leftmost edge, (high B, or low
peptide clearance rate), we find a stable diseased state (solid line with shallow slope). The
“healthy” state, also stable, and the saddle node are not indicated on the diagram. Moving
towards the right, leads to a supercritical Hopf bifurcation at a15 = δp = 0.571, spawning a
stable limit cycle. Here we enter the regime of cyclic behaviour evidenced in Figure 5. The dis-
eased equilibrium is then an unstable spiral, as predicted by the local analysis described above.
The limit cycle persists, and its amplitude increases as the parameter increases (respectively,
as the beta cell level decreases) up to a homoclinic bifurcation at δp = 2.268 (equivalently at
B = 0.441, i.e., when only about 44% of beta cell mass remains). As seen in our runs, and in
the upper branch of this bifurcation line on the zoomed out diagram of Fig 3(b), AUTO has
difficulty resolving this global bifurcation. We discuss the nature of this dynamical shift further
on.

Following the homoclinic bifurcation, the diseased state remains unstable, and the origin
is the only global attractor for some range of the bifurcation parameter. Interpreting this
bifurcation diagram in terms of normal and reduced levels of (peptide) clearance rates (by
control vs NOD macrophages) suggests why the clearance defect itself could make the difference
between healthy (control) mice versus diabetes-prone (NOD) mice: for example, as seen in
Fig 3(a), a “control” peptide clearance rate of δp = 3 per day leads to dynamics that always
resolve any initial stimulus (returning to baseline where no immune cells persist, since the limit
cycle does not occur, and the disease state is unstable) whereas a factor of two decrease to
δp = 1.5 per day (representing reduced clearance in NOD mice) puts the same system into the
regime of cyclic T-cell waves and autoimmunity.

Reinterpreting this diagram in terms of the gradual decrease of beta-cell mass (from left
to right starting from B = 1) explains the following features shared by the data of Fig. 1
and the simulation of Fig. 5: (1) the increase in the amplitude of the cycles, (2) the fact
that the cyclic behaviour stops abruptly (e.g., around days 80-90 in the simulation of Fig 5)
when the homoclinic bifurcation occurs, and (3) the slight lengthening of the period just before
this transition. It also explains why (4) the immune cells then decay to the baseline state
A = M = E = 0. Thus, the bifurcation diagram can help to provide a plausible scenario for a
mechanism underlying these dynamics.

Full Model Simulation

Until further notice, this section includes only a hyperlink to a Prosper talk given on the
subject and a hyperlink to the article with research associated with modeling this material.

Prosper Talk on Diabetes in NOD Mice

Article by Mahaffy and Keshet

[1] Ackerman, E., Rosevear, J. W., and McGuckin, W. F. (1964). A mathematical model of the
glucose tolerance test, Phys. Med. Biol., 9, 202-213.
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Figure 4: Simulation of the model for NOD mice that do not become diabetic. Number
of circulating cells (scaled) vs time (days). Dark blue: A (×103 cells), Green: M (×104

cells), Red: E (×106 cells), light blue: B (fraction of beta cell mass remaining). Simulation
uses default (“NOD”) parameter values given in Tables ?? and ??. For the initial conditions
A = 0,M = 0.5, E = 1, B = 1, the immune response is resolved without chronic disease or
cyclic waves.
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Figure 5: Simulation of the model for NOD mice that do become diabetic (by 80-90 days of
age). Default (”NOD”) parameter values, and scaling as in Figure 4, but with initial conditions
A = 0.5,M = 0, E = 1, B = 1 that evoke the elevated periodic immune response. Dark blue:
A, Green: M , Red: E, light blue: B. The disease progresses with cycles of T cells that cause
waves of beta cell killing, as predicted by the model.
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