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FIRST LECTURE 

I will emphasize two points in my lectures on Theoretical Aspects of Lepton- 
Hadron Scattering: 

(1) The crucial importance of testing the “exact” sum rules as tests of 
the local current algebra. Discrepancies, if found, between experiment 
and theory cannot be “interpreted away” in terms of more complex 
parton wave functions for the hadronic ground state. The three sum 

rules of interest are those of Adler, Bjorken, and Gross and Llewellyn- 
Smith. 

(2) An understanding of the corrections to scaling in QCD and what they 
teach us. 

To begin with, I will review the parton model, its intuitive physical basis, its 
predictions, and its limitations.’ 

The power and beauty of lepton-hadron scattering is that the electroweak 
field generated during the lepton scattering is as well understood as anything 
known in particle physics. This permits us to probe the unknown structure of the 
target hadron by means of a known current operator. Furthermore, at the same 
time, its strength is weak enough to allow a perturbative treatment in powers 
of the electroweak charge and strong enough to permit accurate measurements 
under physically interesting conditions of large energy and momentum transfers. 

The original round of high energy measurements of elastic electron scattering 
by Hofstadter and collaborators demonstrated that protons and neutrons, similar 
to the nuclei of which they are the constituents, have extended charge distribu- 
tions. For nuclei, in which the nucleons are highly nonrelativistic-being bound 
by less than 1% of their rest energies -the charge distributions are measured by 
(to leading order in Zcu < 1, and neglecting center-of-mass corrections N l/A) 

d3 T ,i’$? 
I > PZ,A = 
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where the electric form factor is defined by 

F(ld2) = (p&Al ,+’ I&A) 
= J d3 R eif” p(R) 

= 1 for a point charge 

+ 0 for a distributed charge, for 1q12 > - 

(2) 

w 1 - 5 lql2 (R2) + . . . , for small /*I2 < & . 

By standard steps we find the elastic cross section to be F2(q2) times the 

point charge cross section: 

daee 
zip= (3) 

-For elastic scattering the energy and momentum transfer are related by 

the mass shell condition for the target nucleus [in the lab qp = (v, a] 

P2 = (MA)2 = (P + q)2 = (MA)2 + q2 + 2P - q , 

= (MA)2 t v2 - lq12 t 2MAv , (4) 

or u 73 1412/2MA * 

For inelastic scattering, Y and q2 are independent variables. For one-arm experi- 

ments that measure only the angle and energy of the scattered electron, 

(5) and 

(P t qj2 = M; = (MA)2 t q2 t 2P . q 

--cl2 Y - 
= 2MA + 

M”f - (MA)2 

2MA ’ 

The hadronic structure is probed in such measurements by independently varying 

v and q2. The scattering cross section as derived by standard steps is 

d2 gin 4T a2 

4!712d~ = 1414 n C( 6 Ep t Y - En) (PI c eBicG In) (nl c eigr; Ip) , (6) 
i i 

w&h contains sums, Ci, over all protons in the nucleus and En over all nuclear 

states, In) , satisfying energy conservation. To a good approximation for high 
-I _. . . 
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energies and small scattering angles we can use closure when summing over all 

energy transfers v for fixed momentum transfer lq12: 

J 
d-2 4n a2 

d” d It$u = (414 
- (PI C ei$C.(r;-fi) Ip) 

lql2 fixed i,i 

= $$ {~tz(z-l)f21q21) , 

where f2 is the two-body correlation function. 
Several observations of interest may be made about (6) and (7): 

(1) For IQI B [ mean internucleon separation]-’ w 150 MeV, fz(q) + 0 

and 

Equation (8) tells us that there is a finite area under the inelastic scat- 

tering curve summed over all final resonance plus continuum states 

of the nucleus at fixed large lq12. It corresponds to Coulomb scatter- 

ing from Z-independent, incoherent point charges. This is the same 

result as applying the impulse approximation to each individual pro- 

ton in the nucleus, treated as free, and neglecting correlations and 

binding forces. 

(2) There is a peak in the continuum inelastic scattering curve at an 

energy loss corresponding to quasi-elastic scattering from a single 

nucleon; i.e., for 

(9) 

As shown in Fig. 1, this peak remains, fulfilling the sum rule (8) as 
lq12 increases, and contributions from individual resonance states are 

suppressed by their form factors analogous to (3). By the uncertainty 

principle, we expect the impulse approximation to be valid when the 

energy transfer v from the scattered electron is larger than the charac- 

teristic frequencies, or excitation energies, of the proton in a nucleus; 

i.e., 

or, bY (9), 

v B WBinding 

F lq12 >> 2MWBinding N (150 MeV)2 , 

which is the same condition for (8) to be valid. 

WV 

(7) 
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Fig. 1. Inelastic electron-nucleus scattering showing the quasi-elastic peak at 

both low and high jf12. 

W*=(P+q)* 
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- . 
Fig. 2. Feynman diagram, with indicated kinematics, for inelastic electron- 

nucleon scattering. 
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(3) The quasi-elastic peak in Fig. 1 is broadened by the Fermi motion of 

the nucleons inside of the nucleus. 

When the SLAGMIT deep inelastic scattering experiments were started 

twenty-five years ago, there was little reason to suspect that the nuclear-inspired 

ideas of quasi-elastic peaks and large continuum scattering from point-like 

constituents were applicable to individual nucleons. All we knew from the elastic 

scattering measurements was that the nucleon form factors-defined by a general- 

ization of (3) known as the Rosenbluth formula, including relativistic corrections 

to the kinematics and a second form factor arising from the anomalous mag- 

netic moments-decreased as (1/g2)2 for large q2 corresponding to distributed 

average charge and moment distributions with mean square radii of N 0.8 fermis. 

The pivotal theoretical contributions of Bjorken and Feynman, and the exper- 

imental findings of Friedman, Kendall, Taylor, and collaborators were to show 

that we could, with appropriate care, transfer to the structure of hadrons the 

ideas illustrated above for nuclei. This spectacular progress and what we have 

learned from lepton scattering since that breakthrough are the subjects of these 

two lectures. 

‘For high energy lepton-nucleon scattering, we must generalize the previous 
discussion to include hadronic recoil in the kinematics, the spin of the electron 

and the target hadron, and the transition current in addition to the charge of 

the scattered electron. To lowest order in Q = l/137, the Feynman graph-with 

the defining notation for this process-is shown in Fig. 2. 

In terms of laboratory variables, with lepton mass set to 0, 

P, : (K 07 09 P) 

p: : (E’, 0, p’ sin8, p’ cos 0) 

Pp : (MY 07 0, 0) 

Q2 E -q2 = 4EE’ sin2(S/2) 
(11) 

W2-M2 = 2Mv-Q2 = 2M~/(l-~), 

and for longitudinally polarized initial leptons and hadrons we define the covariant 

spin pseudovectors (s . p = 0; s2 = -1) 

-- 
L (P, 0, 0, E) See : m 

S, : (0, 0, 0, H) . 
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The inclusive inelastic cross section-the generalization of (6)-is given for 

electromagnetic scattering by 

d%r d2a 

dQ2 du = 2EE’dcostl dE’ ’ (12) 

= $j$ g c (2~)~ s* (q + P - Pn) I($,($,, J, 1PS)/2 9 
n 

where j, and Jr are, respectively, the lepton and hadron electromagnetic cur- 

rent operators and P I( jP), p is the lepton current matrix element for momentum 
transfer q from an initial state with (p, s). For scattering by the weak interaction 
current: we make the substitution in (12) 

4ncr2 G$ 
-qr-+K’ (13) 

where GF is the Fermi coupling constant, and replace the electromagnetic current 

operators by the weak currents. For the electron currents the sum over final state 

spin, gives the tensor (since sP oc l/m, the lepton mass, must be retained in the 
spin term) 

I -!- To’+ oh, <b+ 4 p” = 4EEl (I+: q’ (14) 

1 
= [ apuu - Q/.b!?u t Q2Sru t 24lu~r QaSr m] - 

4EE’ 

with gcI f (pP t-p:). 

Note qrIPu = quIPu as it must by current conservation. We rewrite (12) as 

d2a 4m2 E’ 1 -=-- 
d&2 du Q* E I’% CJ d*x ,i(q+P-Pn)*z (PS IJrl .>b IJuI W > (15) 

n 

47ra2 E’ 
= &4 E Ipu& J ~*x~~~‘~(PS 1 [J,(X), J~o>] 1 PS) , (16) 

4m2 E’ I w 
= -p- E FU pu ’ (17) 

Equation (15) is the relativistic generalization of (6). In Eq. (16) we used closure 

and changed the product of currents to a commutator by adding zero (since 
qo > 0; exercise for the reader). Commutators are always attractive if they can 

be brought to equal-time limits as we shall see later. 

3r i.e., (Y ---) aw and l/Q2 

l/4Mv/(s2 + &$)I2 
+ 1/(Q2 + M&), which leads to [4r(e2/4?r)2]/Q4 -+ 

B 1/2r[(e&/fi)/M$]2 I Gi/27r. 
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The general form of the hadronic tensor introduced in (17) is, upon averaging 

over hadron spin and enforcing current conservation, qp Wpu = quWpu = 0, 

Wc(Y = - (s% - 7) W&2,2/) 

t $(P/+clp) (P,-$C+.V2(~2,V). (18) 

WI and W2 are scalar functions of q2 and v = q - P/M. 

No term of form +,orqgPr appears because the electromagnetic current is a 

polar vector. For the weak current that is (V-A), such an odd parity term that 

changes sign under charge conjugation does arise, and with it a third form factor 

W3. From (14), (17) and (18) we obtain for the unpolarized cross section 

d% 
dQ2dv= 

y $ [W2(q2,v) cos2 (O/2) + 2Wl(q2, v) sin2 (O/2)] . (19) 

The interesting physics describing the electromagnetic structure of nucleons is 

wrapped up in the two-scalar structure function WI and W2 for unpolarized 

processes. From the form of (18) and (19) we can anticipate that W2, which 

appears together with the tensor structure of a product of Schrodinger currents, 

will be a charge structure term. 

In general the structure functions depend on two variables Q2 and Y and 

experiments probe the parameter space as illustrated in Fig. 3: 

For completeness we write here the generalization of (18) for polarized 

hadrons. 

oYcc~> 
spin 

= w/w 

i -- 
TM K Pp b$3r - pu ‘P&) Pa sp Qr + P ’ Q QucYp Par $1 g1 

i 
-- 

TM K Q/J Euapr - Qu %A pa SP Qr + q2 q6ucup Pa sp] g2 . 

The ratio of the spin dependent to the spin independent cross sections is 

-k d”tt - d”tl 4 

dqt t dql 
=- M(E t E’ ~0s 4) gl (q2, v> t q2 g2 (q2, v) 

w 2W1(q2, Y) t W2(q2, v) cot2 (e/2) 1 * 
(20) 

.I 
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Fig. 3. Parameter space for inelastic electron-nucleon scattering. 
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To conclude the kinematics we write the inelastic cross section for weak scattering 

with the additional contribution arising from the parity violating contribution 

&&,I) G$ E’ 
-- 

dQ2du = 2~ E (21) 

x w,‘wl 

[ 
cos2 (O/2) + 2W:(L’q sin2 (e/2) f W,‘(cd sin2 (e/2) (” +ME’)] , 

where e(e) denotes lepton (anti-lepton) scattering. The weak interaction structure 

functions W/,2 can be related to the electromagnetic ones by the underlying 

conservation laws such as CVC or by specific models and isotopic rotations. The 

additional structure function corresponds to a parity violating contribution of 

form 4 W)(L’4 cPuar p” q’ / M2, added to (18). 

In order to probe the detailed structure of hadrons it is desirable to study the 

structure functions at large values of Q2 and u. For elastic scattering the structure 

functions reduce to squares of the familiar form factors (K is the anomalous 

magnetic moment of the nucleon; )eP = 1.79; 6, = -1.91): 

wz + 6 (u- $) [F:(Q2) t s r2@(Q2,] 
(22) 

w1+ 6 u-- ( > ;; [&(Q2) t nF2(Q2)]2 2 ' 

The form factors are experimentally found to fall off rapidly with increasing Q2, 
F(Q2) oc (l/Q*) out to fl N 6 GeV, indicating a diffuse and smooth structure 

with (~~)l’~ N 0.8 x lo-l3 cm. This behavior is readily accommodated by a 

three-quark model of hadron structure, but is less natural to parameterize in 

dispersion theory models. A low-lying resonance leads more simply to l/Q2 
falloff. Cancellations between several resonances have to be arranged to account 

for a more rapid falloff. 

Of primary interest is the study of the inelastic structure functions, the 
presence of quasi-elastic scattering and Bjorken scaling in the very inelastic region 

of large Q2 and u. In particular, note that in the high energy limit, with E + cm 

and with fixed Q2, so that 0 + 0, comparison of (19) and (8) shows that 

00 

z+ J W2(4 Q2) du . (23) 
“min 

A finite value for (23) in some sense “measures” the charged constituents of 
the‘ nucleon. But what are they ? In contrast to nuclei as we discussed earlier, 
the nucleon’s constituents had not been deciphered 25 years ago-and the debris 
.I 
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emerging from hard collisions with a single nucleon would necessarily have been 

strongly bound within the nucleon if they were its actual constituents. To aid our 

intuitive understanding, we identify kinematic conditions that permit an impulse 

approximation analysis akin to the nuclear case. This is the parton model, valid 

in the Bjorken scaling region of deep inelastic scattering with large Q2 and u. 

Subsequently, to provide a solid theoretical underpinning, we will also appeal to 

quantum field theory and the current operator algebra to understand deviations 

from scaling and to establish sum rules of general validity which, if violated, would 

have profound implications for the validity of our basic theoretical understanding. 

As first suggested by Feynman, we can gain an intuitive understanding of 

deep inelastic scattering by viewing the proton from an infinite momentum frame, 

a limiting idea for very high energy eP scattering. We understand that the con- 

stituents of a nucleon-gluons, quarks, or simply partons-are bound by strong 

forces, the color forces of &CD. In this p + 00 frame, the partons will each share 

a finite fraction 0 < xi < 1 of p + 00, and move closely parallel to p. They will 

behave as almost free on this energy scale, relative to which their binding is weak, 

and scattering from individual partons can be treated as incoherent for sudden 

perturbations. Stated more quantitatively, the lifetimes of the parton states are 

characteristically 

7life - & N 
p&@%j - &? 

(24) 

where we expect Me8 N 1 GeV, a typical mass scale for the nucleon, and 

p N fi/2 in the eP center-of-mass frame. Equation (24) exhibits the relativistic 

time dilation, which in effect “freezes” the proton in one of its virtual states of 

mass Mz. 

The duration of the perturbing electromagnetic pulse from the scattered 

electron in this frame is (homework for you). 

Comparing (24) and (25) note that 7pulse << Qfe for 

2Mu-Q2 E 2Mu(l - x) >> M$ . (26) 

\ Equation (26) d e fi nes the key condition for applying the impulse approxima- 

tion. 
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To explore the meaning of (26) further, we make two observations: 

(1) Magnitude of M& 

Consider a proton with p’ disassociating virtually into two constituents 

with momenta zo p’ + 221 and (1 - xo)p’ - 21, respectively. The energy 

denominator (or reciprocal lifetime) of this virtual state is given by 

AE = J-t J(1-xo)2p+c++ JG 

~ 1 /c: t mT(l - x0) t mix0 - M2xo(l - x0) F 1 M:fl 
2x0(1 - X0) 

z- 
P * 

(27) 
For (26) to be satisfied in the lab, x0 must approach neither 0 nor 1, and ICI 

must be bounded, as is observed experimentally from the small momentum 

width of secondaries and the rapid fall off of elastic form factors, which 

measure the probability of putting the proton back together in an elastic 

collision. 

(2) Interpretation of x 

The relation 

Q2 
x - 

= 2Mu (28) 

is just the condition for elastic scattering from a constituent with longitu- 

dinal momentum xp in the p + 00 frame. 

To see this, ignore the “parton” mass and transverse momentum as rela- 

tively small S 1 GeV; then P~~nstituent = xopfi and the elastic scattering 

condition 

(a + PJ2 = PZ , or (q t x0p)2 = (x~P)~ 

gives 

Q2 = 2xoq * p = 2xoMu , or x0 = Q2 

2Mv=x by (26) . 

Equation (26) h s ows that 2 cannot approach too close to 1; combined with 

; (27), the condition that z = 20 not approach too close to 0 is seen to be 

identical to Q2 > M2. 
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For scattering from point-like partons of spin l/2 and charge qi e, one finds 

by direct calculation, or from (22) with M + xM, 

Wl = &6(x-g-), 

VW2 = xq:6(x-&) . (30) 

Thus for a proton built of N partons of charge qi and momentum distribution 

.fi(G), 

(29) 

fi(Xi) !I: Xi 6 2 ( i-g) dxi 

(31) 

= fi: .fi (&) d (&) = Cx.fi(x) d , 

i=l i 

and 

-du 
1 

J - uw2 = 
U 

dxfj(x) = c qf . 

uth 
i 

(32) 

Equation (32) is for nucleons the analogue of (23), with which it coincides for2 

constituents of .unit charge. Most importantly, we observe that WI and uW2 

depend only on the ratio x = Q2/2Mu. This result is known as “bj” scaling, as 

first derived and predicted by Bjorken in 1966 from a formal study of the current 

matrix elements in the large u and Q2 limits and with x not too close to 0 or 1. 

Note also that 

uW2 = 2MxWl. (33) 

This prediction is valid for the charged partons having spin l/2, and is expected 

to be true in QCD in the bj limit, since integer spin gluons are electrically neu- 

tral. This relation, known as the Callan-Gross Relation, is accurate to 10 tol5% 

in current measurements. 

The simple form of (31) suggests simple sum rules for deep inelastic scattering 

in terms of quark models of the hadron. Most directly, from (32) we expect in a 

pure three quark model of the hadron that 

1 

J du - 
-x VW2 = 

U J f (uw2), = 1 for a proton (uud) 9 
(34) 

0 
2/3 for a neutron (udd) , 
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However, the measured shape of uW2, as illustrated in Fig. 4 shows that a 

simple model of three-valence quarks does not accurately represent the nucleon. 

In particular if there were just three quarks in a proton that shared its momen- 

tum, we would expect to see a quasi-elastic peak as found earlier for nuclei and 

illustrated in Fig. 1. In contrast, Fig. 4 suggests that the integral (32) diverges 

logarithmically due to the presence of an infinite “sea” of qtj pairs in the nucleon 

at low (“wee”) values of x resulting from the quark-gluon interaction. This is the 

QCD analogue of soft bremsstrahlung and pair production in QED. 

In a three-quark model we also expect 

1 1 

J dx (uW2), = J d(3)@) dx = 

l/3 for a proton , 

2/9 for a neutron . 
(35) 

0 0 

This is a more convergent relation than (34) as x + 0. However, for many 

years it has been known that about 50% of the momentum of the proton is not 

on the three-valence quarks and must be shared with the sea quarks and gluon 

content-so the picture is not so simple as all that. 

Evidently rigorous results will play a most crucial role in understanding 

inelastic scattering, beyond simple parton models. However, there are a number 

of simple and useful sum rules that can be derived from the quark-parton model 

of a nucleon built of spin-l/2 quarks plus neutral gluons. Several examples are 

as followsI 

Reverting to the notation in (31) and defining the number density of u, d, s 

quarks in a proton by 

fu,d,sW = 1 
X 

- ; b(x), d(x), 441 > (36) 

we can write 

s FIP(x) I i (VW2p 

= $ [u(x) + a(x)] + f [d(x) t d(x)] t f [s(x) + s(x)] +a.. , 
(37) 

By isospin rotation u e, d for a neutron, and 

[d(x) t +)] t f [u(x) t ii(x)] t . . . . 

G”” 64 The ratio - 
F,ep (4 

clearly is bounded between 
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Fig. 4. Schematic representation of data observed for deep inelastic electron- 

proton scattering structure function, uW2(z), in the scaling region. 
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For small x where many pairs of sea qij may be dominant, we thus expect 

the ratio (ben/aep) -+ 1, consistent with experiment. 

For large x on the other hand, the so-called valence quarks should dominate 

leading to u(x) = 2d(x) in a proton with two up quarks and one down quark. 

Were that the case, the ratio (aen/aep) should -+ 2/3. However, experimentally 

the ratio falls to l/4, corresponding to d/u + 0, and again cautioning that simple 

three-quark models can be dangerous. 

Another example is the sum rule (32) applied to the difference between the 

proton and neutron for which the “sea” contributions are expected to 

largely, leading to a finite result. This is called the Gottfried sum rule, 

terms of (37) and (38) reads 

cancel 

and in 

’ dx J T [F,ep(x) - Fin(x)] = j dx 

0 0 

X f [u(x) t u(x)] - 5 [d(x) + J(x)] + heavier “sea quarks”} . 

(39) 

Since the proton has two more up-quarks than anti-up, and one more down 

than antiidown, we can write exact integral relations 

1 

J dx [u(x) -ii(x)] = 2 

0 

1 

J dx [d(x) - a(x)] = 1 . 

0 

(40) 

Inserting (40) into (39) gives 

1 

J 
0 

$ [J’;‘(X) - Fin(x)] = it Id, {i [U(X) - J(x)] + heavier “sea quarks”} . 

0 

(41) 

, 

Recently published data by the NMC collaboration at CERN indicate that, 

fo? Q2 N 4 GeV2, the simple three-valence quark prediction of l/3 is approxi- 

mately 25% larger than the observed value of 0.240 f 0.016. 
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Similar predictions can be constructed for deep inelastic neutrino scattering 

from Eq. 21, plus three additional findings: 

(1) vW3, like vW2 and WI, scales. 

(2) The weak currents appear in (16) and the commutator becomes 

(PSI [J:b% J,(O)] IF’S) 

where, neglecting Cabibbo mixing 

J+ = W,(l - 75) d = (J,) 
t 

cc . (42) 

Evidently under an isospin rotation, which turns a neutron into a 

proton and vice versa, 

w,‘” = WiD” , and Wi”” = Wi@ , (43) 

(3) Introducing F,(‘) = MW,(“), F,(‘) = VW(‘), and F’“) = vW~(~), 

Eq. (21) becomes in the scaling region (a: E Q2/2Mv; y E v/E) and 

for Q2/E2 --* 0, 

d2a 
-= 
dxdy 

3 (ME) 
7r 

(1 - y) F2 + zy2 Fl f f 42 - y) F3} (44) 

showing. a total cross section .that rises linearly with energy (for 

E < A&T!). 

Again various sum rules can be derived based on quark-parton wave functions. 

One can relate the structure functions probed by the weak currents with the 

electromagnetic ones on the basis of known symmetries. 

In particular, recognizing that when u + e-, d + u or B + 2, whereas when 

3 + e+, u + d or d + G, and that (1 - ~5)~ = 2(1 - 75) for weak currents, it 

follows that (neglecting the Cabibbo angle as small) 

F;(x) = 23 [d(x) t ii(x)] 

F! (4 = 2x [J(x) + u(x)] > 
+ heavier “sea” quarks , 

and therefore for isoscalar targets, 

F;(x) t F;(x) 
E t strange quark corrections. 

F,ep(x) + Fin(x) = 5 

(45) 

W-9 

The data agree well with this result. Deviations are a measure of the contribution 

of strange quarks (anti-quarks). 
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We find an intriguing result if, using (43) and (45), we form the difference 

FlP(x) - Fy(x) = 2x {[d(x) - J(x)] - [u(x) - a(x)] 

(47) 
+ differences [s(x) - Z(X)] of the heavier quarks} . 

Using (40) d an recalling that protons and neutrons have zero charm, strangeness, 

quantum numbers, etc., we find 

’ dx J y py(x) - Fy(x)] = 2(1- 2) = -2 . 
0 

(48) 

Equation (48) is the Adler Sum Rule first derived in 1966 from current alge- 
bra. Its generality-i.e., independence of model-dependent statements about the 

quark“sea”- suggests that it may be an exact result, derivable from the algebra 

of the operator currents themselves rather than from models of the nucleon state. 

This suggests the importance of deriving exact sum rules and of testing them 

quantitatively. In 1984 the validity of (48) was established to f20% at CERN. 

There is an additional sum rule for the odd parity term, F3, in (44) that 
suggests a more general validity than the parton model. One finds (homework!) 

that 
- 

xF3” = fF; , 

where “+” applies for a fermion target and “-” for an anti-fermion. Correspond- 

ingly, for ~fermion targets 

xF; = +Frj’ , 

xFj” = -F{ . 
(49) 

This gives from (45) 

GYx> = 2 [d(x) - ii(x)] + . . . , 

F&9 = 2 [u(x) - cl(x)] t ' * ' ' 
(50) 

Using Fl” = Frp, we obtain 

j dx [F;‘(x) t Fin(x)] = 21 dx [u(x) - ii(x) t d(x) - l(x)] = 2(2 + 1) = 6 . 

0 0 

(51) 
Equation (51) is the 1969 Gross-Llewellyn-Smith sum rule. Like the Adler sum 
rule (48) and the spin flip sum rule for electromagnetic currents derived by 

Bjorken in 1966, it too can be derived directly from current algebra-to which 
we now turn attention. 
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SECOND LECTURE 

In the first lecture I emphasized the importance of sum rules. I suggested 

that the Adler Sum Rule might have a deeper basis than the parton model result, 

which expressed it as the difference between the up and down quark numbers of 

the proton. In this lecture I want to show how the Adler Sum Rule can be derived 

very generally from the Equal Time Commutator (ETC) algebra. It is one of the 
sum rules that I think deserve great attention in the experimental program in 

the years ahead. 

We start with a quick run through of the simple algebra to derive the Adler 

Sum Rule. Remember that the structure functions are defined by Wpy, which 

can be expressed as a commutator formed with the electromagnetic currents, 

Eqs. (16) and (17). Th e weak currents carry isotopic spin, corresponding to W+ 

and W- vector bosons that change the down to an up quark, and the up to a 

down quark, respectively. Thus in a weak interaction scattering a neutrino into 

an electron, the current is carried by a W+, which changes a down to an up 

quark in the target hadron. Calling the hadron current in this case J,,, we write 

for neutrino scattering from a proton* 

w$(Pdd = k $ J d4y eiqay (P IJb(y)J,(O)l P) , QO > 0 . (52) 

This is nonvanishing for ~0 > 0 as is clear by inserting a complete set of states 

in the matrix element and doing the time integral. Let us next write the cor- 

responding expression for anti-neutrino scattering. The anti-neutrino now turns 

into a positron and transfers one unit of negative charge, which changes an up 
t to a down quark. This is called Jcc, the charge-lowering operator, and the corre- 

sponding scattering expression for the anti-neutrino is 

w,“p(P,d = & z J d4y eiqay (P IJp(~)Jb(o)l P) 

1 EP J -- 
= 2w M 

dky e-iPY 
(53) 

q. > 0 . 

In writing the second form of (53) we use the invariance of the diagonal matrix 

element under the displacement of yp to the origin, and then relabel the variable 

yp + -ycr. Equation (53) is, like Eq. (52), nonvanishing when ~0 > 0. 

* The factor Ep/M, where Ep is the proton energy in the scattering frame, is 
5 included to give W,p the correct Lorentz transformation property. This factor 

was replaced by unity in Eqs. (16) and (17) since we were working in the proton 
rest system. 
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Following Steve Adler’s original derivation in 1966 of the neutrino scattering 

sum rule named for him, we will now take several simple steps of algebra to 

show that we can write the experimental quantity of interest as a commutator 

of currents. We start by constructing the commutator (54) which is related to the 

two expressions (52) and (53) as indicated. 

Define W,p(p,q) = & $ J 89 m (P 1 [JIM, J,(O)] 1 P) 

= w,“p(P,Q) QO > 0 (54) 

= -wp”,(P, 3) qo < 0 ’ 

For qo > 0 this corresponds to Y scattering, and for qo < 0, to c scattering, with 

cy o /3 and multiplied by -1. Next we follow a kinematic trick introduced by 

Fubini and Furlan in 1965 by going to an infinite momentum reference frame. 

Remember we are interested in experimental quantities such as Wl(q2, V) and 

W2(q2, V) in deep inelastic electron scattering which are scalars, and depend on q2 

and p l q = Mu, which are Lorentz invariant scalars. The kinematics is simplified 

greatly if we choose a frame in which 

P-,00 and p’s{= 0, (55) 

so that 

P-q = Epqo = Mu. (56) 

In the p + 00 frame, it is the zero-zero component of W,p that is of interest, 

as we see from (18): 

woo-, - ( > 
Ep 2 I472 (Q2,u) . 
M (57) 

This is a simple result. There is nothing delicate about this limit. No limiting 

behavior is implied for WI or W2. Let us next form the integral 

00 Co 

J ho woo = J 470 [wove (PA> - WY0 (P,!lo,-431 > (58) 
--oo 0 

where in writing the right hand side we have replaced qo by -qo in the second 

term of the commutator in (54). From (55), (56), and (57) it is apparent that 
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WOO depends only on the magnitude, and not the sign of $ Making the substi- 
tution a-+ -{we can carry through the manipulation shown in Eq. (59): 

00 

J 40 WG (P, !I> - %o (P, d] 
0 

= 27r M L. 9 Jm dqo J d4y eiqay (~l[~ai(Y), JOCO~JIP) 

w-9 

= $ J d3y eifa (P([J~(o,~, Jo] 

= (5E>‘~J” dv [WQ27 4 - wz”(Q2, u,] - 
0 

The equal time commutator on the right hand side of (59) can be evaluated in 
terms of the local current algebra applied to the charge densities. This algebra 
reads in the SU(2) limit 

[JoMh Jh] = 2Ji(O) S3(y3 , (60) 
leading directly to the Adler Sum Rule 

00 

J 
du [W; (Q2, v) - W; (Q2, v)] = -2 . (61) 

0 

The quark currents in this limit are given by 

Jo = ~~(1 - y5)d 

Jt 0 
= & - r5)u 

[JoW, Jb(O)] = 2s3(fl {‘-‘?l - 75)~ - dt(l - y5)d} . 

Recalling (43), this result can also be expressed as 

00 

J 
dv [Wz”” (Q”, v) - W2”” (Q2, v)] = 2 . 

0 

(62) 

(63) 

A refinement of this result to include Cabibbo mixing of the down and strange 
currents (quarks) gives 

00 
J dv [Wj’ - W!] = -2 cos2 8, - 4 sin2 6, proton target , 

0 (64) 

= t2 cos2 8, - 2 sin2 8, neutron target . 
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The importance of the Adler Sum Rule is that it is derived on the basis of 

current algebra and general symmetry principles, and is independent of approxi- 

mations on the dynamics or the hadron ground states as implied in parton model 

calculations. Experimental data from CERN in 1984, by Allasia et al. gives a 

20% measurement with a 18% systemmatic error in good agreement with the- 

ory. This is a fundamental prediction of theory and more precise experimental 

confirmation is highly desirable. 

Now we ask if there is another general prediction from current algebra which 

can be tested and is independent of detailed models. For this we look again 

to the electromagnetic current. It won’t be as straightforward as for the Adler 

Sum Rule because there is no charge raising or lowering as in (59) and (62), and 

two electromagnetic charge densities separated by a space-like interval commute. 

However as first shown by Bjorken, in the deep inelastic scattering limit of very 

high energy electrons, the difference of spin-dependent parts of the cross section 

for electron scattering from hadrons can be expressed in terms of an equal time 

commutator of current densities. The isovector part of this commutator-i.e., the 

proton-neutron difference-can be expressed in terms of the axial vector P-decay 

coupling constant. Therefore in the deep inelastic limit-a limit not required 

for the Adler Sum Rule which is an identity for all Q2-one has a sum rule 

independent of dynamical models that is derived directly from the equal time 

current algebra. This is the Bjorken, or bj, Sum Rule and presents a basic test 

of the current algebra. Verification of the bj Sum Rule presents an important 

challenge. for the future. 

I won’t reproduce all the algebraic steps in Bjorken’s derivation in this lec- 

ture, but will set up the derivation- details of which can be found in the original 

papers. It is useful to introduce the cross section for photoproduction by a vir- 

tual photon of invariant mass q2 E -Q2 < 0 and energy q a p = My incident on 

a hadron (proton or neutron) of mass M. This is the part of the process below 

the dashed line in Fig. 5. Its cross section is expressed by 

a; = y _ ;;:;;MJ c(2’d3 6* (Pn - P - a> lb ki . JI PS) I2 , (65) 
n 

where we have used the Hand-Berkelman convention of defining the initial photon 

flux in terms of the equivalent energy of a real photon that would produce the 

same final hadron mass; i.e., 

(P + d2 = M2+2Mu-Q2 

(66) 
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The final result is, of course, independent of this convention. The polariza- 

tion vector appearing in (65) is defined by 

Ei*Q = 0, e;q = erpq = -1; 2 = +1, (67) 

For q : (u, 0, 0, d-1 , 

Q,L : (0, G, 1, 0) 5 9 

es : l/d@ (@T@, 0, 0, u) , 

for the virtual photon incident along the z-axis; ER,L denote right- and left- 

circularly polarized transverse photons and es, the longitudinally polarized one 

present when Q2 # 0. 

To relate the cross section as defined for virtual photon scattering to deep 

inelastic electron scattering, Eq. (65) must be tied onto the electron current that 

describes the process above the dashed line in Fig. 5. Specifically, we are inter- 

ested in the scattering of left-handed (or right-handed) electrons. The appropri- 

ate current in this case is 

j$ = Gi(P’> 7kdl - 75) 424 ' (68) 

In the high energy deep-inelastic limit y2 > Q2 > M2, (68) becomes (class 

homework) 

ji = q [ert&&t$f&] . (69) 

As a result of current conservation, jPQr = 0, and it is possible to project 

J’! as-shown onto the three independent polarization vectors defined in (67). In 

the deep inelastic limit, it will be a good approximation to treat the direction of 

the incident electron spin as coincident with that of the momentum transfer 6 

Note from (11) for the incident electron along the z-axis that 

Q-L = p’ sin 9 E’e 

4- p-p’cod m Y = d- 
E’dF<l 
E Y 

9 (70) 

andewdm. H enceforth, we neglect the angle between q and p’ in com- 

puting the cross section in the high energy, deep inelastic region for electrons 

with their spin polarized parallel or anti-parallel to that of the target protons. 

(S-mall correction terms can be included in comparing theory and data). With 

this simplifying assumption, which is also a good approximation, that electron 

and proton spins are aligned along the incident direction, we can perform the 
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Fig. 5. Feynman diagram for inelastic scattering indicating the division into two 

parts corresponding to virtual photoproduction [Eq. (SS)] multiplied by 

the electron current [Eq. (68)]. 
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azimuthal average when we tie (65) and (69) together as in (12) to form the 

polarized electron cross section 

J dq5 d%i --= 
2~ dQ2du 

-% E’ (1 - 2) [us(QZ,v) + & CL + 2 CR] . 
rQ2u E 

(71) 

Interference between different polarizations is removed by the azimuthal 

averaging since such terms are proportional to cos 4 and cos 24. [Homework]. 

Comparing (71) with (19) in the E + 00, 19 + 0 limit allows us to identify for 

deep inelastic scattering 

W2(Q2,u) = with a~ E -2 ' (QL+Q) . (72) 

The general identification is 

4&b! 
UT = 

u - (Q2/2M) w1 ’ 

us = v$72M) [w2(&1)-WI] , (73) 

which by (33) h s ows that a, + 0 in the scaling limit for light spin-l /2 target 

quarks. The reason for this vanishing limit is easy to see in the Breit frame for 

the target quark (i.e., the quantum must bring a unit of z-axis spin because the 

quark helicity cannot flip). We can now rewrite (71), assuming henceforth that 

we work exclusively with the azimuthally averaged scattering cross sections 

daii; 

dQ2du 
=F;W2(Q2,u) 1+ 

{ & [,:,1 -& [us:uT]} 

for y2 >> Q2 >> M2 . 

(74) 

Finally, we have for the spin-dependent deep inelastic scattering to leading 

order in u/E and for v2 >> Q2 >> M2 

d2ae 

dQ2dAv 

d%$ 47r(r2 2u 
-caQZdv=Q4z 

UA - up 

~A+~P-i-2~, > 
w2 9 (75) 

where, following Bjorken, we identify 

-- 

OR -UP , 

UL +uA, 

(76) 

, . . 
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for the target nuclear spin aligned parallel or anti-parallel to the z-axis direction 
of $ The experimentalists will accurately determine the ratio of unpolarized-to- 

polarized cross sections (weighted of course by the degree of beam and target 

polarizations that are actually achieved): 

iIz$k$z 
g;ju I cl%& = ii 2 2 1$ uAysp 0 

1 

(77) 

= (;) AI(&) . 
The factor u/E is measured directly and the small ratio 

R G 2us 
UA + UP 

is deduced from measurement of the tan2(6/2) slope of (19) and the definition 

(73). Typically R N 0.1. What one learns from (77) directly then is 

Al E uA -up * 

UA + UP 
(78) 

The crucial quantity computed by Bjorken in the deep inelastic, high energy 

limit is the sum rule 

O” du J - 
U 

Q2 
“th=m 

(79) 

In the scaling limit, and using F2 (x) G 
the parton model, (79) can be rewritten, 

uW2 as introduced earlier in discussing 

z 
’ dx 

= J 
0 

+++&) = ?j s&+x. 
0 

(80) 

What Bjorken showed is that 2 can be written in the high energy limit as 
an equal-time commutator of two transverse components of the electromagnetic 

current densities: 

z = plimm ; Jd3x (P 1 [J&V), J&O] 1 P) . %-+ (81) 

In-contrast to the Adler Sum Rule, the Bjorken Sum Rule can be derived only in 
the large Q2 high-energy limit, and on the basis of an assumption of “asymptotic 

freedom” in this limit. However it is a fundamental prediction of the theory 
-, ,.* 
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relying in this limit only on the local current algebra, and on no further dynamical 
assumptions or models. The appearance of a commutator of the x-component 
with the y-component of the current represents the difference between scattering 
of left- and right-handed electrons. The formal manipulations leading to (81) 
are slightly more complicated than Eqs. (52) to (59) for the Adler Sum Rule, and 
I don’t reproduce them here. 

Proceeding from (81) to an experimental prediction, we introduce the quark 
currents as in (62), the only difference being that the vector currents alone con- 
tribute to electromagnetic scattering. We write the vector quark current i 

JP = $rrQ$,whereQ = 1 1 -i ;Q2= ’ 
1 

ft?v (82) 
-- 

3 

including the strange quark in the SU(3) limit, although it is immediately clear 
that the algebra here is the same as for SU(2). Taking the equal time commutator 
gives 

[JzW), J#)] = 2ib3(5f) &, $+ . . . , (83) 

where the added so-called gradient, or Schwinger, terms are required to insure 
locality and lorentz invariance, but do not contribute to the integral (80). As 
noted by Bjorken, the isovector part of (83) is just the ratio of the axial to 
vector ,&decay coupling strengths known from low-energy processes. Therefore 
the proton-neutron difference is determined 

l gA zp - ZN = 3 s, W 0.41 , 

and by (80) we can write finally 

1 

J[ gf(x) -g;(x)] dx = f F e 0.2 . 

0 
V 

(84) 

(85) 

Since it is an asymptotic sum rule, there are finite-energy corrections to 
the Bjorken Sum Rule that were not present for Adler’s relations for neutrino- 
scattering. These have been studied in some detail by J. Kodaira and collab- 
orators since 1979. To leading order in the strong coupling QCD corrections 
involving gluons, they find 

!b-+% l- 

gV [ 
4Q2) +... . 

gV x 1 (86) 

This correction vanishes at infinite energy as it must by asymptotic freedom. 
At Q2 w 4 GeV2, it leads to a 9% reduction of (85). 
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An experimental program to test the Bjorken Sum Rule is now being un- 

dertaken at SLAC under the leadership of Emlyn Hughes and Charles Prescott. 

Plans include running at electron energies up to 50 GeV incident on hydrogen 

and He3 gas targets to measure Al for both protons and neutrons. Figure 6 from 

the experimental proposals gives an idea of the anticipated accuracies in compar- 

ison with what is already known for proton targets from earlier SLAC and CERN 

observations. Nothing is known at present about neutron scattering. Theoreti- 

cal calculations of g:(x) have led to a so-called “spin crisis”. This arises from 

the Ellis-Jaffe calculation of Ji g[ dx m 0.19 for the proton based on the quark 
light-cone algebra that is generally accepted as valid, plus an assumption that 

strange sea quarks do not contribute in evaluating the contribution to Zp from 

the isoscalar term in (83). H owever, this calculation is about 50% larger than the 

smooth extrapolation to a value 
. 
1 

J sr da: = 0.126 f (w .02) 

0 

from data shown in Fig. 7. The next lectures by Frank Sciulli will cover the 
experimental situation much more fully and accurately. Here I comment only to 

emphasize the importance of measuring the proton-neutron difference in order 

to avoid such model dependence and to rely on presumably accurate sum rule 

predictions. 

There is by now a very extensive’literature on the spin crisis. One recent 

notable observation by Jaffe and Lipkin* based on earlier ideas of Lipkin shows 
that one way to remove the spin crisis is to form the proton of the three-valence 

quarks plus a QQ pair of quarks with L = S = 1 coupled to a J = O++ or l++ 

state. Another interesting analysis by Anselmino, Ioffe, and Leader** emphasizes 
the transition from the Bjorken Sum Rule for Q2 --) 00 with the analogous sum 

rule for real photons with Q2 = 0. 

The original dispersion relations for forward Compton scattering used causal- 

ity, analyticity, and unitarity (the optical theorem) to give for fi(u) and fi(u), 

as defined by 

f(u) = fl(U2) I?* * z+ uf2(u2) ia’. I?* x e’) WI 

u2 O” du12 
Re fl(u2) = -&+ G 

f u'(u'2 - u2 
> [UA(J") + ('P(v')] l (88) 

0 

w R. L. Jaffe and H. J. Lipkin, Physics Lett. B200, 458 (1991). 
** M. Anselmino, B. L. Ioffe, and E. Leader, Soviet Journal of Nuclear Physics 49, 

136 (1989). 
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Fig. 6. Existing SLAC and CERN data for the proton spin structure function, 

together with data anticipated from the proposed El42 experiment at 

SLAC. 
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Fig. 7. Data for the sum rule for inelastic spin-dependent lepton-proton scat- 

tering. The black dots are the results from the EMC at CERN. x, = 

-- Q2/2Mumax = "th/&nax denotes the minimum value of x measured, cor- 

responding to the maximum energy loss by the muon in the CERN mea- 

surements and by the electron in the SLAC data. 
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Re h(y2) = & &~(yl) -up] .,f”” --2 - 

0 

Equation (88) for the spin independent amplitude is a once-subtracted dis- 

persion relation with the zero energy limit given by the classical Thomson am- 

plitude. 

If hIu+m (op(v) - CA(v)) -+ 0 faster than l/(&v), as indicated by low- 

order perturbation theory, Eq. (89) for the spin dependent amplitude requires no 

subtraction and converges as written. For pure QED this means no arbitrary pa- 

rameter other than the electron charge cy enters the theory. With this assumption 

the low-energy limit of f2(v) is given by 

OOdv’ 
h(O) = $1 yl [cA(J") - V(v')] . 

0 

(90) 

A low energy theorem for f2 (0) d erived in 1954 by F. Low, and independently by 

M. .Gell-Mann and M. Goldberger, from the general structure of the scattering 

amplitude, including in particular current conservation, gives the exact result 

fi’p’(q = l cy 2 -- - 
2 M; “’ ’ (91) 

where K is the anomalous nucleon magnetic moment in units of the nuclear Bohr 

magneton; i.e., tcp = 1.79 and KN = -1.91 for the proton and neutron, re- 

spectively. Together, Eqs. (90) and (91) give an exact sum rule relation for the 

anomalous moment 

= 205 pb 

= 233 pb. 

Of particular importance to us here is that the difference of cross sections in the 

left side of (92) is precisely the Q2 + 0 limit of the integrand in the Bjorken sum 

rule expression (79)) multiplied by (-Q2/47r2~). [This is your homework; use 

Eq. (73)]. Thus defining 

-L dQdv 

J 
; [vW2] uA - up 

OA t OP t 20, 
Vth 
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we can write generally 

% 
/” Q 

&2 + 00 

w22) \ 

-;f$ 

7 
Q2 + 0 

(94) 

and for the proton-neutron difference determined by the Bjorken Sum Rule 

&2 -+ 00 

w22> - h(Q2) . 
\ 

(95) 

+.11 l 
q 

Q2 + 0 

Thus both limits are determined exactly. Anselmino, Ioffe and Leader have stud- 
ied the transition region between Q2 + 00 and Q2 + 0, and presented models 
to help interpolate. Figure 8 shows that a smooth extrapolation for the proton- 
neutron difference becomes a very different one for the proton and neutron in- 
dividually. The important point to emphasize is that in (93) we have a relation 
that is fixed by general predictions of local, relativistic quantum field theory in 
both the deep inelastic and the real photon limits. Confirmation of this result 
and study of the behavior between these two limits is of fundamental interest and 
importance. In both limits the predictions are in terms of zero-energy behavior. 
There is a world of interesting and clean physics to be studied here. It is a rich 
challenge. to the experimenters. 

Finally, there is one additional sum rule that I mentioned at the end of the 
first lecture-the Gross-Llewellyn-Smith Sum Rule (51) for neutrino scattering. 
As noted there, the parton result suggested a more general basis for it. It too 
can be deduced similarly to the Bjorken Sum Rule as an asymptotic result, and 
with the same QCD correction factor as in (86). It has been tested with modest 
accuracy, as Sciulli will discuss in his lectures. That is the end of the Sum Rule 
story. 

We turn next to deviations from scaling. The underlying physical picture 
of the proton leading to scaling is that there are point-like constituents in the 
nucleon. It would be startling if this were strictly true. It would mean the end 
of our search for nature’s building blocks if these were truly points. However, we 
know from all previous advances in physics that even if a particle looks point-like 
on one resolution scale, at higher resolution you find some structure on a smaller 
scale. The electron was point-like in the Dirac hydrogen atom for a long time 
until we looked with such precision that quantum radiative corrections had to be 
included. To understand the electron’s anomalous magnetic moment, g - 2, and 
the Lamb Shift we had to include the coupling of the electron to the radiation 
field, which gave it structure, characteristically N JZ X, where CY = l/137 and 
Xi is the electron compton wavelength, X, E ti/mc N 3.8 x lo-l1 cm. 
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Fig. 8. The dotted line indicates the prediction of the Bjorken Sum Rule for 
-, large Q2. The existing data for the proton alone lie near this prediction. 

The intercepts at Q2 = 0 for real photons are the dispersion relation 

predictions, Eqs. (94) and (95). 
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It would indeed be amazing if quarks didn’t have a structure because of their 

color interaction in QCD to gluons. Analogously to the electron in the atom, we 

expect to see deviations from scaling due to quark-gluon coupling in the proton. 

Scaling deviations should be seen- and in fact, they are observed experimentally. 

In contrast to quantum electrodynamics, QCD is asymptotically free. There- 

fore, when we go to asymptotically high momentum transfer, we should ob- 

serve scattering from free, point-like objects. But in QCD there is no length 

scale, and the approach to asymptopia is only logarithmic. In contrast, for a 

super-renormalizable theory with a length scale, interactions look really point- 

like asymptotically. However, QCD is a renormalizable theory with dimensionless 

interactions, and the approach to asymptopia is very slow, or logarithmic. This 

leads to the expectation of logarithmic deviations from scaling. The rest of this 

lecture is devoted to developing an understanding of the logarithmic corrections 

to scaling and to showing how they measure properties of theory. For large Q2 

there will be “higher twist” corrections of order M2/Q2, where M represents a 

proton or quark mass, or a threshold for creating massive quarks. These are 

important, and must be included as part of the technology of the field in mak- 

ing accurate analyses. I am not talking about these. I am talking about an 

in-principle deviation from scaling, even if Q2 is very large and one can forget 

about the masses of quarks. 

This deviation is to be expected if you think about it as follows. When you 

(theoretically) “look at a quark with a limited-power microscope”-which is what 

deep inelastic scattering does-you will see a quark carrying a certain momentum. 

But if you look with a very high resolving power with your microscope, you may 

not see that quark, but a quark with a fraction of that momentum because it has 

radiated a gluon that is moving with it. Or you may also see a quark-anti-quark 

pair. -You will see more structure when you look with finer resolution, just like 

the atom became a structure and wasn’t a point, and also the nucleus revealed its 

structure, and so forth, as the resolution increased. And as one goes from &I to 

a higher Q2 > &I, you may ask what is the quark momentum distribution in the 

proton that will be seen. In general one might expect that, for increasing Q, the 

quark momentum distribution-’ i.e., its distribution as a function of the Bjorken 

scaling variable Z, which is the fraction of the p + 00 momentum of the proton 

that it carries-would be more highly concentrated at smaller x than for small Q 

values. This expresses the fact that at higher Q2 > &I, one is more likely to be 

seeing a quark that has radiated a fraction of its momentum to a gluon, which it 

interacts with in the usual way of field theory. This effect is illustrated in Fig. 9. 

-, The formal field theoretic analysis of the Q2 dependence of the structure 

functions relies on the fact that deep inelastic scattering processes are dominated 
I. 
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Fig. 9. Predicted deviation from scaling for increa.sing Q’. 
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by contributions that come from near the light cone to the current commutator 

in Eq. (16)-i.e., 

J eiq*y &Y (P 1 [Jo, ~~641 I P) . (96) 

In (96), causality restricts the invariant interval y2 = t2 - g2 1 0. Furthermore, 

we may expect that the dominant contributions to (96) come from the space- 

time region characterized by Q 0 y 6 1, since there will be rapid oscillations in the 

integrand beyond this region. Recalling the definition of qp in the proton rest 

system[see Eq. (ll)], this becomes 

Q’Y = ut - j/PTp yII 2 1 . (97) 

Denoting by yll and yl the components of y’ parallel and perpendicular to {, 

respectively, and identifying ys = t, we find 

Y:& 
Q 

and y&‘ N 4 , 
Q (98) 

which indicates that the dominant contribution to deep inelastic scattering comes 

from the region asymptotically close to the light cone. Therefore in a theory such 

as QCD that is asymptotically free, one expects a parton theory with scaling 

behavior to emerge for large Q2. 

As to the rate of approach to scaling, a formal, elegant formalism was de- 
veloped in 1969 by K. Wilson to systematically study expansions about the light 

cone. A more intuitive and physical picture is given by that of the evolution equa- 

tions, such as developed in the studies of the development of cosmic ray showers 

passing through matter. The generalization of this approach from Abelian QED 
to non-Abelian QCD for quarks and gluons was pioneered by Kogut and Susskind, 

and given an elegant formulation in terms of the master equation for evolution 

by Altarelli and Parisi in 1977 and by Gribov, Lipatov and collaborators. This 

approach will give us a very nice physical understanding of the origin of the Q2 

variation. As always for an iterative description of the interaction of quarks with 

gluons, we work in an infinite momentum frame with f + co as appropriate for 

the quark-parton model. 

We define q’(z,T) to be the number density of quarks of type i; that is the 
probability that (quark)i, when probed by a current at log momentum r has 
momentum fraction x. The T is defined by 

7 z Q2 .tn - , 
9: 

(99) 

where Qo is an arbitrary reference scale of which physical results and predictions 

r&St be independent. Tau plays a role analogous to time in familiar time evo- 

lution problems, and henceforth, for simplicity, we shall call r simply t. The t 
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dependence of Q’(z,~) appears because as discussed above, what appears as a 

quark with x at a given tl may appear as a quark with only a fraction of that x 

accompanied by a gluon or quark pairs when viewed by a current at higher resolv- 

ing power t2 > tl. Consider that a quark with x may radiate a gluon and retain 

a fraction z < 1 of its original momentum. Were there no gluon interactions, 

the probability density of finding a quark with a fraction z < 1 of momentum 

x would be zero, no matter what the resolving power t. Then the probability 

density of finding a quark would be 

Fg’ = qz- 1) . (100) 

Figure 10 illustrates what is being described (in one-dimension, with neglect 

of small transverse momentum corrections). Figure 10a shows that in the absence 

of QCD gluon interactions the current “sees” a quark with momentum zp. 

However, with gluon coupling, shown to lowest order in Fig. lob, there is also 

probability density in momentum space to “see” a quark with momentum fraction 

z, and the amplitude for this is proportional to the running coupling constant 

of &CD, ad(t). Th’ IS contribution adds to Eq. (100) the probability density of 

finding a quark with fraction z when probed by a current with resolving power 

At about t. We have now 

p$ + (-p(O) = (j(z - 1) + 4) (0) 
!lQ F % (4 dt 9 (101) 

where we have defined [cxJ(t)/(2r)] Pqq(z) as th e variation per unit t of the prob- 

ability to find a quark with fraction z within the original one when probed at t. 

This introduces correspondingly the change in number density of quarks of type i 

&‘(x, t> 
1 1 

= dt> 
dt 2n JJ dy dz ~(ZY - X) P,i,i(z) qi(y, t) , 0 0 

= $1: Pqiqi (5) q'(y,t) . 

2 

This simplest form for the evolution equation is incomplete since we must 

stiil include the contribution of gluons transiting back to quarks, and in non- 

Abelian theories, to gluon pairs; all three contributions shown in Fig. 11 must be 
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Fig. 10. The current with <sees a quark with momentum fraction x in 10(a) in 

the absence of gluon emission, and with a reduced fraction xz in 10(b) 

after gluon emission. 

(l-) G 

Cji,xBqi 

Z 

3-92 7121All 

F_ig. 11. The three elementary quark and gluon interactions with momentum 

sharing as indicated, in an infinite momentum frame. 
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included to order ad(t). The general form of the evolution equation for i quark 

flavors plus gluons, as written by Altarelli and Parisi is 

dqig’t) = 21: { TPqi,i (5) qj(Y,t)+PqiG (i) G(y,t)} , 
X 

dG(x, t> 
dt = e]$ { TP,,j (I) qj(Ytt)+PGG (F) G(y,t)} , 

2 

in an obvious notation. This system of equations is simplified by incorporating 

symmetry properties of QCD in the definitions of P. For example, 

Pqiqj = Sij Pqq uw 

expresses the fact that the flavor does not change with gluon emission, and 

pGqi = PGq 

P. q’G = PqG 

express the approximation of neglecting quark masses in calculating the proba- 

bility of.finding a gluon inside a quark (anti-quark) and vice versa. There are 

additional relations reflecting momentum conservation and the conservation of 

the difference in numbers of quarks and anti-quarks; i.e., they are only produced 

or annihilated in pairs. 

Continuing the effort to uncover the physics without being buried in algebra, 

let us consider the evolution of the quark-anti-quark difference, defined as the 

nonsinglet number density, that is diagonal in flavor by (104) and (105) and can 

be written 
. 

; {q(x, t) - ij(x, t)} = $ j$pqq (;) MYA - B(YJ)l ' (106) 

2 

This result should look familiar to those of you who study the development of 

high-energy cosmic ray showers passing through matter. An important difference 

here, as we shall see shortly, is the running of the coupling constant in &CD, which 

can be neglected in practical applications of the evolution equation to shower 

development in QED. In the lowest order equivalent photon approximation in 

QED, Eq. (102) is valid. 
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For experimental analysis it is most convenient to separate the dependence of 
the matrix elements on momentum transfer t from the 2 variation of the density 
distributions. To do this in (106), one sim ly takes a Mellin transformation to 
form the moments of the distributions (qN 8 E q - q) 

1 

Mts(t) E J dx x+-l qNS(x, t) . 

0 

For the nth moment as defined, (106) becomes 

-g My(t) = $+/]dz)dx 2-l Q/z-x) Pqq(z) qNS(Y,t), 

(107) 

(YTl 

{/dun-’ Pqq(z)} &$A;‘M,NS(t), 

\ + 4 
Physics input 

(108) 
which expresses the t variation of Mn(t) in terms of the physics in Azs and the 
running of ad(t). If we introduce the leading log approximation to aa( 

aa =’ aa 
1 + ba,t ’ 

we can integrate (108) to give the t dependence of the nth moment. 

MY (4 = M;‘(O) (1 + ba,t)A”Ns(t)/2r’ , (110) 

This displays the logarithmic dependence of the matrix elements in Q2 as 
claimed earlier. Physics lies in the power of the log as well as the slope b, which re- 
flects the symmetry properties-i.e., number of colors and flavors via its definition 

b 
11N - 2f 

= 
127r ’ (111) 

where N is the number of colors [= 3 for SU(3) of color], and f is the number of 
flavors (= 3 for three generations). 

Note that if the coupling constant didn’t run, i.e., b + 0 in (109) and (llO), 
the moments would vary with a fractional power of Q2 rather than of its log 

Ml? (t > 
Q2 SACS 

M;‘(O) (a-b) @ ’ ( > 
(112) 

-, 
Detecting such a difference is a difficult but not impossible challenge for an 

experimentalist. Figure 12 shows what is required for typical numbers for the 
. . 
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Fig. 12. Schematic representation of the difference in Q” variation of the third 

moment Mts (t) depending on whether the coupling constant runs (a) 

[Eq. (IlO)], or is constant (b) [Eq. (112)]. 

-- 
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third moment to distinguish these two behaviors. Since the different moments 
are related to one another through A, and ad(t), th eir t variation gives informa- 
tion about the physics. One can calculate the A,, using the simple QCD vertices 
in the infinite momentum frame and thereby predict the t, or log Q2 variation 

for experimental testing. For example the A,, for gluons of spin-0 differ from 
the values for spin-l, and accurate data confirms their spin-l character as gauge 
bosons. The calcuations of A,,, while not trival, are straightforward. One calcu- 
lates Pqq(z) in the + 00 frame. This is the first graph in Fig. 11, and one finds 

ANS = n - J dz z n-l %l(4 
0 

(113) 

n 1 

- 
‘> 2X' 3 1 7 

j=2 

for n > 1 (ArS = 0), where the color Casimir C2(R) is given by 

N2 - 1 
C2(R)=$t’t”= 2N =f for SU(3) color , 

a 
(114) 

For detailed calculations see the treatises by R. Field and C. Quigg. 

This concludes the discussion of the logarithmic approach to Bjorken 
scaling-and I am just about out of time. 

There are a number of things that I haven’t talked about that are very 
important; in particular model building; the transparency of nuclear matter with 
atomic number A > 1; the limiting behavior for x + 0 and tieing in with Reggie 
theory. There is a lot of very good technology being developed here and it is 
very important technology. Ask Stan Brodsky while you’re here at the school, 
because he knows so much about the nucleon wave functions that are constructed 
to interpret the vast body of data that cannot be summarized into Sum Rules. 
I have slighted this work not because it is not important. Simply, I chose to 
concentrate my two hours on the approach to scaling and on sum rules that I 
consider so basic . I really hope that the Bjorken sum rule will be proved wrong. 
That would cause quite a stir! 

40 



REFERENCES 

T-P. Cheng 
and L-F. Li 

R. P. Feynman 

Rick Field 

H. E. Fisk 
and F. Sciulli 

B. L. Ioffe, 
V. A. Khoze, 
and L. N. Lipatov 

S. R. Mishra 
and F. Sciulli 

ChrisQuigg 

T. M. Yan 

Gauge Theory of Elementary Particle Physics 
(Oxford, 1984). 

Photon-Hadron Interactions 
(W. A. Benjamin, Inc., 1972). 

Applications of Perturbative QCD 
(W. A. Benjamin, Inc., 1989). 

Charged-Current Neutrino Interactions 
(Annual Reviews of Nuclear and Particle Science 
Vol. 32, 1982). 

Hard Processes, Vol. I. Phenomenology Quark- 
Parton Model 

(North Holland, 1984). 

Deep Inelastic Lepton-Nucleon Scattering 
(Annual Reviews of Nuclear and Particle Science, 
Vol. 39, 1989). 

Gauge Theories of the Strong, Weak, and Electro- 
magnetic Interactions 

(W. A. Benjamin, Inc., 1983). 

The Parton Model 
(Annual Reviews of Nuclear and Particle Science, 
Vol. 26, 1976). 

41 


