
Modeling and Scheduling
Asynchronous Incremental Workflows

Christopher Olston
Yahoo! Research

ABSTRACT

We consider workflows that process very large incoming data
feeds (e.g. web crawls or sky surveys) in an incremental fash-
ion. Due to the large volume of data and relaxed applica-
tion semantics, the workflow may not enforce strict temporal
synchronization across the various input, intermediate and
output data sets. In fact, asynchronous behavior is often
programmed explicitly, to meet latency goals.

Programming of asynchronous incremental workflows is
mostly ad-hoc, and there is a lack of tools for reasoning
about and scheduling such workflows. This paper analyzes
the requirements of this class of data-intensive application,
and introduces formal programming and scheduling mod-
els. Our programming model gives fine-grained control over
the amount of temporal asynchrony in various parts of the
workflow. Our scheduler dynamically switches between syn-
chronous and asynchronous operator variants to achieve the
desired temporal semantics, and also dynamically chooses
among incremental and non-incremental variants based on
the amount of data to be processed and operator costs.

1. INTRODUCTION
Increasingly, organizations deploy complex workflows to

transform incoming raw data feeds (e.g. web crawls,
telescope images) into refined, structured data products
(e.g. web entity-attribute-relationship graphs, sky object
databases) [4, 20, 26, 32]. These workflows operate over
vast quantities of data, which arrives in large waves and is
processed incrementally in the manner of view-maintenance
algorithms for data warehouses [18].

Typically, some portions of the workflow are trivially in-
cremental (“stateless” processing steps like extracting noun
phrases from newly-crawled pages), whereas other steps are
not amenable to efficient incremental processing in the face
of large input waves (e.g. computing PageRank scores [9,
14], clustering sky objects [5]) and are typically performed
as periodic batch jobs. Many common operations fall in-
between these two extremes: distributive/algebraic func-
tions like counting links must reference and update a fairly
large amount of state; incremental maintenance of join views
requires joining newly-arrived data on each input with his-
torical data from the other input [18].

It is generally not feasible to keep derived data sets fully
synchronized with all newly-arriving input data, while still
meeting the latency requirements of the application. Be-
sides, the data entering the system is merely a stale and/or
noisy reflection of the real world (asynchronously-gathered
web pages and click logs with spam and robots; old photons

Figure 1: Web search preprocessing workflow.

with atmospheric distortion), and many of the algorithms
that rely on this data and its derivations are explicitly tol-
erant of noise (especially machine learning algorithms and
semantically loose environments like web search).

For example, a web search engine may need to expedite
processing of newly-crawled web pages, even if that means
labeling them with somewhat out-of-date site-level PageR-
ank scores, and piping that temporally inconsistent joined
data to further processing steps. In the astronomy domain,
the latest observation of a sky object may be compared
against prior observations and cluster-level statistics to flag
unique temporal behaviors for follow-up observation, with
the cluster statistics (and indeed the cluster model itself)
updated periodically rather than continuously.

Even when there is no need to combine incoming data with
out-of-date views, nonuniform latency requirements may re-
quire incoming data to be processed in non-temporal order.
For example, in the web domain one might process clicks
that resulted in 404 (page not found) errors ahead of earlier,
successful clicks, to expedite purging of “dead” content from
various caches and indices. In astronomy, one might priori-
tize near-earth objects, which can have a short observation
window and require immediate attention. Of course, out-of-
order processing can impact the semantics of downstream



new new click click score
time crawl data score data snapshot

Mon 1am +(a.com, 18) (a.com, 18)
Mon 8am +(a.com/x, d1)
Tue 1am –(a.com, 18) (a.com, 21)

+(a.com, 21) (b.com, 7)
+(b.com, 7)

Tue 11am +(a.com/y, d2)
Tue 5pm +(b.com/r, d3)
Wed 1am –(a.com, 21) (a.com, 22)

+(a.com, 22) (b.com, 14)
–(b.com, 7)
+(b.com, 14)

Wed 2pm +(a.com/z, d4)
+(b.com/s, d5)

Table 1: Example crawl and click-score data, ar-
riving as strong deltas. A “+” in front of a tuple
denotes insertion; a “–” denotes deletion. Content
digests are shown as d1, d2, . . ..

new join accumulated
time output data join output

Mon 8am + ǫ +(a.com/x, d1, 18) (any prior data ...)
(a.com/x, d1, 18)

Tue 11am + ǫ –(a.com/x, d1, 18) (any prior data ...)
+(a.com/x, d1, 21) (a.com/x, d1, 21)
+(a.com/y, d2, 21) (a.com/y, d2, 21)

Tue 5pm + ǫ +(b.com/r, d3, 7) (any prior data ...)
(a.com/x, d1, 21)
(a.com/y, d2, 21)
(b.com/r, d3, 7)

Wed 2pm + ǫ –(a.com/x, d1, 21) (any prior data ...)
+(a.com/x, d1, 22) (a.com/x, d1, 22)
–(a.com/y, d2, 21) (a.com/y, d2, 22)
+(a.com/y, d2, 22) (b.com/r, d3, 14)
–(b.com/r, d3, 7) (a.com/z, d4, 22)
+(b.com/r, d3, 14) (b.com/s, d5, 14)
+(a.com/z, d4, 22)
+(b.com/s, d5, 14)

Table 2: Synchronous incremental join output.

operations, which must be taken into account.
We term workflows that introduce temporal inconsistency

or out-of-orderness into derived data products as asyn-
chronous. Managing such workflows poses a major chal-
lenge, as the following example demonstrates.

1.1 Example
Figure 1 depicts a simplified web search data preprocess-

ing workflow. Data tables (including intermediate derived
data products) are shown as rectangles; processing steps
are shown as pentagons; arrows represent data flow. In
the right-hand pathway, user click records are analyzed to
find distinct user/web-site pairs (site is a simple function of
URL, applied on the fly and not shown in the figure), and
then determine the number of distinct users clicking on each
site. A stateless “logarithm” function converts click counts
into simple “click scores” used to gauge web site quality (in
reality such scores incorporate other factors as well), and
these scores are joined with a table of web page content
digests (extracted from page content via a stateless “shin-
gling” algorithm [6]) to associate a quality score with each

new join accumulated
time output data join output

Mon 8am + ǫ +(a.com/x, d1, 18) (any prior data ...)
(a.com/x, d1, 18)

Tue 11am + ǫ +(a.com/y, d2, 21) (any prior data ...)
(a.com/x, d1, 18)
(a.com/y, d2, 21)

Tue 5pm + ǫ +(b.com/r, d3, 7) (any prior data ...)
(a.com/x, d1, 18)
(a.com/y, d2, 21)
(b.com/r, d3, 7)

Wed 2pm + ǫ +(a.com/z, d4, 22) (any prior data ...)
+(b.com/s, d5, 14) (a.com/x, d1, 18)

(a.com/y, d2, 21)
(b.com/r, d3, 7)
(a.com/z, d4, 22)
(b.com/s, d5, 14)

Table 3: Asynchronous incremental join output.

page. The result is a table of URLs with content digests and
click scores, which may be passed to further analysis steps
or loaded into an index (a.k.a. inverted file) for searching
and ranking.

Focusing on the final step (the join operation), suppose the
data input to the join algorithm is as shown in Table 1. If
invoked immediately after each batch of crawl data arrives, a
conventional incremental join algorithm would produce the
output shown in Table 2, which assigns click scores to newly-
crawled URLs and also updates the click scores of URLs
crawled in the past.

In the web indexing scenario, getting newly-discovered
URLs into the index quickly is more important than keep-
ing indexed click scores perfectly accurate. Hence, rather
than a full incremental join of URLs with click scores, an
approximate join is performed that tags new URLs with a
snapshot of the click score table (perhaps indexed by site).
The click score snapshot is updated only periodically (e.g.
daily), and the updating must be done without disrupting
any ongoing approximate join with URLs (e.g. via two con-
current versions of the click score table). The asynchronous
join output is shown in Table 3. Unlike in the synchronous
case (Table 2), the asynchronous output does not update
the click scores of pages crawled in the past.

Unfortunately, the asynchronous join leads to unbounded
staleness in click scores (a URL crawled a long time ago
would be associated with a very out-of-date click score). Al-
though a certain degree of staleness is acceptable in our ap-
plication scenario, unbounded staleness is not. It is therefore
necessary to occasionally (e.g. weekly) re-scan URLs that
have been processed in the past and join them with newer
click scores, perhaps via a full batch join to produce a re-
placement output table.

When bringing the click scores up to date, enqueued click
records are processed through the chain of steps in the right-
hand column of Figure 1 using incremental or batch pro-
cessing at each step. The incremental versus batch choice
depends on the amount of accumulated data, the data dis-
tributions, access methods used, and other factors affecting
processing costs.

A related issue is the choice of data encoding for each
intermediate data set—e.g. full-table snapshots, insertions
and deletions of full records, upserts (insertion/replacement
of records identified by a key), or (key, delta) representa-



tions like (site, click count increment)—which may need to
change dynamically based on the processing strategies of
downstream operations.

Overall, although the workflow is conceptually straight-
forward (Figure 1), under the covers one must rotate among
several alternative data processing and representation op-
tions, while taking into account their efficiency, latency and
consistency implications.

1.2 Contributions
This paper presents a formal model for representing the

processing and data elements of asynchronous, incremental
workflows, which may produce out-of-order or temporally
incongruent data views. The paper also gives a model for
scheduling such workflows, to minimize latency along crit-
ical pathways while adhering to custom temporal inconsis-
tency bounds. Lastly, it proposes and evaluates a schedul-
ing algorithm based on the model that automatically and
dynamically chooses among operator variants and data rep-
resentations.

1.3 Related Work
There are three main categories of systems that intersect

with this work: data stream management, data warehous-
ing and scientific workflow. To our knowledge, in none of
these areas has the notion of temporal misalignment within
derived data sets been explored. (Most systems either en-
force synchronous behavior, or have “anything goes” seman-
tics that place the onus on the programmer to reason about
temporal semantics.) We elaborate below.

Data Stream Management. Data stream management
systems [16] are similar in some respects to our scenario,
i.e. they manage the flow of data through a network of
stateful incremental operators, and indeed some aspects of
this paper may be applicable to the DSMS context. How-
ever, data stream systems focus on near-real-time processing
and sliding-window semantics, whereas our scenario has less
stringent real-time requirements but must process data sets
in their entirety (i.e. landmark windows from time zero).
Moreover, to our knowledge no data stream system permits
asynchrony of the form studied in this paper (e.g. non-
temporally-aligned join). On the scheduling side, the Au-
rora QoS-driven scheduler [1, 7] is perhaps the closest to our
work, but again it does not deal with asynchronous joins.

Incremental View Maintenance. Incremental view
maintenance techniques [18], often studied in the data ware-
housing context, obviously share our focus on incremental-
ity. The view maintenance literature considers asynchrony
of view data relative to base data [13, 23, 30], but the form
of asynchrony studied in this paper, in which views incor-
porate different base tables as of different points in time, is
generally prohibited or masked from applications. Moreover,
most work on view maintenance does not consider networks
of cascaded views (this is the focus of scientific workflow,
discussed next).

Scientific Workflow. Most scientific workflow environ-
ments have no explicit support for incremental process-
ing (beyond trivial “stateless” processing). Exceptions in-
clude [25, 31]. To our knowledge there has been no work
on supporting asynchronous processing with bounded data

inconsistency in scientific workflows, other than the special
case of guaranteeing zero inconsistency via strict synchro-
nization primitives [25].

1.4 Outline
The remainder of this paper is structured as follows. Sec-

tion 2 presents our formal model of asynchronous, incre-
mental workflows. Then, Section 3 shows how to implement
the standard relational operators in our model. Section 4
describes real-world-inspired workflows and their scheduling
requirements. Scheduling is covered in Sections 5 (schedul-
ing model), 6 (scheduling algorithm), and 7 (evaluation).

2. MODEL
This paper focuses on large-scale data processing work-

flows, and in particular ones that:

• follow the “synchronous data-flow” (SDF) model of com-
putation [24],

• are deployed for an extended period of time in a produc-
tion environment, and

• incorporate newly-arriving input data in large batches
using incremental algorithms.

Examples include continuously-running SDF scientific work-
flows [24], incremental ETL processes [22], web information
extraction workflows [8], and continuous bulk processing
models for map-reduce-like environments [2, 19, 28].

The specific workflow model we use is as follows. A work-
flow is a directed acyclic graph whose vertices are data chan-
nels and operators, as shown in Figure 3 (in all figures in
this paper, data channels are depicted as rectangles, and
operators as ovals; pentagons represent a conglomeration
of operators, explained later in Section 3). A data chan-
nel is a pathway along which data flows between operators,
from an external data source to an operator, or from an
operator to an external data consumer. Data on a channel
may be stored, pipelined, or perhaps not created at all, de-
pending on the scheduling and execution parameters of the
workflow (discussed later). Operators connect to data chan-
nels, and data channels connect to operators (or external
sources/consumers); no other connections are allowed.

Data channels whose data is supplied by external sources
are called input channels; other channels are called derived
channels. Derived channels whose data is read by external
consumers are called output channels; others are intermedi-
ate channels. A workflow may have multiple paths between
a pair of data channels, representing alternative but seman-
tically equivalent data processing pathways that present an
opportunity for dynamic optimization.

2.1 Time and Data Consistency
As in temporal databases [27] and data stream manage-

ment systems [3], each data channel contains a representa-
tion of a time-varying relation1 R, i.e. a mapping from time
to a relation snapshot according to a global clock.2 In par-

1For simplicity of exposition we assume that data conforms
to the relational model (with bag semantics), although this
paper does not rely heavily on this assumption. Also, tuples
in a relation may contain application-assigned timestamps
(e.g. the time at which a particular web page was down-
loaded), which are orthogonal to system-managed time and
are only assigned or interpreted at the application level.
2It may be a physical clock or a logical clock, i.e. a counter.



temporal provenance T⊢ T⊣ consistent?

T1 = 〈{Mon 8am}, {Mon 1am}〉 Mon 8am Tue 1am yes
T2 = 〈{Mon 8am}, {Tue 1am}〉 Tue 1am Tue 11am yes
T3 = 〈{Tue 11am}, {Mon 1am}〉 Tue 11am Tue 1am no

T4 = 〈{Wed 2pm}, {Mon 1am, Tue 1am, Wed 1am}〉 Wed 2pm Tue 1am no

Table 4: Temporal provenance of possible crawl-clickscore join output snapshots.

ticular, a relation snapshot has an interval of validity [t1, t2),
where t1 and t2 are timestamps from the global clock.

An input relation being updated over time has a series
of abutting intervals of validity: [t1, t2), [t2, t3), [t3, t4), . . ..
Since the right endpoint of each interval is determined by
the arrival time of the next update, a relation snapshot is
identified by the left endpoint, e.g. t1. For a given snapshot
timestamp t, t⊣ denotes the right end-point of its validity
interval, e.g. t⊣1 = t2.

3 The right endpoint of the most re-
cent snapshot’s interval of validity has yet to be determined,
and is denoted by the special marker now . In comparisons
and computations, now evaluates to the current clock time,
which has the property that for any update timestamp t,
t < now .

A snapshot of an intermediate or output relation is de-
fined by its temporal provenance, i.e. the timestamps of the
input relation snapshots from which it was derived. (For
convenience, we sometimes shorten “temporal provenance”
to “provenance,” and refer to a snapshot by its provenance
metadata.) Consider the n paths from some input channel
to a given derived channel C. Let the input channel at the
source of the ith such path be denoted I(C, i). The tem-
poral provenance of a relation snapshot S on C is denoted
T = 〈T [1], T [2], . . . , T [n]〉, where T [i] is the set of times-
tamps of I(C, i) snapshots that are reflected in S.

The temporal provenance of the click score snapshot
shown in the top-right cell of Table 1 is T = 〈{Mon 1am}〉.
For the synchronous join output snapshot in the bottom-
right cell of Table 2, T = 〈{Wed 2pm}, {Wed 1am}〉. For
the bottom-right cell of Table 3 (asynchronous join output),
T = 〈{Wed 2pm}, {Mon 1am, Tue 1am, Wed 1am}〉, be-
cause that snapshot reflects the latest crawl data combined
with click score data drawn from three different snapshots
(Mon 1am, Tue 1am and Wed 1am)—e.g. three different
click score values for a.com are present (18, 21 and 22).

Consider a snapshot S with temporal provenance T .
Let T [i]⊢ = maxt∈T [i] t, T [i]⊣ = mint∈T [i] t

⊣, T⊢ =

max1≤i≤n T [i]⊢ and T⊣ = min1≤i≤n T [i]⊣. The intersection
of the validity intervals of all input snapshots from which S

derives is [T⊢, T⊣). S is consistent iff T⊢ < T⊣. The condi-
tion T⊢ < T⊣ implies the existence of at least one point in
time t ∈ [T⊢, T⊣), such that S contains the latest data from
all relevant workflow inputs as of time t.

Table 4 shows the temporal provenance of some possible
crawl-clickscore join snapshots, gives their T⊢ and T⊣ values,
and states whether they are consistent. Intuitively speaking,
a snapshot with provenance T3 is inconsistent because it
combines crawl data from validity interval [Tue 11am, Tue
5pm) with click score data from a disjoint validity interval
[Mon 1am, Tue 1am). A snapshot with provenance T4 is
inconsistent because it combines click score data from three

3Note that the ⊣ transformation is channel-specific. Channel
identifiers are omitted from the notation to keep it simple; it
should be clear from the context which channel is referenced.

disjoint validity intervals: [Mon 1am, Tue 1am), [Tue 1am,
Wed 1am) and [Wed 1am, now).

2.2 Data Blocks
In a real implementation, data associated with a relation

R is manifest as a set of data blocks that accumulate on R’s
data channel over time. A data block contains one or more
tuples and is the atomic unit of data from the perspective
of scheduling workflow operations and reasoning about tem-
poral (in)consistency. Data blocks may vary widely in size,
from a few bytes to hundreds of terabytes, as we shall see
(a data block in our model is not a unit of physical storage,
i.e. it is not the same as a disk block or disk page). They
come in three varieties:

• Base data block: B(T ). The tuples comprising the
full content of the relation with temporal provenance T .

• Strong delta data block: ∆(T1✄T2). A set of records
to be added, and a set of records to be deleted, to con-
vert a base B(T1) to a later base B(T2), where T1 ≺ T2.

4

Delta block ∆(T1✄T2) is said to be relative to base B(T1).
A strong delta that contains no deletions is called mono-
tone, and is denoted ∆+(T1 ✄ T2).

• Weak delta data block: δ(T1 ✄ T2). Any piece of
data such that one can generate B(T2) from B(T1) and
δ(T1 ✄ T2).

Lossless compression is permitted for any type of block.
For example with strong deltas an in-place record update
is semantically represented as a deletion/insertion pair, but
may be physically encoded such that unchanged fields are
only stored once. Weak deltas permit much more compact
representations, but limit opportunities for downstream op-
erators to deal solely with the delta representation (without
reading bases). Whereas the base and strong delta represen-
tations are built into the system, weak delta representations
are added as custom extensions (in the presence of multi-
ple weak delta representations we differentiate them using
subscripts: δ1, δ2, . . .).

A simple example of a weak delta representation is up-
serts: a set of (key, new value) pairs such that if an old
record with a given key is present in the base, the new
value supersedes the old value. Upserts are quite common
in practice, e.g. (URL, current page content) pairs emit-
ted by a web crawler such that a new snapshot of a page
replaces any prior snapshot. Another common weak delta
representation arises in the presence of incremental aggre-
gation operators, which may emit (key, increment) pairs,
e.g. {(cnn.com, +5), (yahoo.com, -2)} applied to a base
{(cnn.com, 28), (yahoo.com, 43), (harvard.edu, 36)}.

4T1 ≺ T2 iff for all 1 ≤ i ≤ n, T1[i]
⊢ ≤ T2[i]

⊢ and for
some 1 ≤ j ≤ n, T1[j]

⊢ < T2[j]
⊢, i.e. T2 is not “behind” in

time relative to T1, and T2 is temporally “ahead” of T1 with
respect to at least one workflow input.



2.3 Operators
Recall that in a workflow, data channels are connected

by operators, which process data. Upon being invoked, an
operator consumes zero or more data blocks from each of
its inputs, and emits zero or more data blocks to each of its
outputs. Each operator has an input signature, which con-
strains the types (among {B,∆,∆+, δi}) and consistency
properties of blocks it is willing to consume. An operator’s
output signature gives the output block types and instruc-
tions for assigning temporal provenance to output blocks.

For example, consider a non-incremental (batch) join op-
erator that reads mutually consistent base blocks from a pair
of input channels C1 and C2, and writes a base block con-
taining the result of the join into a third channel C3. The
input signature is: B(T1);B(T2)

5 with a consistency con-
straint on T1⊕T2 (the symbol ⊕ denotes list concatenation).
The output signature is: B(T1 ⊕ T2).

An incremental join operator has input signature:
B(T1),∆(T1✄T2);B(T3),∆(T3✄T4)

6 with consistency con-
straints on T1 ⊕ T3 and T2 ⊕ T4. Its output signature is:
∆((T1⊕T3)✄ (T2⊕T4)). If invoked on the example data in
Table 1 following every injection of crawled data, this oper-
ator produces the output data shown in the second column
of Table 2.

In Section 1.1 we alluded to an asynchronous join opera-
tor that combines delta blocks from the left input (e.g. the
latest crawled pages) with base blocks from the right input
(e.g. a click score relation snapshot). This operator has
input signature ∆(T1✄T2);B(T3) (with no consistency con-
straints) and output signature ∆((T1 ⊕ T3)✄ (T2 ⊕ T3)). If
invoked on the example data in Table 1 following every in-
jection of crawled data, it produces the output data blocks
in the second column of Table 3. Assuming the crawl data
arrival prior to Mon 8am occurred at Sun 3pm, the temporal
provenance of these blocks are7:

• 〈Sun 3pm, Mon 1am〉 ✄ 〈Mon 8am, Mon 1am〉

• 〈Mon 8am, Tues 1am〉 ✄ 〈Tue 11am, Tue 1am〉

• 〈Tue 11am, Tues 1am〉 ✄ 〈Tue 5pm, Tue 1am〉

• 〈Tue 5pm, Wed 1am〉 ✄ 〈Wed 2pm, Wed 1am〉

2.4 Block Type Conversion
Often, data is generated in one form (e.g. strong deltas)

but a subsequent operator or external consumer wishes to
consume it in another form (e.g. bases). Data may be con-
verted among the various block types as shown in Figure 2.
In five of the six data conversion operations the old base
(B(T1)) is part of the input; only conversion of a strong
delta to a weak delta is always doable without reference to
the old base. A conversion operator (converter for short)
that transforms a data block in representation X to a data
block in representation Y is denoted cXY , for example cB∆

is the converter from base to strong delta. (For simplicity,
the fact that a converter may read the old base is left out of
the superscript notation.)

To accommodate inconsistent data, we relax the input

5In our notation, blocks read from different input channels
are separated by semicolons.
6When an operator’s input signature contains ∆(Ta ✄ Tb),
the operator may consume any chain of deltas ∆(Ta ✄

T1),∆(T1 ✄ T2), . . . ,∆(Tn−1 ✄ Tn),∆(Tn ✄ Tb) (the same
goes for δ).
7We omit the {} symbols around singleton sets.

Figure 2: Block type conversion (consistent case).

signature of c∆B (and analogously cδB) to: B(T1),∆(T2 ✄

T3) with the constraint that for each i either T1[i] = T2[i] or
T2[i] = T3[i]. The converter output has temporal provenance
T4 where T4[i] = (T1[i] \ T2[i]) ∪ T3[i].

Continuing our example from Section 2.3, if we start with
a consistent join output base block 〈Sun 3pm, Mon 1am〉 and
apply the four delta blocks produced by our asynchronous
join (second column of Table 3), we obtain the base blocks
shown in the third column of Table 3, which have the fol-
lowing temporal provenance:

• 〈Mon 8am, Mon 1am〉

• 〈Tue 11am, {Mon 1am, Tue 1am}〉

• 〈Tue 5pm, {Mon 1am, Tue 1am}〉

• 〈Wed 2pm, {Mon 1am, Tue 1am, Wed 1am}〉

The first of these blocks is consistent, whereas the remaining
three are inconsistent because they contain a mixture of click
score data from multiple points in time.

The converters cB∆ and c∆B are built into the system.
Other converters, which involve user-supplied weak delta
representations, are specified as part of a weak delta defini-
tion. In particular, a user defining a new weak delta repre-
sentation δi must supply at least one of cBδi and c∆δi (typi-
cally the latter), as well as at least one of cδiB and cδi∆. Any
unspecified converters can be constructed automatically by
composing specified ones, although with no guarantee of ef-
ficiency. If multiple weak delta representations are present,
the user may supply direct converters between them.

Every data channel in a workflow comes with a set of self-
loops for data conversion, which are added automatically
by the system. From the standpoint of workflow scheduling
and execution, conversion operators act just like any other
operator. Conversion operators are exempt from the acyclic
workflow rule, because they merely convert among data rep-
resentations. To avoid clutter, our diagrams typically do not
show (all) conversion self-loops.

Discussion. The reader may be curious whether there are
real-world scenarios associated with each pairwise converter
shown in Figure 2. Conversion between base and (weak
or strong) delta representations has obvious uses: a non-
incremental operation (e.g. compute PageRank) followed by
an incremental operation (e.g. update the index for URLs
whose PageRank has changed), or conversely an incremental
operation followed by a non-incremental one.

An example of conversion from weak delta to strong delta
is as follows: A web page fetching operator emits (URL,
web page snapshot) pairs, where a repeat occurrence of a
particular URL denotes a newer snapshot of the page—this
is a weak delta representation. A subsequent incremental



Figure 3: Distributive aggregation widget (count).

inlink counting operator needs to see additions and removals
of hyperlinks as pages change over time, which requires a
strong delta representation.

We have not yet encountered a compelling use case for
strong delta to weak delta conversion; it is included for com-
pleteness.

3. WIDGETS AND

RELATIONAL OPERATIONS
A widget is a sub-workflow that encapsulates multiple vari-

ants of a given operation (e.g. join), in the form of a library
element that a programmer can insert into their workflow.
The purpose is to permit automated, and even dynamic, se-
lection of the operation variant based on the user’s schedul-
ing preferences, operator costs and data sizes. Even op-
erations that have only one variant may be complex (i.e.
involve multiple primitive operations and/or intermediate
state), and therefore call for encapsulation into a single ab-
straction. Widgets may contain operators, other widgets
(although recursion is not allowed), and internal data chan-
nels8, as the following examples illustrate.

3.1 Distributive Aggregation
Figure 3 shows a widget for aggregation functions that can

be computed incrementally by combining new data with the
previous function output (distributive aggregation [17]), in
this case groupwise counting. In figures in this paper, we
label workflow edges with data block types (B, ∆, and so
on) but to avoid clutter the consistency constraints are not
shown.

The incremental pathway emits data blocks with a weak
delta representation consisting of (group key, count incre-
ment) pairs (as well insertion and deletion by key, to en-
able creation and retirement of groups). When data follows
the incremental pathway, a downstream operator will likely
require that it be transformed into strong deltas or bases,
which is accomplished via the converter self-loop cδ∆ or cδB ,
respectively.

(Weak deltas will almost always be converted to strong
deltas or bases so that downstream operators can make use
of the data. Despite this fact, there are at least three rea-
sons for including weak deltas as first-class components of
our model: (1) conversion of weak deltas into strong deltas
or bases may be batched for greater efficiency, e.g. if the
producer is scheduled more often than consumers; (2) it is
often more convenient to write operators that produce weak

8e.g. auxiliary views for self-maintainability [29].

Figure 4: Join widget.

Figure 5: Bag union widget.

deltas (with conversion to strong deltas factored out as com-
mon code), and some legacy code may already work this way;
(3) data may arrive from an external source in the form of
weak deltas (e.g. web page snapshots supplied by a crawler,
as described in Section 2.2).)

Widgets for algebraic [17] aggregation and distinct may
be constructed using this distributive aggregation widget as
a building block; we leave the details as an exercise for the
reader.

3.2 Join
Figure 4 shows a join widget, which combines the various

join operator variants described in Section 2.3:

• synchronous batch join,

• synchronous incremental join,

• two asynchronous incremental join variants: one that
combines delta blocks from the left input with base
blocks from the right input, and vice-versa.

3.3 Union
Figure 5 shows the bag union widget, combining:

• synchronous batch union,

• synchronous incremental union,

• asynchronous union to propagate data solely from the
left (or right) input.

Unlike join, an asynchronous union operator only propa-
gates data from one of its inputs. In the output, the tempo-
ral provenance entry for the input that was not propagated
is left as an empty set. For example, consider a workflow
that takes the union of two continuous crawls, where each
crawl produces hourly delta blocks. Suppose we have a base
block B(〈9am, 9am〉) on the union output, and wish to aug-
ment it with a new delta block ∆(9am ✄ 10am) from the
second crawl, without processing any data from the first



Figure 6: News relevance feedback prioritization
workflow.

crawl (e.g. because data from the second crawl is more
time-sensitive). Invoking the right-only asynchronous union
operator, we produce ∆(〈{}, {9am}〉✄〈{}, {10am}〉), which,
when combined with our prior output block B(〈9am, 9am〉),
yields the inconsistent output block B(〈9am, 10am〉).

4. EXAMPLE WORKFLOWS
We present two additional asynchronous workflows from

the web search domain, and discuss their scheduling require-
ments as a lead-in to our scheduling model (Section 5).

4.1 Feedback Prioritization
Our first example is part of a workflow that might be

used for implicit relevance feedback in web search. Implicit
relevance feedback is the process of improving a search rank-
ing function based on user behavior (e.g. which results she
did or did not click on) [21]. It is believed that contempo-
rary commercial search engines employ this technique. For
general web content there is no great urgency in processing
relevance feedback information, but news content requires
rapid adaptation. Hence a search engine might preferen-
tially process feedback related to news, which the workflow
in Figure 6 facilitates.

The input is a log of user search interactions, each con-
taining a search query (e.g. “paris transit strike”), a list of
links presented to the user in response to the query, and
an indication of which of the links (if any) the user clicked
on. A “split” operator divides log records into ones that
contain news links among the search results, and ones that
do not. The split operator is followed by a union widget
(Section 3.3).

This workflow may seem rather pointless, until one con-
siders that the temporal provenance of the output contains
two entries: one for the news branch and one for the non-
news branch. Hence one may request preferential processing
of the news branch (details in Section 5.1).

4.2 Crawl Selection
As a final, and somewhat more elaborate, example, Fig-

ure 7 shows a simplified workflow for selecting URLs to fetch
in the next iteration of an incremental web crawler [10]. Al-
though the entire crawling system is cyclic, the web page
fetching service is modeled as an external source and con-

Figure 7: Web crawl selection workflow.

sumer, not a workflow operator, yielding an acyclic operator
graph. The fetching service emits one (url, timestamp, error
code, page content) tuple for each fetch attempt (if the at-
tempt was unsuccessful, e.g. due to a “404: page not found”
error, the page content field is set to null). These tuples
are processed by three operators: one that logs all successful
fetches, one that uses the shingling algorithm to generate a
content digest of each page, and one that extracts hyperlinks
that originate on the page. The extracted hyperlinks take
the form of a weak delta, because the new links supersede
any old links with the same source URL. A groupwise count
widget determines the indegree (number of incoming hyper-
links) of each URL; indegree is a simple way to prioritize
pages for crawling [12], although of course more elaborate
techniques can be used.

The workflow contains three operators that select URLs
for fetching: “top unfetched,”“periodic recrawl,” and “adap-
tive recrawl.” Due to the inability to assume that prior fetch
requests have succeeded, as well as the need to take into ac-
count fetches requested by other operators, all three crawl
selection operators are structured as periodic batch jobs (no
incrementality). The “top unfetched” operator finds the top
k pages by indegree that have not already been fetched.
The “periodic recrawl” operator finds pages that have not
been successfully fetched in the past x minutes, where x is
a function of indegree. “Adaptive recrawl” finds pages that
merit re-fetching based on an extrapolation of how much
their content has changed based on the content evolution
history, weighted by indegree, as in [11]. Note that “periodic
recrawl”ensures a basic level of freshness for all crawled con-
tent, and the job of “adaptive recrawl” is to boost freshness
of selected content if and when resources permit.

The three crawl selection operators emit URLs to the fetch
queue, from which the fetching service reads newly-added
URLs. (The three-input union widget is a simple cascade of
two of the two-input union widgets shown in Figure 5.)

The scheduling requirements for crawl selection are as fol-
lows: The “top unfetched” and “periodic recrawl” crawl se-
lection operators are to run hourly and daily, respectively,
and the “successful fetches” table they read should be as



up to date as possible. “Adaptive recrawl” is to run every
four hours. Lastly, the indegree data referenced by all three
crawl selection operators can be at most one week out of
date. We introduce a formal means of communicating these
requirements next.

5. SCHEDULING MODEL
A workflow scheduler aims to generate minimal-cost9 op-

erator execution plans whose output data obeys various con-
straints. The most basic kind of constraint is on the types
of output blocks permitted. Each output channel C’s exter-
nal consumer specifies the set of block types that it accepts
(e.g. {B}, or {B,∆}). The scheduler triggers operator ex-
ecutions such that the sequence of blocks produced on C

are of the accepted type(s) and are monotonic. Monotonic-
ity is defined as follows. First, let τ(b) denote the target
temporal provenance of block b, defined as: τ(B(T )) = T ;
τ(∆(T1 ✄ T2)) = T2; τ(δ(T1 ✄ T2)) = T2. The monotonic-
ity property requires that if a block b having τ(b) = T is
emitted to channel C, then the subsequent block b′ emitted
to C must be one of B(T ′), ∆(T ✄ T ′) or δ(T ✄ T ′), such
that T ≺ T ′.10 Reciprocally, the scheduler may assume that
external sources inject input data blocks monotonically.

The freshness and consistency of the output data is con-
trolled by custom constraints on the target provenance T =
〈T [1], T [2], . . . , T [n]〉11 of the latest data block on a given
derived channel C. There are two types of target prove-
nance constraints, one that bounds the delay with which
data passes through a particular workflow pathway, and one
that controls (in)consistency across pathways:

• Freshness constraint: bound staleness(C, i, t)
The system will attempt to maintain the invariant
T [i]⊣ + t ≥ now , for some constant t ≥ 0. This con-
straint bounds the degree to which provenance element
T [i] lags behind the latest input data on the ith work-
flow pathway leading to C.

• Consistency constraint: bound inconsistency(C, t)
The system will maintain the invariant T⊢ < T⊣ + t,
for some constant t ≥ 0. If t = 0, this invariant en-
forces strict consistency; if t > 0 it permits a bounded
amount of inconsistency.

Consistency constraints restrict the blocks that can be
fed to downstream operators or external consumers, i.e.
blocks that violate one or more consistency constraints are
not made available for reading (and ideally are not gener-
ated in the first place). Freshness constraints also restrict
which blocks may be passed to downstream operators or
consumers, but are enforced on a “best-effort” basis: the
scheduler does not construct plans that violate freshness
constraints, but these constraints may nonetheless become
violated due to arrival of new data during plan execution
(which cannot be helped). Fortunately, the goal of choosing

9We assume a standard relational-style cost model, that
combines individual operator cost and selectivity estimates
to produce overall plan cost estimates.

10As defined in Section 2.2, T1 ≺ T2 iff for all 1 ≤ i ≤ n,
T1[i]

⊢ ≤ T2[i]
⊢ and for some 1 ≤ j ≤ n, T1[j]

⊢ < T2[j]
⊢.

11Recall from Section 2.1 that T [i] denotes the set of times-
tamps of I(C, i) snapshots that are reflected in the derived
data, where I(C, i) is the source of the ith workflow pathway
leading to C.

low-processing-cost plans is aligned with the ability to repair
freshness constraints quickly.

5.1 Example Scheduling Constraints
The scheduling constraints for the search preprocessing

workflow introduced in Section 1.1, expressed over the in-
termediate click score channel and the output channel, are:

bound staleness(output , 0, 0 )
bound staleness(click score, 0, 1 day)
bound inconsistency(output , 1 week)

The scheduling constraints for our feedback prioritization
workflow (Section 4.1) might be:

bound staleness(output , 0, 0 )
bound staleness(output , 1, 1 day)

Our crawl selection workflow (Section 4.2) has the most
elaborate scheduling requirements. The scheduling con-
straints for this workflow are expressed over two interme-
diate channels (successful fetches and content digests), as
well as the output crawl queue channel (whose temporal
provenance element subscripts correspond to the pathways
marked with circled numbers in Figure 7):

bound staleness(successful fetches, 0, 0 )
bound staleness(content digests, 0, 0 )
bound staleness(output , 0, 1 hour)
bound staleness(output , 2, 1 day)
bound staleness(output , 4, 4 hours)
bound inconsistency(output , 1 week)

6. SCHEDULING ALGORITHM
We present our scheduling algorithm in three steps:

1. A reactive algorithm that is invoked each time an out-
put freshness constraint becomes violated due to ar-
rival of new data. The algorithm identifies an oper-
ator execution plan for repairing output freshness at
minimal cost, while adhering to any consistency and
intermediate freshness constraints. (Section 6.1)

2. Heuristics to reduce the algorithm’s search space.
(Section 6.2)

3. A modification of the reactive algorithm to incorporate
long-term cost considerations. (Section 6.3)

The reactive algorithm finds the optimal solution to the
short-term cost minimization problem, whereas the exten-
sions for pruning and long-term planning are heuristical.

6.1 Optimal Reactive Algorithm
The input to our scheduling algorithm consists of a work-

flow with selectivity and cost models for each operator, the
set of data blocks materialized so far on each channel, and
the scheduling constraints. The output is an execution plan
consisting of a sequence of operator invocations on specific
input blocks, such that all scheduling constraints are met at
the completion of the plan, assuming no new data arrives in
the mean time. (All intermediate results are assumed to be
materialized; the pipeline vs. materialize question is left as
future work.)



Our reactive scheduling algorithm is a dynamic program
based on Dijkstra’s shortest-path algorithm [15], with data
blocks behaving like graph vertices and operator invocations
behaving like graph edges.12 For operators with more than
one input, whenever the algorithm selects one input to pop-
ulate, it tries all combinations of input blocks on the other
inputs, drawn from the set of already-optimized blocks. The
pseudocode is given in Algorithm 1.

Algorithm 1 Basic scheduling algorithm.

Inputs:
workflow W ,
existing data blocks B,
scheduling constraints C

1: initialize priority queue Q over (block, plan, cost)
triples, which presents the lowest-cost entry first

2: for all b ∈ B do
3: insert (b, ∅, 0) into Q

4: end for
5: initialize Boptimized ← ∅

6: while Q not empty do
7: (b, p, c)← Q.poll()
8: G← blockGen(b, B,Boptimized,W, C)
9: for all (b′, p′, c′) ∈ G do
10: if Q contains a triple (b′, p′′, c′′) then
11: if c′ < c′′ then
12: Q.remove((b′, p′′, c′′))
13: Q.insert((b′, p′, c′))
14: end if
15: else
16: Q.insert((b′, p′, c′))
17: end if
18: end for
19: Boptimized.add((b, p, c))
20: end while

21: return selectOutputBlocks(Boptimized,W, C).plan

The algorithm uses two data structures:

• Q is a priority queue of blocks that could be generated,
which contains associated with each block the plan for
generating the block and the estimated cost of that plan.
Each entry in Q is a (block, plan, cost) triple. Lines 1–
4 initialize Q and populate it with blocks that already
exist, which have a cost of zero.

• Boptimized, initially empty (Line 5), will contain blocks
for which the optimal plan has been identified, also in
the form of (block, plan, cost) triples.

The body of the algorithm (Lines 6–20) repeatedly re-
moves the lowest-cost entry e = (b, p, c) from Q, which has
the property that p is the optimal plan for obtaining block
b, and enumerating ways to use p as a sub-plan in a larger
plan that creates other blocks (labeled b′). Each newly-
enumerated (b′, p′, c′) triple is inserted into Q (possibly dis-
placing previously-discovered, but more expensive, options
for producing b′), and e is inserted into Boptimized. In more
detail:

12Delta chaining (Section 2.3) is modeled as a zero-cost op-
erator.

• Lines 7–8 remove the lowest-cost entry e = (b, p, c) from
Q and enumerate hypothetical blocks that can be gener-
ated by applying a workflow operator to b. The enumer-
ation is performed by the blockGen subroutine, which
considers all legal13 applications of an operator o ∈ W

to b. The details of blockGen are straightforward, and
hence omitted, except for the manner in which multi-
input operators (e.g. join) are handled: when block b

is considered for one of the inputs, the remaining inputs
are selected from B ∪ Boptimized, with all legal options
exhaustively explored.14 Each operator/input combina-
tion yields a hypothetical output block, which is checked
for constraint violations; ones that satisfy all scheduling
constraints in C are returned by blockGen.

• Lines 9–18 consider each enumerated block b′ in turn,
and check to see if Q already contains a cheaper plan for
b′. If not, the new plan is inserted into Q, and any prior
(more expensive) plans for b′ are discarded. The result
is that Q contains exactly one plan for b′, namely the
cheapest plan discovered so far.

• Line 19 adds entry e = (b, p, c), which was removed from
Q in Line 7 and is known to represent the cheapest way
of generating block b, into Boptimized.

When Q is empty and there are no further plans to ex-
plore, the final step (Line 21) is to select, for each output
channel, the cheapest plan for producing a block that (1)
meets all scheduling constraints, and (2) is monotonic with
respect to the prior block produced. By construction, all
blocks in Boptimized meet the scheduling constraints, so the
selectOutputBlocks subroutine (not shown) simply selects,
for each output channel, the cheapest plan that produces a
monotonic block.

6.2 Controlling the Search Space
In practice, the above algorithm searches over a pro-

hibitively large space of (actual and potential) data blocks.
We have devised a set of heuristics for pruning the search
space, to enable the algorithm to run in a reasonable amount
of time:

6.2.1 Pruning Old Blocks

Our first pruning technique eliminates blocks that are
older than the current processing frontier and hence are no
longer useful. For a given output channel O, let the frontier
f(O) be the target of a block b whose type is accepted by
all external consumers, such that all other accepted output
blocks b′ have τ(b′) � τ(b). For a channel C that directly
feeds O, f(C) consists of the projection of O’s output fron-
tier to retain the portions that originate from C. The fron-
tier is defined recursively toward the input channels in this
fashion. (Channels with multiple paths to output channels
have a frontier set; in such cases f(C) is defined as the mini-
mal frontier set element.) Channel C’s maximal pre-frontier
base T (C) is a base block b with τ(b) ≺ f(C) such that no
other base block b′ on C has τ(b) ≺ τ(b′) ≺ f(C). During
scheduling, all blocks b′′ with τ(b′′) ≺ p(C) are ignored.

13Block b must reside on the channel from which o reads, and
be of the type required by o (i.e. B, ∆ or δi).

14In practice the number of legal options is not large and the
running time of this enumeration is reasonable, as verified
in Section 7.



6.2.2 Forming Compulsory Delta Chains

As data arrives, long chains of successive delta blocks
can accumulate on input and/or intermediate channels,
which unnecessarily increase the search space for schedul-
ing. We automatically combine, or chain, a sequence of
abutting delta blocks ∆(Ta✄T1),∆(T1✄T2), . . . ,∆(Tn−1✄

Tn),∆(Tn ✄ Tb) into a single block ∆(Ta ✄ Tb) for the pur-
pose of scheduling (the same goes for δ). However, we do
not form a chain that spans an intermediate temporal prove-
nance entry Ti if either of the following conditions hold: (1)
the channel contains a non-pruned base block B(Ti); (2) the
channel’s frontier set contains Ti. In either of these cases,
chaining could eliminate important processing pathways and
perhaps even permanently block processing on the workflow.

6.2.3 Propagating Constraints Upstream

We eliminate from consideration blocks that are unlikely
to lead to blocks that satisfy the downstream scheduling
constraints, by propagating scheduling constraints upstream
from the output channels toward the input channels, in a re-
cursive fashion. When propagating constraints from chan-
nel C to a channel C′ that feeds C, we project C’s staleness
bounds (if any) to retain only the provenance elements that
derive from C′, and simply copy C’s inconsistency bound
(if any). If C′ has its own staleness and/or inconsistency
bounds, they are combined with the ones propagated from
C by taking the minimum time bound constant (t value) of
each corresponding pair. Lastly, we constrain all propagated
staleness bounds on channel C to be less than or equal to
C’s propagated inconsistency bound.

6.2.4 Pruning Overkill Blocks

If the scheduler enumerates a potential block b on channel
C, and C already contains an actual block b′ such that (1)
b and b′ are of the same type (e.g. both strong deltas), (2)
τ(b′) ≺ τ(b), and (3) b′ satisfies C’s propagated scheduling
constraints, then b is called an overkill block and is pruned.
Overkill blocks represent unnecessary processing work, and
plans that incorporate them will ultimately not be chosen
by the scheduler due to excessive cost.

6.3 Incorporating Long-term Considerations
As mentioned above, our basic scheduling algorithm is re-

active, in the sense that it waits for a freshness constraint
to be violated and then focuses on minimizing short-term
costs to repair the violated constraint. Take the following
example: In our crawl selection workflow we place an in-
consistency bound of one week on the output channel (Sec-
tion 5.1). After the initial week has elapsed, our reactive
scheduling algorithm updates the “indegrees”data to be just
under one week old and recomputes the output data. This
approach satisfies the immediate scheduling constraints at
minimal cost, but leads to updating the “indegrees” data in
every iteration. A better long-term strategy is to bring the
“indegrees” data fully up to date so that it can remain idle
for a week.

We therefore add the following provision: ignore potential
block b if another potential block b′ of the same type has
been enumerated (and not pruned) for the same channel,
such that τ(b) ≺ τ(b′). (Note that this provision does not
eliminate cost-based competition among different execution
strategies; there is still competition among blocks with equal
or incomparable target provenance.)

7. EVALUATION
We evaluate our asynchronous processing model and

scheduling algorithm with a workflow simulator. Our sim-
ulator encapsulates all aspects of the workflow model de-
scribed in this paper except actual operator execution. Op-
erator execution is modeled as a noisy process in which
the running time and output data size are assigned by
applying standard relational cost and selectivity models
and adding significant random perturbation (a random,
Gaussian-distributed increase or decrease that averages 50%
of the original value).

We programmed the workflows described in Sections 1.1,
4.1 and 4.2, referred to here as SearchPreprocessing, Feed-
backPrioritization and CrawlSelection respectively, into
our simulator and assigned the scheduling constraints given
in Section 5.1. Incoming data rates, operator selectivies and
costs for these workflows were set based on real-world pa-
rameters.

Our simulator models an elastic computing (“cloud”) en-
vironment in which computing resources are effectively un-
limited but incur a linear cost, and embarrassingly-parallel
set-oriented processing primitives achieve near-linear scale-
up (e.g. map-reduce). In this context, both time and cost
are linearly proportional to the number of CPU hours re-
quired for a given computation.

7.1 Metrics
Recall from Section 5 that while the scheduler guarantees

to uphold consistency constraints at all times, freshness con-
straints can only be enforced on a “best-effort” basis. Hence
one of the important evaluation criteria is freshness lag, i.e.
the duration of freshness constraint violations. The other
two evaluation criteria are the computation cost of the gen-
erated execution plans, and the scheduling overhead.

In detail, our evaluation metrics are:

• Freshness lag: the lag between the time at which a
freshness constraint on an output channel becomes vio-
lated (due to arrival of new data) and the time at which it
is repaired (due to completion of some processing steps).
In the ideal case, the necessary computations have been
performed in advance and the lag is zero. In our exper-
iments we report the median lag in output freshness, in
simulated CPU hours.

• Computation cost: the total cost to process data, over
the lifetime of the workflow. In our experiments, this
quantity is measured in simulated CPU hours.

• Scheduling overhead: the scheduler running time,
summed across all invocations. In our experiments, the
scheduler was run on a 2.53 GHz dual-core processor with
4 GB of RAM.

All measurements are averaged over several runs to reduce
noise.

7.2 Results
Table 5 shows the results of running each workflow for a

ten-week duration under four alternative scenarios:

• Async/Incr: The full processing model of this paper.

• Sync/Incr: Only consistent blocks are permitted.

• Async/Batch: Only base blocks are permitted.

• Sync/Batch: Consistent, base blocks only.



processing freshness lag processing cost scheduler running time

workflow method (CPU hours) (CPU hours) (cumulative seconds)

SearchPreprocessing Async/Incr 0.0606 28,900 6.25
Sync/Incr 27.9 214,000 2.59
Async/Batch 615 8.26 million 0.864
Sync/Batch 808 43.8 million 0.787

FeedbackPrioritization Async/Incr 0.0435 6930 2.77
Sync/Incr 2.12 7130 2.25
Async/Batch 139 35.0 million 0.692
Sync/Batch 193 1.34 billion 0.758

CrawlSelection Async/Incr 81.4 364,000 10.1
Sync/Incr 542 1.69 million 1.71
Async/Batch 2380 81.2 million 0.743
Sync/Batch 3890 114 million 0.667

Table 5: Workflow efficiency for asynchronous/incremental versus synchronous/batch, and dynamic program-
ming scheduler running times, for ten-week workflow runs.

Schedule quality. In the Async/Incr case our scheduling
algorithm produces the execution behaviors we hoped for, as
described in Sections 1.1 and 4, which selectively avoid up-
dating derived data sets when the existing level of temporal
consistency is adequate. Consequently the median fresh-
ness lag is one to three orders of magnitude lower than in
the Sync/Incr case, depending on the workflow. With the
SearchPreprocessing and FeedbackPrioritization work-
flows, when arrival of new input data renders the current
output stale, in the asynchronous case typically only a small
amount of data is processed to re-establish output fresh-
ness (just new pages (not new clicks); just news-related
searches), which achieves a three-orders-of-magnitude re-
duction in freshness lag compared to the synchronous case.
With the CrawlSelection workflow the gain is less dra-
matic, but still large—in this case the decreased lag comes
from only occasionally executing the expensive “periodic re-
crawl” and “adaptive recrawl” computations.

In terms of overall processing cost, with the Feedback-

Prioritization workflow there is little difference between
the Async/Incr and Sync/Incr cases, because all searches
are processed eventually. With SearchPreprocessing the
overall cost is much lower in the Async/Incr case relative
to the Sync/Incr case, primarily due to avoiding continual
symmetric incremental joins between web pages digests and
click scores, in favor of one-sided incremental joins punctu-
ated by occasional full join re-computations. Lastly, with
the CrawlSelection workflow the reduction in total pro-
cessing cost comes from running the “periodic recrawl” and
“adaptive recrawl” steps fewer times.

In terms of absolute numbers, the CrawlSelection work-
flow has the highest freshness lag and processing cost,
mainly because it contains non-incremental elements. Even
then, forcing fully non-incremental execution makes fresh-
ness and total processing cost much worse, as shown in the
Async/Batch case. In practice the CrawlSelection work-
flow is run on a large cluster of approximately 1000 ma-
chines, in which case the 81.4 CPU hours for freshness lag
translates to around five minutes of processing time. The
total processing cost—364,000 CPU hours over a ten-week
period—translates to 13 CPUminutes per machine per hour,
which gives a very comfortable operating margin.

Scheduling overhead. The right-most column of Table 5
gives total running times for our scheduling algorithm. As

these numbers show, our scheduler is extremely efficient, re-
quiring just a handful of seconds total to perform all schedul-
ing decisions for a ten-week workflow run.

Comparison with simpler scheduling algorithms. We
compare our dynamic programming scheduling algorithm
against two baselines:

• greedy: Each time the scheduler is invoked, consider
blocks that can be derived directly from existing blocks
(after pruning old blocks as in Section 6.2.1 and forming
compulsory delta chains as in Section 6.2.2). Select the
lowest-cost block that satisfies the propagated schedul-
ing constraints (Section 6.2.3), and return the single-
operator plan that generates the selected block.

• random: Enumerate candidate blocks in the same man-
ner as greedy. If any of the enumerated blocks has zero
cost (e.g. a delta chain), select it; otherwise select a
block at random. (The purpose of random is to estab-
lish a lower bound on scheduler performance.)

In our experience, greedy tends to generate many interme-
diate data blocks that are cheap (relative to other possible
blocks), yet turn out not to be useful in producing the out-
puts that are required in the short-term (which hurts fresh-
ness) and/or long-term (which hurts total processing cost).
The accumulation of cheap but useless blocks compounds
the problem, as these blocks open up avenues to generate
yet more cheap, useless blocks. This process both blows up
the search space of the algorithm and leads to a spiral of
worsening cost and freshness results.

Due to the search space blow-up experienced by
GREEDY, we had to limit our performance comparison of
different scheduling algorithms to short workflow runs. Ta-
ble 6 shows a comparison of scheduling policies on twelve-
hour workflow runs. Although the greedy strategy is clearly
far better than random, for the reasons stated above our ap-
proach performs much better still, in terms of both freshness
and total processing cost, on all workflows studied.

8. SUMMARY
This paper introduced an asynchronous model of incre-

mental data processing, which arises from a real-world need
for low-latency processing of critical data combined with pe-
riodic bulk processing of less critical data. Asynchronous



scheduling freshness lag processing cost scheduler running time

workflow algorithm (CPU hours) (CPU hours) (cumulative seconds)

SearchPreprocessing dyn. prog. 0.0399 187 0.208
greedy 17.0 255 49.8
random 61.6 932 1.86

FeedbackPrioritization dyn. prog. 0.0485 24.5 0.183
greedy 5.10 66.9 0.507
random 19.1 413 0.374

CrawlSelection dyn. prog. 4.94 356 0.176
greedy 96.2 783 18.1
random 396 2840 0.530

Table 6: Comparison against baseline scheduling algorithms, for twelve-hour workflow runs.

data processing workflows have complex scheduling require-
ments and necessitate careful control over the inconsistent
data they generate. Our formal model of workflow seman-
tics and scheduling constraints simplifies the task of pro-
gramming such workflows and obtaining the desired latency
and consistency properties. Our scheduling algorithm pro-
duces low-latency schedules that meet the consistency re-
quirements with very little scheduling overhead, greatly out-
performing a baseline greedy approach in terms of quality
of schedules produced as well as scheduler running time.

Acknowledgments

We are grateful to the Yahoo! Nova team for their inspi-
ration and feedback, especially Laukik Chitnis, Yiping Han
and Andreas Neumann. We also thank Al Olston and Anish
Das Sarma for their feedback.

9. REFERENCES

[1] D. J. Abadi, D. Carney, U. Cetintemel, M. Cherniack,
C. Convey, S. Lee, M. Stonebraker, N. Tatbul, and
S. Zdonik. Aurora: A new model and architecture for
data stream management. VLDB Journal, 12(2), 2003.

[2] Apache. Oozie: Hadoop workflow system.
http://yahoo.github.com/oozie/.

[3] A. Arasu, S. Babu, and J. Widom. The CQL
continuous query language: Semantic foundations and
query execution. VLDB Journal, 15(2):121–142, 2006.

[4] M. Banko, M. J. Cafarella, S. Soderland,
M. Broadhead, and O. Etzioni. Open information
extraction from the web. In Proc. IJCAI, 2007.

[5] C. S. Botzler, J. Snigula, R. Bender, and U. Hopp.
Finding structures in photometric redshift galaxy
surveys: An extended friends-of-friends algorithm.
Monthly Notices of the Royal Astronomical Society,
349:425–439, 2004.

[6] A. Z. Broder, S. C. Glassman, and M. S. Manasse.
Syntactic clustering of the web. In Proc. WWW, 1997.

[7] D. Carney, U. Cetintemel, A. Rasin, S. Zdonik,
M. Cherniack, and M. Stonebraker. Operator
scheduling in a data stream manager. In Proc. VLDB,
2003.

[8] C.-H. Chang, M. Kayed, R. Girgis, and K. F. Shaalan.
A survey of web information extraction systems. IEEE
Trans. on Knowledge and Data Engineering,
18(10):1411–1428, 2006.

[9] S. Chien, C. Dwork, R. Kumar, D. R. Simon, and
D. Sivakumar. Link evolution: Analysis and

algorithms. Internet Mathematics, 1(3), 2003.

[10] J. Cho and H. Garćıa-Molina. The evolution of the
web and implications for an incremental crawler. In
Proc. VLDB, 2000.

[11] J. Cho and H. Garćıa-Molina. Effective page refresh
policies for web crawlers. ACM Transactions on
Database Systems, 28(4), 2003.

[12] J. Cho, J. Garćıa-Molina, and L. Page. Efficient
crawling through URL ordering. In Proc. WWW, 1998.

[13] L. S. Colby, T. Griffin, L. Libkin, I. S. Mumick, and
H. Trickey. Algorithms for deferred view maintenance.
In Proc. ACM SIGMOD, 1996.

[14] P. Desikan, N. Pathak, J. Srivastava, and V. Kumar.
Incremental page rank computation on evolving
graphs. In Proc. WWW, 2005.

[15] E. W. Dijkstra. A note on two problems in connexion
with graphs. Numerische Mathematik, 1:269–271,
1959.

[16] M. Garofalakis, J. Gehrke, and R. Rastogi, editors.
Data Stream Management. Springer, 2009.

[17] J. Gray et al. Data cube: A relational aggregation
operator generalizing group-by, cross-tab, and
sub-totals. Data Mining and Knowledge Discovery,
1(1), 1997.

[18] A. Gupta and I. S. Mumick. Maintenance of
materialized views: Problems, techniques, and
applications. Data Engineering Bulletin, 18(2):5–20,
1995.

[19] B. He, M. Yang, Z. Guo, R. Chen, W. Lin, B. Su, and
L. Zhou. Comet: Batched stream processing for data
intensive distributed computing. In Proc. ACM
Symposium on Cloud Computing (SOCC), 2010.

[20] Z. Ivezic, J. Tyson, R. Allsman, J. Andrew, R. Angel,
and et al. LSST: from Science Drivers to Reference
Design and Anticipated Data Products.
http://arxiv.org/abs/0805.2366.

[21] T. Joachims, L. Granka, and B. Pan. Accurately
interpreting clickthrough data as implicit feedback. In
Proc. SIGIR, 2005.

[22] T. Jorg and S. DeBloch. Towards generating ETL
processes for incremental loading. In Proc. 12th
International Database Engineering and Applications
Symposium (IDEAS), 2008.

[23] B. Lindsay, L. Haas, C. Mohan, H. Pirahesh, and
P. Wilms. A snapshot differential refresh algorithm. In
Proc. ACM SIGMOD, 1986.

[24] B. Ludascher et al. Scientific process automation and



workflow management. In Scientific Data
Management: Challenges, Technology, and
Deployment, chapter 13. Chapman & Hall/CRC, 2009.

[25] P. Neophytou, P. K. Chrysanthis, and A. Labrinidis.
Towards continuous workflow enactment systems. In
International Conference on Collaborative Computing:
Networking, Applications and Worksharing, 2008.

[26] Z. Nie, Y. Ma, S. Shi, J.-R. Wen, and W.-Y. Ma. Web
object retrieval. In Proc. WWW, 2007.

[27] G. Ozsoyoglu and R. T. Snodgrass. Temporal and
real-time databases: A survey. IEEE Trans.
Knowledge and Data Engineering, 7(4):513–532, 1995.

[28] L. Popa, M. Budiu, Y. Yu, and M. Isard. DryadInc:
Reusing work in large-scale computations. In Proc.
USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud), 2008.

[29] D. Quass, A. Gupta, I. Mumick, and J. Widom.
Making views self-maintainable for data warehousing.
In Proc. PDIS, 1996.

[30] K. Salem, K. Beyer, B. Lindsay, and R. Cochrane.
How to roll a join: Asynchronous incremental view
maintenance. In Proc. ACM SIGMOD, 2000.

[31] T. Tavares et al. An efficient and reliable scientific
workflow system. In Proc. of 7th International
Symposium on Cluster Computing and the Grid
(CCGrid’07), 2007.

[32] D. York et al. The Sloan Digital Sky Survey: Technical
Summary. Astronomy Journal, 120:1579–1587, 2000.


