Math 52 - Winter 2010 - Final Exam

Please circle your TA's name:	Jack Hall		Xiannan Li		David Sher	
Circle the time your TTh section r	neets:	10:00	11:00	1:15	2:15	
Your name (print):			St	udent	ID:	

Please sign the following:

"On my honor, I have neither given nor received any aid on this examination. I have furthermore abided by all other aspects of the honor code with respect to this examination."

Signature:_____

Instructions:

- Print your name and student ID number, circle your TA's name, the time that you attend the TTh section and sign to indicate that you accept the Honor Code.
- Read each question carefully. In order to receive full credit, please show all of your work and justify your answers.
- You have 3 hours. This is a closed-book, closed-notes exam. No calculators or other electronic aids will be permitted. If you finish early, you must hand your exam paper to a member of teaching staff.

Problem	1	2	3	4	5	6	7	8	9	10	11	Total
Max	16	16	18	22	20	18	18	16	20	18	18	200
Score												

Formulas you may use: Relating rectangular coordinates x, y, z, cylindrical coordinates r, θ, z and spherical coordinates ρ, θ, φ :

 $\begin{cases} z = \rho \cos \varphi, \\ r = \rho \sin \varphi, \\ x = r \cos \theta = \rho \sin \varphi \cos \theta \\ y = r \sin \theta = \rho \sin \varphi \sin \theta \end{cases} \text{ and } dx dy dz = r dr d\theta dz = \rho^2 \sin \varphi d\rho d\theta d\varphi.$

Trig identities: $2\cos^2 x = 1 + \cos 2x$, $2\sin^2 x = 1 - \cos 2x$.

Problem 1. (16 pts) Evaluate $\int_0^1 \int_x^1 \int_0^y y \sin(xy) \, dz \, dy \, dx$.

Problem 2. (16 pts) Consider the force field $\vec{F} = (x^2 + y^2)\vec{i} + xy\vec{j}$ in the plane. Find the work (circulation) done by the force \vec{F} on a particle that moves along the graph of $x = y^2$ from (0,0) to (4,2).

Problem 3. (18 pts total) Let $F(x, y, z) = (2xy + z^2, 2yz + x^2, 2zx + y^2)$. (a) (12 pts) Find a potential for F.

(b) (6 pts) Let C be the curve parametrized by $r(t) = (\cos t, \sin t, t)$ for $0 \le t \le 1$. Compute $\int_C \vec{F} \cdot \vec{T} ds$

Problem 4. (22 pts total) Let S be surface parametrized by $X(s,t) = (s \sin t, s \cos t, s^2)$ for $1 \le s \le 5$ and $0 \le t \le \pi$. (a) (16 pts) Compute the surface area of S.

(b) (6 pts) SET UP, but **do not** calculate a DOUBLE integral computing the moment of inertia about the y axis of an object in the shape of the surface S if the density function is $\delta(x, y, z) = \sqrt{x^2 + y^2}$.

Problem 5. a) (10 pts) Evaluate

$$\int_{-R}^{R} \int_{-\sqrt{R^2 - x^2}}^{\sqrt{R^2 - x^2}} \frac{dydx}{1 + x^2 + y^2}$$

b) (10 pts) Determine all the values of the constant c such that the following integral is finite:

$$\iint_{\mathbb{R}^2} \frac{dA}{(1+x^2+y^2)^c}$$

Problem 6. (18 pts) Let C be the triangle formed by intersecting the plane x + y + z = 1 with the three coordinate planes, oriented counterclockwise as we look at it standing at the origin. Use Stokes' Theorem to calculate

$$\int_C zdx + xdy + ydz$$

Problem 7. (18 pts) If $\vec{F} = 2xy\vec{i} + z\cos x\vec{j} + (z^2 + xy)\vec{k}$, calculate the outwards flux of \vec{F} through the part of the surface $z = x^2 + y^2$ situated below the plane z = 4.

Problem 8. (16 pts) Use Green's Theorem to evaluate $\int_C (x^2 + y)dx + xy^2dy$ where C is the closed curve determined by $y^2 = x$ form (0,0) to (1,-1) and then y = -x from (1,-1) back to (0,0).

Problem 9. (20 pts) Find the volume of the region inside both the sphere of radius 2 centered at the origin and the vertical cylinder of radius 1 centered at (1,0,0).

Problem 10. (18 pts total) Consider the vector field $\vec{F}(x, y, z) = \left(x, \frac{-z}{y^2 + z^2}, \frac{y}{y^2 + z^2}\right)$.

a) (6 pts) Show that the curl of \vec{F} is zero wherever \vec{F} is defined.

b) (6 pts) Show that \vec{F} has nonzero circulation along the curve C given by $x(t) = (\cos(t)\sin(t), \cos(t), \sin(t))$, with for $0 \le t \le 2\pi$.

c) (6 pts) Carefully explain why the results of part a) and b) do not contradict Stokes' theorem.

Problem 11. (18 pts) Let \vec{F} be a vector field defined everywhere except at the origin. Suppose the divergence of \vec{F} is 3 everywhere \vec{F} is defined. Let S_1 and S_2 be the surface of the cubes centered at the origin and of sides 2 and 4 respectively. Assuming the outwards flux through S_1 is 5, find the outwards flux through S_2 . Please **carefully explain** your reasoning.