Application security

September 25, 2015

Administrative — submittal instructions

answer the lab assignment’s questions in written
report form, as a text, pdf, or Word document file (no
obscure formats please)
email to csci530l@usc.edu
exact subject title must be “applicationsecuritylab”
deadline is start of your lab session the following
week

reports not accepted (zero for lab) if

— late

— you did not attend the lab (except DEN or prior
arrangement)

— email subject title deviates

Administrative — DETER accounts

e accounts were created last night

e you should have received an auto-generated
email message with information and instructions

e please read it and respond to its request to act
(change password) within 3 days

Upcoming lab schedule adjustment

e we will have a capture-the-flag exercise
e among competitive teams

e extending over 5 weeks

e after the midterm, 10/16

e with the help of Prof Jelena Mirkovic

e it will replace one of our scheduled labs
e more to be announced later

Administrative

e refer during upcoming lab to these slides’
screenshots

— recommend you have paper or electronic access

to those slides that contain detailed screenshots
(lab asks you to mimic screenshot activities)

e use only the provided VM environment
(CentOS 4.3 min-gdb)

— 1t has been customized a little

— other platforms/compilers generally won’t work

Administrative — pre-homework

e advance preparation for this lab
e read through page 8

[J
Overflowing the stack
‘ n on Linux x86

Overflowing the stack
on Linux x86

http://sobolewscy.inS.pl/piotr/publikacje/hakin9/stackoverflow_en.pdf
http://www-scf.usc.edu/~csci530l/downloads/stackoverflow_en.pdf

Three aspects of lab

e Generic stack overflow
e heartbleed bounds checking oversight

Generic stack buffer
overflow

Stack buffer overflow

e what’s a stack?
e what’s an overflow?

Special list: a stack

stack pointer base pointer
(top, last/latest) (bottom, first/oldest)

clg—[g— M=o 5w |

All insertions and deletions occur at
one end, the “top.

Used for intra-program control flow

main

call procA

procedure A

call procB

return

procedure B

return

Uses a stack to get back

Main Memory

Stack base register

o] —

Stack pointer register

Uses a stack

Main Memory

Stack base register

o] —

Stack pointer register

fioz]——

Uses a stack

Main Memory

Stack base register

o] —

Stack pointer register

Uses a stack

Main Memory

Stack base register

o] —

Stack pointer register

Finding your way back—
breadcrumbs & return addresses

Intra-program Flow of control

Evolving Stack State
outset after after 1% after return after 2™
call procA call procB from procB call procB

call procA

4161 4161
4501
__callprocB_____
return ad @ii8sses

Intra-program Flow of control

Evolving Stack State
after 2 after return after return
call procB from procB from procA

4161 4161
4651

call procA

Not only return addresses get “stacked”

e local variables

e frame (intrastack) pointers

e return addresses

e arguments/parameters for called functions

Stack diagram

“For example, if a subroutine named DrawLine is currently running, having just been
called by a subroutine DrawSquare, the top part of the call stack might be laid out like this
(where the stack is growing towards the top):

Stack Pointer top of stack

Locals of
DrawLine stack frame
far

hd i
. Return Address DrawLine
Frame Fointer subroutine

Parameters for
DrawLine

Locals of
stack frame DrawSquare

for Return Address
DrawSguare
subrauting Parameters for

DrawSquare

From: http://en.wikipedia.org/wiki/Stack_frame#Structure

PIM0I3 yoels

vVars.C — has local variables

main {(int arge, char *argv([])

int a

int b

int <

a=1

b=2

=3

printf ({"the end\n"):

Local variables on the stack

£ root@snort:~stack
gdb) list
main (int arge, char *argv(l) {

int a; esp=0xbfe775a0 (latest)
e ebp=0xbfe775c8 (oldest)

iyl " - byte where esp points
printft’

(
1
2
3
4
5
[}
7
8
9

4 - byte before where ebp points
(gdb) break &
file temp.c, line 6.
(gdb) run
starting program: /rootAstack/temp

Breakpoim argv=0xbfe77654) at temp.c:6

6

(gdb) x/12 Sedp _

O0xbfe775a0: 10200000000 0x00000000 0xbfe775c8 0x080483c6
Oxbfe775b0: 0x0804545¢c 0x0075eff4
Oxbfe775c0: O0xbfe77628 0x0064bde3

higher addresses

;
(gdb) x/12 Sesp

0xbfe?75a0: 000000000 0xbfe775c8 0x080483c6
0xbfe775b0 Q075effa 0x0804949¢ 0%00752££4
0xbfe775c0: 0xbfe77628 0x0064bde3
(gdb) next

g printf{"the end\n");

(gdb) %/12 Sesp

0xbfe775201 Tox00000000 000000000 0xbfe77508

0xbhfe775b0 00075214 00075214 0x0804949¢
0xbhfe775c0: 000000002 000000001y 0xbfe77628 0x0064bde3
(gdb)

11

rvals.c - has a function

wolid fn{) o
printf ("now we are in fni\n");

main (1
printf ("now we are in mainin");

ftni):

frame pointers & return addresses

root@5nort:
gdb) list
void fn()
printf ("now we are in fn\n"};

i

main () {
printf ("now we are in main\n");
)
¥
(gdb) break 7
Breakpoint 1 at 0x80483ac: file rvals.c, line 7.
(gdb) run
Starting program: /root/stack/rvals
now we are in main

Breakpoint 1, main () at rvals.e:?7
7 o) ;
(gdb) print Sesp

$1 = (void *) 0xbfea7950 X N N

gdb) print Sebp pointer to base of current stack/frame (byte preceding stack’s first),

(
52 = (void * Oxbfeald68 in resister
in register

(gdb) /6 Sesp
Oxbfea7s850: rEIxEIEI7Eleff4 0x00 0x080494c0 0x0075eff4

4
OxbFea7960: 0200000000 0x00633caly
(gdb) break 2 =
Breakpoint 2 at 0x804836e: file rvals.c, line 2.
(gdb) next
Breakpoint 2, fn () at rvals.c:2 be‘mre‘ tungtmn call
2 printf("now we are in En\n");: after function call
(gdb) print Sezp
$3 = (void *) Oubfea7940
(gdb) print Sebp
$4 = (void *) Oxbfea734d8
(gab) =/10 Sesp . pointer to base of previous stack/frame,
Oxbfea7940: 1008046446 0x00000000 0x080483b1 in stack
Oxbfea7950: 0x0075eEt4 0x0075e££4 0x0075e££4
Oubfea7960: 0200000000 0x00633cal

(gdk) . .
previous frame, intact

12

...continued... & return addresses

print Ses
(void *) Dxbfea7940
print Sebp
(void *) Oxbfea7948
(gdb) /10 $esp
Osbfea7940: Di0s0484a6 0200000000 Oxbfea7dss
Oxbfea7950: 0x0075eE4 0x0075e£54 0x080494cD TU7SeTIh
Oxbfea?960: 000000000 0x00633cal
(gdb) disas main
Dump of assembler code for function main:
0x08048380 <maint0>: push %ebp
0xD8048381 <maintls: mov %esp, %ebp
0xD8048383 <maint3>: sub 50x8, %esp
0xD8048386 <maintes: and SOREEELEEED, Sesp
0x0B048389 <main+9>: mov 50x0, 5eax breadcrumb!
<maintl4>: add S0uf, seaxn lac 50 back
<maintl7>: add SOxf, ean place to go bac
<main+20>: shr $0xd, kean to in calling routine, when done
<main+23>: shl S0ud, $eaxn
<main+Zé>: sub %teax, tesp
0xD80483%c <maint28>: sub S0xc, Sesp
0x0804839€ <maint3l>: push $0x80484a6
0x080483a4 <maint36>: call Dx80482b0
0x080483a9 <maintdl>: add 50x10, besp
0xD80483ac <maintd44>: call 0x8048368 <fn>
0#080483b1 <nainted: leave €
0x080483b2 <maint50>: ret where to go back to
End of assembler dump.
print Sebptd where you left off
(void *) Oxbfea7ddc /
% OxbfeaTidc
0x080483b1

stack_2.c —function parameters to pass

void fn{int argl, int argZ; {
int x; int y;
¥=3; y=4;
printf("now we are in fn\n");

main () {
int ar int b:
a=1l; b=2i;
fnia, b)?

...and args for called functions

void fn(int argl, int argZ2) |
int =; int y;
x=3; y=4;
printf ("now we are in £n\n");

i

main () {
int a; int b;
a=1l; b=2;
fnia, b);
¥
(gdb) break 10
Breakpoint 1 at 0x80483b8: file stack_2.¢, line 10.
(gdb) break 4
Breakpeint 2 at 0xB804837c: file stack 2.c, line 4.
(gdb) run
Starting program: /root/stack/stack 2

Breakpoint 1, main () at stack_2.c:10
10 fn(a, b);
(gdb) print Sesp
(void *) OxbfedddlD
print $ebp
(void *) Oubfeddd2s
x/6 Sesp
Dxbfedddl0: 0x0075eff4 0x0075eff4 0x080494c
Oxbfeddd20: 0x00000002 0x=00000001y
(gdb) next

Breakpoint 2, fn (argl=l, arg2=2) at stack 2.c:d

printf("now we are in fn\n"):

print Sesp

(void *) Oxbfeddcfl

print §ebp

(void *) Oxbfeddcfs

2/14 Sesp
%0:00000004 02000000031 Oxbfeddd2s

000000001 0:00000002 Dxbfedsdzs

W0x0075etE4 0x0075=tt 0x080494c4
0x00000002 0200000001

...continued

(gdb) print Sesp

53 = (void *) Dzbfed9cfl

(gdb) print Sebp

54 = (void *) Dxbfed9cfh

(gdb) =/14 Sesp

OxbfedBefO: 0x00000004 0x00000003 Ozbfeddd2a
0xhbfeddd00: 0x00000001 0x00000002 Ozbfeddd2a
0xhbfedddl0: 0x0075eff4 0x0075eff4 0x060494c4
Oxbfed?d20: 0x00000002 0x00000001

(gdb) di=as main

Dump of assembler code for function main:

0x0804638e <main+0>: push %ebp

0x0804836f <main+l>: mov %esp, ebp

0x08048391 <main+3>: sub S0x8, sesp

0x08048394 <main+h>: and SOREEEEELED, Sesp

0x08048397 <maintd>: mov S0x0, seax

0x0804839¢c <maintld>: add SOxf, teax

0x0804839f <maintl7?>: add SOxf, teax

0108048342 <main+20>: shr S0xd, Seax

0x080483a5 <maint+23>: shl S0xd, $eax

0x080483a8 <maintZé>: sub %eax, tesp

0x080483aa <maint+28>: movl S0xl, DxEffEEffc(%ebp)
0x080483b1 <main+35>: movl S0x2, OxEEfEEEEER (3ebp)
0x080483b8 <main+42>: sub S0x8, sesp

0x080483bb <main+45>: pushl Oxfffffffa ($ebp)

0x080483kbe <maint48>: puzhl OxTEFfEEfe (Sebp)

args for fn, placed
on stack via main

0x0075eff4

pointer to base of
previous stack frame

return address

0x080483ch
0x0B0483e6
0x0075eff4

return address

0x080483¢6
0x080483¢6
0x0075eff4¢

0x080483c1 <maint5l>: call 0xB8048368 <fn> checks out — is the right resumption location to
0x0804B83cE <maint56>: add S0x10, sesp pick up where we left off

0x08048320 <maint59>:
0x080483ca <mainté0>: ret
End of assembler dump.
(gdb)

14

Return address location
formula: $ebp+4

(gdb) print Sesp
(void *) DubfedBcfl return address

Oxbfed3cfs +4=0xbfed9cfc

(gdb) =/14 Sesp
OxbfedSef 0x00000004 0x00000003 R fsedze—0R000463¢6
OxbfedddD 0x00000001 0x00000002 Ozbfeddd2a 0x08048326
Oxbfedddl 0x0075eff4 0x0075eff4 0x060494c4 0x0075eff4
Oxbfed?d20: 0x00000002 0x00000001
{gdb) disas main
Dump of assembler code for function main:
0x0804838e <main+0>: push $ebp
0x0804836f <main+l>: mov %esp, ebp
0x08048391 <main+3>: sub S0x8, sesp
0x08048394 <main+h>: and SOREEEEELED, Sesp
0x08048397 <maintd>: mov S0x0, seax
0x0804839¢c <maintld>: add SOxf, teax
0x0804839f <maintl7?>: add SOxf, teax
0108048342 <main+20>: shr S0xd, Seax
<maint+23>: shl S0xd, $eax
<main+26%: sub $eax, $esp
<maint28%: movl §0xl, DxEfEEEffc (%ebp)
<main+35>: movl S0x2, DxEEEEEEEE (%ebp)
<main+42>: sub $0x8, tesp
<main+45>: pushl Oxfffffffa ($ebp)
<main+t48>: puzhl OxfEfEfEfc (3ebp)
<maintSl>: call 0xB049368 <fn> checks out - is the right resumption location to
<main+5E>: add S0x10, sesp A
0x0804B83c3 <main+59>: leave plek up where we left off
0x080483ca <maint+é0>: ret
End of assembler dump.
(gdb)

“just in case you ever want to overwrite it

stack 1.c - fixed param space, but
variable arg len*

woid fn{char *a)
char buf[10]:
strepyibuf, a):
printf{"the end of fn\n"};

main (int argc, char *argv([])
fniargv[1]):
printf{"the endin"):

parameter - placeholder variable in function definition for receiving a passed value
argument — specific value that i

Stack separation between

argument & return address

£ root@Snorti stack

gdb) list

void fn{chgz ar {
char bu make enough room to contain 10 characters
b 2l

strepy(
printf ("the end of fn\n"):
¥

0

main {(int argc, char #*argv[]) |
fn{argv(1]);
printf("the end\n™);

WD 1O 1) B

—
o

+
(gdb) break 3
Breakpoint 1 at 0x80483aé: file stack 1.c, line 3.
{gdb) break 4
Breakpoint 2 at 0x80483b8: file stack 1.c, line 4
{gdb) run DDDDDDDDDD
starting program: /root/stack/stacl

ten Ds

Breakpoint 1, fn (a=0xbfffecl7 "DDDDDDDDDD™) at stack_l.c:3
3 stropy (buf, al;

(gdb) %/12 Sesp

Oxbfffdb30: 0x0063441£8 0x00000000 0x00000000
Oxbfffd540: 0:20804840c 0x080495e8 OxbEffd578
Oxbfffd550: Oxbfffecl? 0x00000000 Oxbfffd578
(gdb) next

x00000000
0x080483f6
0x08048426

Breakpoint 2, fn (a=0xbfffecl7 "DDDRDDDDDDD™
4 printf ("the end of fn\n"):

{gdb) ®/12 Sesp
Oxbfffd530: < 0=44444444 Dx44444444 0x0000444> 0%00000000
Oxbfffd540: 0x0804500T tr % ORDLILLd578 0x080483f6
Oxbf£££d550: Oxbfffecl? 0x00000000 OxbEL£Ed578 0x0804842Z6
{gdb) print S$ebp

= {void *) Oxbfffd548

at stack_l.c:

return
address

Crafting an attack based on this

e control argument length

— extend enough to overwrite the return address
e control argument content

— craft meaningful code into early portion

— calculate overwritten return address value to
backpoint into that code

16

How?

e this exercise ends with article’s page 8

e keep reading, page 9 (extracurricular)...
— gives a real-world example
— delivers malicious argument across a network
— achieves a shell prompt

Please see

e “Overflowing the stack on Linux x/86”
— http://www-scf.usc.edu/~csci530l/downloads/stackoverflow_en.pdf
— originally http://sobolewscy.in5.pl/piotr/publikacje/hakin9/stackoverflow_en.pdf

e GNU debugger (gdb) documentation

— http://sourceware.org/gdb/current/onlinedocs/gdb.html#SEC_Top

17

Is feature?

Any other code suffer th

Fle Edt Mew Hgtoy Bookmarks Tooks Help

KB Explots Database by Offensive Security
B- cooge

if we knew
ab Out lt, no L4 i exploit-db. com 2! =
(it’d be fixed by now) EXPLDIT gt \xcid
DATABASE

but we don’t,
Yes (lots)

- an ultimate archive of exploits and

[E) - firefox restore menu toolbar

€ | @ v, exploit-db.comexplolts/23622]

n: -neg 3 ot g e ot o

Hptere it ri Srbe o Frert bt e e SR

e, Sea

#include <zdia
Fanclude <ctrarg.

o2 maineis)
FprintF(otdan, A(hellcode));

18

What can be done?

e tighten compiler check

— this lab might
not work with

Forum lssues Developerinfo =~ Online Demo Project page

Download Featwres News Documentation Support Contribute

later gcc releases zr;c:le"c:xhli:::ﬂ;znzl/mtoolfan/Cchde Unlike ¢ i comp m:ﬂwn st dme:fwexnm detect syntax
ly The code (i.e.
e perform static code Download

Download Now!

analysis

ndow:

You can download the standalone Cppcheckfrom our project page or add it as a plugin for your favorite IDE:

Codelite - integrated
Eclipse - Copchediipse
gedit- gedt plugin

| 2P I you e CJC+ developer, use cope... |

& ttps: st Feck » [

Jenkins - Cppcheck Plugin

Tortoise SVN - Adding a ps it hook script .
wercurat i) recomit ot cheactornen | £ SAL I you are C/C++ developer, use cppcheck

There s no plugin for Visual Studio, but it is possibleto add d Rahul Sundaram metherid at gmail com
freetrial), which thiseny Fue Dec 77 77.17:00 UTC 2013
here and we believe it's a good and honest comparison.

o Previous message: Announcing the release of Fedora 20
Features o Next message: PSAf you are C/Cr+ developer, use cppcheck
o Messages sorted by: [date] [thread] [subject] [author

« Out of bounds checking
« Checkthe code for each dlass B
« Checking exception safety
O M S In the last few days, I have been rumning cppcheck on quite a faw prograns
e S S T including systemd, transmission, libvirt, nd3bdns etc and cppcheck has
R fownd real and potentisl bugs (null pointer dereferences, uninitialized
ge of s ariebies, mewsry ¢ resource Teaks Ste) in fach of thea. T have reporced
o Check for ‘the ones I fownd and several developers have already fixed the issues.
couple of examples
News hetp:/ a
« cppeheck1.62 20 https: //gi b

« cppcheck1.61 2

o cppcheck1.60.1 You might also consider add a build target for regular checks

heep: /. 2id-16£4etbal

View all ney

That would be all. Thamks

A 2014 “current” event security system
#~ "\ SPACEFLIGHT INSIDER needed in Space??

HOME ARCHIVE MEDIA LAUNCH CALENDAR MISSION MONITOR

TWO MARS SPACECRAFT CELEBRATE
ONE YEAR IN MARTIAN ORBIT

‘This artist's concept shows the MAVEN spacecraft n orbit around the Red Planet, with a fanciful
image of her home planet in the background. Image Credit: NASA/Goddard Space Flight Center

NASA's Mars Atmosphere and Volatile EvolutioN (MAVEN) and India's Mars Orbiter Mission (MOWM)
celebrate one year in Martian orbit this week. MAVEN started its journey to Mars on Nov. 18, 2013,

JPL Institutional Coding Standard
for the C Programming Language

"For instance, an area of memory above the stack limit allocated to e:

[version edited for extemal distribution: should be reserved as a safety margin, and filled with a fixed and uncommon
doss ot include material copyrighted by MIRA Ltd (.., LOC-586) / s

and material copyrightad by the ISO (ie., Appendix A)] bit-pattern. A health task can detect stack overflow anomalies by at regular

Cleared for external distribution on 03/04/09, CL#09-0763, . N .] .
intervals checking the presence of the bit-pattern for each task. The same

principle can be used to protect against buffer overflow, or access to memo:
outside allocated regions. Critical parameters should similarly be
placing safety margins and barrier patterns around them.
violations and data corruption can be detected more easily."

Version: 1.0

Date: March 3, 2009

19

heartbleed bounds
checking oversight

Encrypting: for TCP vs for UDP

tls (1999) dtls (2006)
generic/unencrypted encrypts for TCP encrypts for UDP
network communication (can’t encrypt with UDP)

Vit V1

20

Distribution of function
between protocol layers

2006 dtls 1.0 2012 dtls heartbeat extension

encryption encryption encryption

dtls 1.0: rfc4347 heartbeat extension: rfc6520
packet ring essential for tls/dtls encryption channel check nonessential, but nice

- tls gets it from tcp - tls gets it from tcp as “keepalive”
- dtls must provide it (because udp does not) - dtls added it as “hearbeat”

Heartbeat extension rfc6520

21

rfc6520 excerpts

*“...The Heartbeat protocol is a new protocol running on top of the Record Layer [of ssl]. The
protocol itself consists of two message types: HeartbeatRequest and HeartbeatResponse....

“The Heartbeat protocol messages consist of their type and an arbitrary payload and padding.

struct {
HeartbeatMessageType type;
uint16 payload_length;
opaque payload[HeartbeatMessage.payload_length];
opaque padding[padding_length];
} HeartbeatMessage;

“...payload: The payload consists of arbitrary content.

“...If the payload_length of a received HeartbeatMessage is too large, the received
HeartbeatMessage MUST be discarded silently.

“When a HeartbeatRequest message is received ... the receiver MUST send a corresponding
HeartbeatResponse message carrying an exact copy of the payload of the received
HeartbeatRequest.... ”

Breaking news...

File Edit View History Boockmarks Teols Help
/ B8 https:/fwww.o...20140407 bt | T+
@ https:/Awenw.opensslorg/news/secady_20140407

Lpr 20

artbeat read overrun

L missing bounds check in the ! 1 b h t extension can be

used to reveal up to 64k of memo 1i server.

22

The effect

Heartbeat sent to victim
SSLv3 record:

Length

4 bytes

HeartbeatMessage:

Type Length

Payload data

TLS1_HB_REQUEST 85535 bytes

e

Victim’s response
SSLv3 record:

Length

65538 bytes

HeartbeatMessage:

Type Length

Payload data

TLS1_HB_RESPONSE 85535 bytes

http://www.theregister.co.uk/2014/04/09/heartbleed_explained/ see also:

The fix

http://pastebin.com/5PP8JVqA

§ giff -r openssl-1.8,1f/ss1/t1_lib.c openssl-1,8,12/ss1/t1 lib.c

#ifndef OPENSSL_WO_HEARTBEATS
int
tlsl_process_heartbeat(SsL *s)

»s3-»rrec.data[e], "pl;

unsigned char *p = &s
ed short hbty
int paylo

int padding

16; /* Use minimum padding */

#ifndef OPENSSL_NO_HEARTBEATS

_heartbest(SsL *s)

unsigned char ®*p = &s-»>s3-»rrec.datale], *pl;
short hbtype;
int payload;

int padding = minimum padding =/

/* Read type and payload length first =/ <
hbtyps = *pe=; <
nas(p, payload); <
pl = p; <
<
if _callback) if

»msg_callback(g, s-»

£s-553 c.data[8], 5-»53->

s, s

sg_callback_arg);

if (hbtype == TLS1_HE_REQUEST)

ersion, TLS1_RT_HEARTB
rec. len &5->53->r

»msg_callback(2, s- ion, TLS1_RT_HEARTE

s, s-»>msg_callback_arg);

23

" " " attacker’s terminal window,
X O Itatl O n I n t e a viewing victim memory fetched
from victim by heartbleed
Iceweasel

File Edit View History Bookmarks Tools Help
| httpsi//192.168.1.135/ |5

€ P an 192.168.1.135 v &| |[Bv coogle

[iMost Visited~ FlOffensive Security S Kali Linux & Kali Docs [BExploit-DB W Aircrack-ng

send something across

Hello to victim, via this form,

Fedora 19 with openssl 1.0.1e here, for CS530,
Press the button to invoke the action. The action is to run the "hajku" script.

Enter (or make up) a haiku author: \EAZZZZZZZZZZZYZSEEEE#}

that would be recognizable
get haiku here | in his memory, if ever seen there.

attacker’s browser,
viewing page sent
from web server
on victim
(192.168.1.1.

Don’t let browser accept revoked certs

require affirmative non-rev check

File Edit View History Bookmarks Tools Help

3 Overview of NSS - Mozilla ... X

§]f) 369 Directory Server (Open

server sites remediate by
1-updateing OpenSSL
2-revoking certificates Whetiisifriod nss?
(to prevent site impersonation

i ious heartbleed-

€ @ directorn, fedoraprojectorg ki Mod_ns== hat is_mod_nes 3 AE S AW S B £ g

mod_nss is an SSL provider derived from the mod_ss| module for the Apache & web senver that uses the Network Security Services
) lioraries. We started with mod_ssl and replaced the O; calls with NSS calls

The mod_ss| @ package was created in Apil 199 by Ralf S. Engelschall# and was originally derived from the Apach
package developed by Ben Laurie 3. It is licensed under the Apache 2.0 license .

Why use NSS instead of OpenSSL?

Use whatis best for your needs.

only meaningful if
client (you!) does hi:
part. I.E:. checks for the' This module was created so the Apache web server can use the same security libraries as the former Netscape server products
revocation and honors it acaquired by Red Hat. notably the Fedora Dirsctory Server (now called 389)

NSS is also used in the Mozilla clients. such as Firefox and Thunderbird. We are co-maintainers of NSS. and it better fits our
particular needs

turn it on in your

Options =
What features does mod_nss provi 55 By L

For the most part thers is a 1-1 mapping between tH__General _ Tabs _ Conkent _ Applicotions _ Privacy _Securty Advenced

Flrefo‘\ doe" In short. it supports: General | Data Choices | Network | Update | Certificates
phones brow‘ ers - 5503 sersons et
probably don’t =Lod Selectonc autormatically © £k me evrytime

= client centificate authentication

When a server requests

« hardware accelerators
= Certificate Revocation Lists (CRLs)
= OCSP

It does SSLV2 but it is disablef
all major web browsers now s| [[[] Use the Online Certficate Satos rotocel (OCSP) o confirm the current valdity of cetficates
check these —————>

Some mod_ss directives h

View Certificates dation | | Security Devices

Certificate Validation =

Ahen an OCSP server connection fail, treat the certficate as invalid

oK Cancel |

= SSLRandomSeed
. 531 SessionCache

4/04/24/certificate-revocation-why-browsers-remain-affected-by-heartbleed. html

My faqg

. Is this an exploitation of the SSL/TLS protocol?
. No, it’s an exploitation of the OpenSSL implementation of it.

. Are there other implementations?
. Yes for example Mozilla’s NSS (Network Security Services) or GnuTLS

. How widespread among websites is the use of OpenSSL to provide TLS?
. Maybe 17.5% of them use OpenSSL for that

http://news.netcraft.com/archives/2014/04/08/half-a-million-widely-trusted-websites-vulnerable-to-heartbleed-bug.html

. Does Apache use OpenSSL for SSL?
. Yes, if it uses mod_ssl for ssl. But it could use mod_nss and thus NSS’s ssl. Usually it installs

with mod_ssl by d
http://directory.fedoraproject.org/wiki/Mod_nss#What_is_mod_nss.3F

Information sources

e code analyses:
http://blog.existentialize.com/diagnosis-of-the-
openssl-heartbleed-bug.html
http://www.theregister.co.uk/2014/04/09/heartbleed_e
xplained/

e Security Now podcast - “How the Heartbleeds”
— audio: https://media.grc.com/sn/sn-450-1q.mp3
— transcript: https://www.grc.com/sn/sn-450.pdf

— shownotes: https://www.grc.com/sn/sn-450-
notes.pdf

e http://heartbleed.com

25

C language
sign extension bug

Case study - a longstanding bug

2 A hole in crypt_blowfish [LWN.net] - Mozilla Firefox

f" A hole in crypt_blowfish [LWN.net]

LW N Weelly ediion Kernel Security Dustributions Contact Us Search
< %H+ .h et Archives Calendar Subscribe Trite for LW LW net FAQ Sponsors

Linux info from the source A hOle il] Cl'}'[)t_blO“'ﬁSh

Not logged in
Log in now By Jake Edge
Create an account June 22, 2011

Subseribe to LWIT

nd w the orypt bl hp
| when a bug 1s found in a widely used low-level
library. Because crypt_blowfish has been around for so long (this bug iz said to go back to
1983 or possibly 1997), it has been used by vanious other packages (PHP for example) as well as some Linux
Weekly Edition distributions. The security mpact 15 not lkely to be huge, because it only affects passwords with somewhat
uncommen characteristics, but the impact on those who have stored hashed passwords generated using the library
may be a bit more painfil

Retun to the Security
page

introduced late 90s, noticed then but overlooked ever since
rediscovered while testing John the Ripper in June 2011

in the crypt_blowfish library

freely, admirably, immediately admitted, documented, and fixed
by the library’s author (who is also author of John the Ripper)

What was the bug?

e 4 bytes of key/password needed to be hashed
— passed to a char-type parameter variable “key”
— transferred to long-byte)-type variable “data”

e the transfer went bad
— “data” ended with value different from “key”

e resulting hash not that of the password

Intent: Event:

key: key: XXXX
data: > data: e yyyy
N ~

to hash engine to hash engine

~ ~

Underlying background issues

e binary signed integer representation
e the bitwise OR operation

27

Representing signed integers
(two’s complement method)

walue
Split range in half unsign ed
- low value half for zero and positive 0
- high value half for negative

WO~ 3 M W k)=

i
1
2
3
4
5
B
7

-8

7

-6

-5

-4

-3

-2

-1

Widening signed integers
“extension” and “sign extension”

2 bits 3 bits G bits

negative

zero and positive

unsigned signed unsigned signed unsigned ungigned sighed

w0 0 oo o o0 0 00000000

ot 1 1 o1 1 00000001
2 -2 2 010 2 00000010
3

ST \
4 100 - 4 00000100
101 - .

7 m

[URRR N
01111110
[RRRNRN
10000000
10000001
10000010
10000011

S0 m M e
ARy do b i o ™~ 0 0

o oW

To preserve same value, pad left with:

11111011
if positive, 0’S (e.g.+3) e

11111110

if negative, 1'S (eq.-2) T

1
2
3
4

28

Background: OR operation

® an operation
— operands (input): 2 bits
— result (output): 1bit

e ORing a bit with 0 yields (preserves) that bit
OOR0=0
1OR0=1

e ORing a bit with 1 yields 1 unconditionally
OOR1=1
10OR1=1

ORIing 2 bytes with each other

® no such thing
— OR is an operation for pairs of bits only
— not pairs of aces, nor deuces, nor bytes

® “ORing bytes” signifies 8 normal (bitwise) ORs,
collectively

ORing words requires 2 words, of equal length, O 1 OO 1 OO 1

to enable ORing their bits _lw
10011011

¥ Mozilla Firefox

The offending preErer=—e-s

code

I investigated this further, and it turned ouc
to he a source code implementation error.

There is an implementation error in published
Blowfish Code. The program chokes on the
commented "choke" statement, below:

bfinitichar *key,int kevhytes
{
unsigned long data:

j=0:
data=0;
for (k=0:k<4: K+ {
data= (data<<s) | key[i]:}'" choker/
i+=1;

if (j==keybytes)
3=0;

It chokes whenever the wost significant bit

of key[j] is & '1'. For example, if key[3]=0x50,
kev[il, a signed char, is sign extended to OxEEff££s0
before it iz CRed with data. For examle, when:

(3E0x3 x3 (that is j=0x3,0x7,0xf, etc.)
- -and-
(key[3] €0x80) ==0x80 (or when k[3J]=0xS0,0x81,etc.)

data=Oxfffff£80 (OxEE££f£81,etc.) upon exit from the
above "for(k=...)" loop. ORing all of these 1's into
data effectively wipes out 3/4 of the key characters!
(that is, 3/4 of the key characters are known to he
set to 1 when the 4th key byte to be ORed into data
has a 1 in the most significant bit.) For a randomly
selected 32-bit key, there is a 50% chance that 3/4
of the key could be considered as all '1's, even if
they weren't that way to begin with

offending code
loads key's 4 bytes into data

key[0] key[1] key[2] key[3]
00010001 00100010 01000100 10001000

10101010 10111011 11001100 11011101
‘i\\\\

by dOing thlS‘ initial value is

random/garbage

data=(data<<8) | keyl[j]

4 times

30

data=(data<<8) | key]j]

Observation
data is 4 bytes wide

key[j] is only 1 byte
keyl[j] is too short to OR with data

so pad (“extend”) it by 24 bits on the left

Operation
1. shift ‘data’ 8 bits left

left byte disappears
right byte zero-filled
left-pad keyl[j] with 24 zeros

OR them together
extended key[j]’s zeros preserve data’s leftmost 3 bytes

data’s zeros preserve extended key[j]’s rightmost byte

assign result to data

Intended operation of algorithm

00100010 01000100

10111011 11001100 11011101

initial “key” 00010001

initial “data” 10101010
10111011 11001100 11011101 00000000

shift

evolution of*‘data”: =
Rl
extend

or 10111011 11001100 11011101 00010001
11001100 11011101 00010001 00000000

00000’s from extend shift

Iteratjop »

extend
11001100 11011101 00010001 00100010

00000’ s from shift
or
11011101 00010001 00100010 V0000000

extend 00000000 00000000 00000000 01000100
or 11011101 00010001 00100010 01000100

shift

Iteratjop, 3

shift 00010001 00100010 01000100 00000000

extend

final “data” holds
00010001 00100010 01000100 10001000

initial “key” —>

Iteratj on 4

or

31

step 2: implicit, lexically invisible

data=(data<<8) | key][j]
shift ‘data’ 8 bits left
left-pad key[j] with 24 zeros
OR them together

assign result to data

Actual operation of algorithm
01000100

initial “key” 00010001 00100010
initial “data” 10101010 10111011 11001100 11011101
evolution of“data™ 7 shift 10111011 11001100 11011101 00000000
':? extend
= or 10111011 11001100 11011101 00010001

11001100 11011101 00010001 00000000

shift
extend
11001100 11011101 00010001 00100010

Iteratjop »

or
11011101 00010001 00100010 00000000

shift
extend 00000000 00000000 00000000 01000100
11011101 00010001 00100010 01000100

or

Iteratjop, 3

00010001 00100010 01000100 00000000

shift
extend I1111111 11111111 11111111
I1111111 11111111 11111111 10001000

Iteratj on 4

or

A code embodiment

= davideemachd: -
[david@emachd ~]§ cat -n sign-extension-bug.c
1 #include “stdio.h"
char key[4] = { Ox11, 0x22, Ox44, O0x88 };

main()
.
int J;
unsigned long_data;

printf ("\nEvolution of 'data' as bytes from_ 'key' are in-shifted from rightin");
printf("Tetters should be progressively replaced by numbers, one byte at a time\n\n");

data=0xaabbccdd;
printf("Initial walue of 'data': %08x\n\n", data);

printf ("4 rounds: slide existing bits one byte Teft, then OR incoming byte into rightmostin');
for (j=0;j<d;i++)

data: v[i];
printf(H0Bx\n", data J;
iTeep(i);

21}
[david@emachd ~]% ./sign-extension-bug

Evolution of 'data' as bytes from 'key' are in-shifted from right
letters should be progressively replaced by numbers, one byte at a time

Initial walue of 'data': aabbccdd

4 rounds: slide existing bits one byte Teft, then OR incoming byte into rightmost

= -> bbccddll

& -» ccddl122

i j <— just-loaded “112244” have been clobbered!

[d@emachd ~]3§ ./sign-extension-bug-fixed a fixed version

Evolution of 'data' as bytes from 'key' are in-shifted from right
letters should be progressively replaced by numbers, one byte at a time

Initial wvalue of 'data': aabbccdd
4 rounds: slide existing bits one byte Teft, then OR incoming byte into rightmost
bbeedd1l
> coddllez

B %‘MHZZM <— just-loaded “112244” are preserved unmolested
[david@emachd -~

Why is this happening?

e because C by default treats char type as signed

e So hex 88 (= bin 10001000) treated is as if
— decimal -120
— not decimal 136
e extend from 1 to 4 bytes keeping -120 value needs
— left-pad with 1
— not left-pad with 0
e alters the subsequent OR operation

33

What effects?

e replaces many password characters with FF
e promotes FF to ranks of high predictability

— along with natural language words
— along with birthday strings
— along with pets’ names
e cases intelligent brute force cracking task
— FF-heavy guesses are now rewarding to try a lot

What effects?

"I am wondering ... why I am getting different hashes....*

"'...it means we have incorrect (incompatible with OpenBSD's) hashes in the wild...«

"' John the Ripper and crypt_blowfish developer Alexander Peslyak (aka Solar Designer)
analyzed the effects of the bug and found that some password pairs would hash to the
same value with only minimal differences (e.g. ''ab£'' hashed to the same value as ""£'"),
which would make password cracking easier. A further analysis shows that some
characters appearing just before one with the high bit set may be effectively ignored
when calculating the hash. That would mean that a simpler password than that given by
the user could be used and would still be considered valid—a significant weakening of
the user's password.

"It should be noted that Solar Designer has been very forthcoming with details of the
problem and its effects.*

See: http://lwn.net/Articles/448699/
http://lwn.net/Articles/448723/
http://lwn.net/Articles/448725/

34

Observations

e a C-language-specific problem
e assembler would be immune
— left-pad/extension is lexically explicit/inescapable
— MOVZX, “move zero extend” — use 0s, versus
MOVSX, “move sign extend” — use 1s

e will not affect ascii password characters
— they fall in the “positive” range of signed representation
— none have the offending, triggering leading 1-bit
— but not all passwords/keys are human generated ascii

Information sources

e http://lwn.net/Articles/448699/
e http://lwn.net/Articles/448723/
e http://lwn.net/Articles/448725/

e http://www.schneier.com/blowfish-bug.txt

e Security Now podcast - “Anatomy of a
Security Mistake”
— audio: http://media.grc.com/SN/sn-311-1q.mp3
— transcript: http://www.grc.com/sn/sn-311.txt

35

