
1

Application securityApplication security

September 25, 2015

Administrative Administrative –– submittal instructionssubmittal instructions

� answer the lab assignment’s questions in written
report form, as a text, pdf, or Word document file (no
obscure formats please)

� email to csci530l@usc.edu

� exact subject title must be “applicationsecuritylab”

� deadline is start of your lab session the following
week

� reports not accepted (zero for lab) if
– late

– you did not attend the lab (except DEN or prior
arrangement)

– email subject title deviates

2

Administrative Administrative –– DETER accountsDETER accounts

� accounts were created last night

� you should have received an auto-generated
email message with information and instructions

� please read it and respond to its request to act
(change password) within 3 days

Upcoming lab schedule adjustmentUpcoming lab schedule adjustment

� we will have a capture-the-flag exercise

� among competitive teams

� extending over 5 weeks

� after the midterm, 10/16

� with the help of Prof Jelena Mirkovic

� it will replace one of our scheduled labs

� more to be announced later

3

AdministrativeAdministrative

� refer during upcoming lab to these slides’
screenshots

– recommend you have paper or electronic access

to those slides that contain detailed screenshots
(lab asks you to mimic screenshot activities)

� use only the provided VM environment
(CentOS 4.3 min-gdb)

– it has been customized a little

– other platforms/compilers generally won’t work

Administrative Administrative –– prepre--homeworkhomework

� advance preparation for this lab

� read through page 8

http://sobolewscy.in5.pl/piotr/publikacje/hakin9/stackoverflow_en.pdf

http://www-scf.usc.edu/~csci530l/downloads/stackoverflow_en.pdf

4

� Generic stack overflow

� heartbleed bounds checking oversight

� sign extension code flaw in crypt_blowfish

ThreeThree aspects of labaspects of lab

Not enough

time to cover

this last one

: (

Generic stack buffer

overflow

5

Stack buffer overflowStack buffer overflow

� what’s a stack?

� what’s an overflow?

Special list: a stackSpecial list: a stack

C I M Q W

stack pointer
(top, last/latest)

All insertions and deletions occur at

one end, the “top.

base pointer
(bottom,first/oldest)

6

Used for intraUsed for intra--program control flowprogram control flow

main

call procA

procedure B

return

procedure A

call procB

return

5000

____call procB________

____call procB________

4400

4500

4650

____call procA________

4000

4160

Uses a stack to get backUses a stack to get back

Stack base register

Stack pointer register

1000

1015

Main Memory

7

Uses a stackUses a stack

Stack base register

Stack pointer register

1000

1022

Main Memory

Uses a stackUses a stack

Stack base register

Stack pointer register

1000

1015

Main Memory

8

Uses a stackUses a stack

Stack base register

Stack pointer register

1000

1010

Main Memory

Finding your way backFinding your way back——
breadcrumbs & return addressesbreadcrumbs & return addresses

9

IntraIntra--program Flow of controlprogram Flow of control

____call procA________

4000

5000

____call procB________

____call procB________

4400

4500

4650

4160

4161 4161

4501

4161 4161

4651

Evolving Stack State
after

call procA

after 1st

call procB

after 2nd

call procB

after return

from procB

outset

return addresses

IntraIntra--program Flow of controlprogram Flow of control

____call procA________

4000

5000

____call procB________

____call procB________

4400

4500

4650

4160

41614161

4651

Evolving Stack State
after 2nd

call procB

after return

from procB

after return

from procA

10

Not only return addresses get Not only return addresses get ““stackedstacked””

� local variables

� frame (intrastack) pointers

� return addresses

� arguments/parameters for called functions

Stack diagramStack diagram
“For example, if a subroutine named DrawLine is currently running, having just been

called by a subroutine DrawSquare, the top part of the call stack might be laid out like this

(where the stack is growing towards the top):

From: http://en.wikipedia.org/wiki/Stack_frame#Structure

11

vars.cvars.c –– has local variableshas local variables

Local variables on the stackLocal variables on the stack

h
ig

h
er

 a
d

d
re

ss
essta

c
k

 g
r
o

w
th

esp=0xbfe775a0 (latest)

ebp=0xbfe775c8 (oldest)

- byte where esp points

- byte before where ebp points

12

rvals.crvals.c –– has a functionhas a function

frame pointers & return addressesframe pointers & return addresses

before function call

after function call

pointer to base of current stack/frame (byte preceding stack’s first),

in register

pointer to base of previous stack/frame,

in stack

previous frame, intact

13

……continuedcontinued…… & return addresses& return addresses

breadcrumb!
place to go back

to in calling routine, when done

where to go back to

where you left off

stack_2.c stack_2.c ––function parameters to passfunction parameters to pass

14

……and and argsargs for called functionsfor called functions

args for fn, placed

on stack via main

local vars of

main (bottom)

and fn (top)

pointer to base of

previous stack frame

return address

……continuedcontinued

return address

checks out – is the right resumption location to

pick up where we left off

15

Return address locationReturn address location
formula: $ebp+4 formula: $ebp+4 **

return address

checks out – is the right resumption location to

pick up where we left off

+4=0xbfed9cfc

*just in case you ever want to overwrite it

stack_1.c stack_1.c –– fixed fixed paramparam space, but space, but

variable variable argarg lenlen**

*parameter - placeholder variable in function definition for receiving a passed value

argument – specific value that is passed

16

Stack separation between Stack separation between
argument & return addressargument & return address

return

address

ten Ds

make enough room to contain 10 characters

Crafting an attack based on thisCrafting an attack based on this

� control argument length
– extend enough to overwrite the return address

� control argument content
– craft meaningful code into early portion

– calculate overwritten return address value to
backpoint into that code

17

How?How?

� this exercise ends with article’s page 8

� keep reading, page 9 (extracurricular)…
– gives a real-world example

– delivers malicious argument across a network

– achieves a shell prompt

Please seePlease see

� “Overflowing the stack on Linux x/86”
– http://www-scf.usc.edu/~csci530l/downloads/stackoverflow_en.pdf

– originally http://sobolewscy.in5.pl/piotr/publikacje/hakin9/stackoverflow_en.pdf

� GNU debugger (gdb) documentation
– http://sourceware.org/gdb/current/onlinedocs/gdb.html#SEC_Top

18

Any other code suffer this feature?Any other code suffer this feature?

if we knew
about it, no

(it’d be fixed by now)

but we don’t,
Yes (lots)

HereHere’’s ones one

19

What can be done?What can be done?

� tighten compiler checks
– this lab might

not work with
later gcc releases

� perform static code
analysis

A 2014 A 2014 ““currentcurrent”” event event security system security system

needed in space??needed in space??

"For instance, an area of memory above the stack limit allocated to each task

should be reserved as a safety margin, and filled with a fixed and uncommon

bit-pattern. A health task can detect stack overflow anomalies by at regular

intervals checking the presence of the bit-pattern for each task. The same

principle can be used to protect against buffer overflow, or access to memory

outside allocated regions. Critical parameters should similarly be protected

in memory by placing safety margins and barrier patterns around them, so that

access violations and data corruption can be detected more easily."

9/25/15

20

heartbleed bounds

checking oversight

Encrypting: for TCP vs for UDPEncrypting: for TCP vs for UDP

network

transport

data link

application

physical

socket API

network

TCP

data link

application

physical

tls

network

UDP

data link

application

physical

dtls

generic/unencrypted

network communication

tls (1999)

encrypts for TCP
(can’t encrypt with UDP)

dtls (2006)

encrypts for UDP

21

TCP

TLS

packet sequence control

timeout-based retransmission

periodic channel check (keepalive)

encryption

Distribution of functionDistribution of function
between protocol layersbetween protocol layers

dtls 1.0: rfc4347

UDP

DTLS
encryption

packet sequence control

timeout-based retransmission

2006 dtls 1.01999 2012 dtls heartbeat extension

UDP

DTLS
encryption

packet sequence control

timeout-based retransmission

periodic channel check (heartbeat)

heartbeat extension: rfc6520

packet ordering essential for tls/dtls encryption

- tls gets it from tcp

- dtls must provide it (because udp does not)

channel check nonessential, but nice

- tls gets it from tcp as “keepalive”

- dtls added it as “hearbeat”

Heartbeat extension rfc6520

22

“…The Heartbeat protocol is a new protocol running on top of the Record Layer [of ssl]. The

protocol itself consists of two message types: HeartbeatRequest and HeartbeatResponse….

“The Heartbeat protocol messages consist of their type and an arbitrary payload and padding.

struct {

HeartbeatMessageType type;

uint16 payload_length;

opaque payload[HeartbeatMessage.payload_length];

opaque padding[padding_length];

} HeartbeatMessage;

“…payload: The payload consists of arbitrary content.

“…If the payload_length of a received HeartbeatMessage is too large, the received

HeartbeatMessage MUST be discarded silently.

“When a HeartbeatRequest message is received … the receiver MUST send a corresponding

HeartbeatResponse message carrying an exact copy of the payload of the received

HeartbeatRequest…. ”

rfc6520 excerpts

Breaking newsBreaking news……

23

The effectThe effect

http://www.theregister.co.uk/2014/04/09/heartbleed_explained/ see also: https://xkcd.com/1354/

The fixThe fix http://pastebin.com/5PP8JVqA

24

Exploitation in the labExploitation in the lab

attacker’s browser,

viewing page sent

from web server

on victim
(192.168.1.135)

attacker’s terminal window,

viewing victim memory fetched

from victim by heartbleed

send something across

to victim, via this form,

that would be recognizable

in his memory, if ever seen there.

� server sites remediate by
1-updateing OpenSSL
2-revoking certificates
(to prevent site impersonation
via possible previous heartbleed-
exfiltrated private keys)

� only meaningful if
client (you!) does his
part, i.e., checks for the
revocation and honors it

� turn it on in your
browser if it supports
it

� Firefox does;
phones’ browsers
probably don’t

DonDon’’t let browser accept revoked certst let browser accept revoked certs
require affirmative nonrequire affirmative non--rev checkrev check

check these

http://news.netcraft.com/archives/2014/04/24/certificate-revocation-why-browsers-remain-affected-by-heartbleed.html

25

Q. Is this an exploitation of the SSL/TLS protocol?

A. No, it’s an exploitation of the OpenSSL implementation of it.

Q. Are there other implementations?

A. Yes for example Mozilla’s NSS (Network Security Services) or GnuTLS

Q. How widespread among websites is the use of OpenSSL to provide TLS?

A. Maybe 17.5% of them use OpenSSL for that
http://news.netcraft.com/archives/2014/04/08/half-a-million-widely-trusted-websites-vulnerable-to-heartbleed-bug.html

Q. Does Apache use OpenSSL for SSL?

A. Yes, if it uses mod_ssl for ssl. But it could use mod_nss and thus NSS’s ssl. Usually it installs

with mod_ssl by default.
http://directory.fedoraproject.org/wiki/Mod_nss#What_is_mod_nss.3F

My faq

Information sourcesInformation sources

� code analyses:
http://blog.existentialize.com/diagnosis-of-the-
openssl-heartbleed-bug.html
http://www.theregister.co.uk/2014/04/09/heartbleed_e
xplained/

� Security Now podcast - “How the Heartbleeds”
– audio: https://media.grc.com/sn/sn-450-lq.mp3

– transcript: https://www.grc.com/sn/sn-450.pdf

– shownotes: https://www.grc.com/sn/sn-450-
notes.pdf

� http://heartbleed.com

26

C language

sign extension bug
Omitted from

official

coverage this

year

: (

Case study Case study -- a longstanding buga longstanding bug

� introduced late 90s, noticed then but overlooked ever since
� rediscovered while testing John the Ripper in June 2011
� in the crypt_blowfish library
� freely, admirably, immediately admitted, documented, and fixed

by the library’s author (who is also author of John the Ripper)

27

What was the bug?What was the bug?

� 4 bytes of key/password needed to be hashed
– passed to a char-type parameter variable “key”

– transferred to long(4-byte)-type variable “data”

� the transfer went bad
– “data” ended with value different from “key”

� resulting hash not that of the password

key: xxxx

data: xxxx

to hash engine

key: xxxx

data: yyyy

to hash engine

Intent: Event:

Underlying backgroundUnderlying background issuesissues

� binary signed integer representation

� the bitwise OR operation

28

Representing signed integersRepresenting signed integers
(two(two’’s complement method)s complement method)

Split range in half

- low value half for zero and positive

- high value half for negative

z
e

ro
 a

n
d

 p
o

si
ti
v
e

n
e

g
a

ti
v
e

Widening signed integersWidening signed integers
““extensionextension”” and and ““sign extensionsign extension””

To preserve same value, pad left with:

if positive, 0’s (e.g. +3)

if negative, 1’s (e.g. -2)

29

Background: OR operationBackground: OR operation

� an operation

– operands (input): 2 bits

– result (output): 1bit

� ORing a bit with 0 yields (preserves) that bit

0 OR 0 = 0

1 OR 0 = 1

� ORing a bit with 1 yields 1 unconditionally

0 OR 1 = 1

1 OR 1 = 1

ORingORing 2 bytes with each other2 bytes with each other

� no such thing

– OR is an operation for pairs of bits only

– not pairs of aces, nor deuces, nor bytes

� “ORing bytes” signifies 8 normal (bitwise) ORs,
collectively

01001001

10011010

10011011

“ORing 2 bytes” = = 8 of these

ORing words requires 2 words, of equal length,

to enable ORing their bits

30

The offendingThe offending
codecode

offending codeoffending code

loads keyloads key’’s 4 bytes into datas 4 bytes into data

key[0] key[1] key[2] key[3]

key: 00010001 00100010 01000100 10001000

data: 10101010 10111011 11001100 11011101

by doing this:

data=(data<<8) | key[j]

4 times

initial value is

random/garbage

31

data=(data<<8) | data=(data<<8) | key[jkey[j]]

- data is 4 bytes wide

- key[j] is only 1 byte

- key[j] is too short to OR with data

- so pad (“extend”) it by 24 bits on the left

Observation

1. shift ‘data’ 8 bits left
left byte disappears

right byte zero-filled

2. left-pad key[j] with 24 zeros

3. OR them together
extended key[j]’s zeros preserve data’s leftmost 3 bytes

data’s zeros preserve extended key[j]’s rightmost byte

4. assign result to data

Operation

initial “key” 00010001 00100010 01000100 10001000

initial “data” 10101010 10111011 11001100 11011101

shift 10111011 11001100 11011101 00000000

extend 00000000 00000000 00000000 00010001

or 10111011 11001100 11011101 00010001

extend 00000000 00000000 00000000 00100010

or 11001100 11011101 00010001 00100010

shift 11001100 11011101 00010001 00000000

extend 00000000 00000000 00000000 01000100

or 11011101 00010001 00100010 01000100

shift 11011101 00010001 00100010 00000000

extend 00000000 00000000 00000000 10001000

or 00010001 00100010 01000100 10001000

shift 00010001 00100010 01000100 00000000

Intended operation of algorithmIntended operation of algorithm

it
er

at
io

n
 1

it
er

at
io

n
 2

it
er

at
io

n
 3

it
er

at
io

n
 4

evolution of“data”:

final “data” holds

initial “key”

00000’s from extend

00000’s from shift

32

data=(data<<8) | data=(data<<8) | key[jkey[j]]

step 2: implicit, step 2: implicit, lexically invisiblelexically invisible

1. shift ‘data’ 8 bits left

2. left-pad key[j] with 24 zeros

3. OR them together

4. assign result to data

final “data” does not

hold initial “key”

initial “key” 00010001 00100010 01000100 10001000

initial “data” 10101010 10111011 11001100 11011101

shift 10111011 11001100 11011101 00000000

extend 00000000 00000000 00000000 00010001

or 10111011 11001100 11011101 00010001

extend 00000000 00000000 00000000 00100010

or 11001100 11011101 00010001 00100010

shift 11001100 11011101 00010001 00000000

extend 00000000 00000000 00000000 01000100

or 11011101 00010001 00100010 01000100

shift 11011101 00010001 00100010 00000000

extend 11111111 11111111 11111111 10001000

or 11111111 11111111 11111111 10001000

shift 00010001 00100010 01000100 00000000

Actual operation of algorithmActual operation of algorithm

it
er

at
io

n
 1

it
er

at
io

n
 2

it
er

at
io

n
 3

it
er

at
io

n
 4

evolution of“data”:

p
ro

b
le

m
 a

ri
se

s
h
er

e

33

A code embodimentA code embodiment

just-loaded “112244” have been clobbered!

just-loaded “112244” are preserved unmolested

a fixed version

Why is this happening?Why is this happening?

� because C by default treats char type as signed

� So hex 88 (= bin 10001000) treated is as if
– decimal -120

– not decimal 136

� extend from 1 to 4 bytes keeping -120 value needs
– left-pad with 1

– not left-pad with 0

� alters the subsequent OR operation

34

What effects?What effects?

� replaces many password characters with FF

� promotes FF to ranks of high predictability
– along with natural language words

– along with birthday strings

– along with pets’ names

� eases intelligent brute force cracking task
– FF-heavy guesses are now rewarding to try a lot

What effects?What effects?

"I am wondering ... why I am getting different hashes....“

"...it means we have incorrect (incompatible with OpenBSD's) hashes in the wild...“

"John the Ripper and crypt_blowfish developer Alexander Peslyak (aka Solar Designer)

analyzed the effects of the bug and found that some password pairs would hash to the

same value with only minimal differences (e.g. "ab£" hashed to the same value as "£"),

which would make password cracking easier. A further analysis shows that some

characters appearing just before one with the high bit set may be effectively ignored

when calculating the hash. That would mean that a simpler password than that given by

the user could be used and would still be considered valid—a significant weakening of

the user's password.

"It should be noted that Solar Designer has been very forthcoming with details of the

problem and its effects.“

See: http://lwn.net/Articles/448699/

http://lwn.net/Articles/448723/

http://lwn.net/Articles/448725/

35

ObservationsObservations

� a C-language-specific problem

� assembler would be immune
– left-pad/extension is lexically explicit/inescapable

– MOVZX, “move zero extend” – use 0s, versus

MOVSX, “move sign extend” – use 1s

� will not affect ascii password characters
– they fall in the “positive” range of signed representation

– none have the offending, triggering leading 1-bit

– but not all passwords/keys are human generated ascii

Information sourcesInformation sources

� http://lwn.net/Articles/448699/

� http://lwn.net/Articles/448723/

� http://lwn.net/Articles/448725/

� http://www.schneier.com/blowfish-bug.txt

� Security Now podcast - “Anatomy of a
Security Mistake”
– audio: http://media.grc.com/SN/sn-311-lq.mp3

– transcript: http://www.grc.com/sn/sn-311.txt

