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Abstract 

 

Several kinds of models have been developed in modeling the occurrence of 

crashes, but most of these models have deficiencies and lack good results. Single and 

multivariate deterministic models have illustrated some influences of causal factors on 

crashes, but the inherent deterministic characteristic of these models makes explaining 

crash events a difficult task for these kinds of models. Stochastic regression models, such 

as Poisson, Negative Binomial, and Zero Inflated Poisson (ZIP) have been explored to 

account for the discrete and stochastic characteristics of crashes. However, no consistent 

results have been illustrated yet. The possible reasons for the deficiencies of existing 

models could be attributed to the modeling methodologies or the data set used. We have 

opportunities to obtain corresponding traffic data related to the time when crashes take 

place from the Smart Travel Lab at University of Virginia. Those data include volume, 

speed, and occupancy.  

Based on the review of the existing models, data obtained from the Smart Travel 

Lab were used in the application of several stochastic regression models including 

Poisson, negative binomial, zero inflated Poisson, and zero inflated negative binomial 

regression models. The selected variables include crash counts, volume, speed, 

occupancy, curvature, exposure, and standard deviation of speed. Negative binomial and 

ZIP were shown to be preferred modeling methods for this study. Significant positive 

relationships were also identified between the occurrence of crashes and volume, 

standard deviation of speed, and exposure. These relationships could be applied to 

provide powerful support to the decision making of incident management in Intelligent 

Transportation Systems.
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Glossary of Terms and Abbreviations 

 

Alltime 

Alltime reflects the amount of exposure over which the dependent variable was observed. 

It is 365 days*3 years=1095 days·years in this study. 

Coef. 

Coef. represents coefficients. 

Count 

The number of crashes within a specific hour throughout the three years from July 1
st
, 

1997 to July 1
st
, 2001.  

Curve 

Curve is the surrogate measure measuring the average curvature for a specific segment of 

roadway. It is estimated from the length of circular curve, length of transition curve, 

radius of circular curve, and total length of section. 

Expose 

Expose is the product of the length of a specific segment of roadway and the number of 

days of a specific weekday group. 

Freq. 

Freq. represents frequency. 

Inflate 

Inflated indicates the inflated model part. 

No. of Obs. 

No. of Obs. Represents the number of observations. 

Occu 

Occu is the average occupancy of a specific hour during one of the four weekday groups 

throughout the three years from July 1
st
, 1997 to July 1

st
, 2001. 

P>|Z| 

P value of the z test. 

Speed 
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The average speed of a specific hour during one of the four weekday groups throughout 

the three years from July 1
st
, 1997 to July 1

st
, 2001. 

Std.Err. 

Std. Err. represents standard error. 

Stdsp  

Stdsp is the standard deviation of speeds within a specific one hour during one of the four 

weekday groups throughout the three years from July 1
st
, 1997 to July 1

st
, 2001. 

Volume 

The average hourly traffic volume per lane of a specific hour during one of the four 

weekday groups throughout the three years from July 1
st
, 1997 to July 1

st
, 2001. 

Z 

Z represents the z test statistic. 

_cons 

_cons is the constants in the inflated and base models. 

95% Conf. Interval 

95% Conf. Interval represents 95% confidence interval. 
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CHAPTER 1: INTRODUCTION 

 

Many projects have been conducted on modeling crashes. The existing models 

include single variable and multivariate deterministic models, stochastic multivariate 

models, and artificial neural network. After a long period of application of deterministic 

models, researchers began to realize that the characteristics of crashes are discrete, 

sporadic, and non-negative. Researchers, therefore, started applying stochastic models to 

describe the occurrence of crashes. Jovanis et al.
1 

proposed the idea of applying the 

Poisson distribution in modeling the occurrence of crashes to overcome the shortcoming 

of conventional regression models. In 1990, Garber and Joshua 
2
 performed stochastic 

crash prediction models using Poisson regression models. Later on, more stochastic 

models were explored, such as Zero Inflated Poisson
3
, negative binomial regression 

models
3
. Meanwhile, outside the highway vehicle crash modeling area, many studies 

about zero inflated models were performed. For example, Lambert 
4 

published a paper on 

ZIP regression models and their application to defects in manufacturing. Greene 
5 

further 

discussed the estimation of zero inflated Poisson and zero inflated negative binomial 

regression models. Gan 
6
 proved the uniqueness and consistence of maximum likelihood 

estimators for zero inflated models under appropriate regularity conditions. Overall, 

researchers think zero inflated regression models are sound theoretically and practically 

in describing the count data with excess zero occurrences which is very common in 

nature. This kind of models have not yet been fully developed in the study of highway 

vehicle crashes. In another study, Awad et al.
7
 compared linear regression and artificial 

neural networks approaches.  
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Apart from the modeling techniques, the causal variables considered in those 

crash models have shifted from single variable to multiple variables. Various 

relationships were studied, such as the relationships between the number of lanes and 

crash rates,
8
 traffic volume and crash rates, 

8,9,10 
shoulder and lane widths and crash 

rates.
11,12,13

 Traffic volume was believed to have significant influence upon the 

occurrence of crashes. A U-shaped curve for the relationship between the crash rate and 

traffic volume was shown. However, no consistent relationships between the occurrence 

of crashes and geometric parameters have been indicated yet. Due to the complexity of 

the occurrence of crashes, multiple factors were considered and applied in the modeling 

of crashes. Those factors included road geometry, traffic variables, and environmental 

conditions such as lighting and weather. In Garber and Ehrhart's study
14

, speed variance 

was shown to have significant influence upon the occurrence of crashes.  

 Overall, major deficiencies related to current studies are the following: 

! Too many independent variables did not help the clear indication of the effects of 

those variables on the occurrence of crashes. 

! Too much information reduces the reliability of models. 

! The application of advanced modeling techniques such as zero inflated Poisson 

models placed emphasis on geometric parameters while traffic volume was usually 

the only traffic variable included. 

! Daily traffic volume account was adopted in the previous research on the modeling of 

crashes, which could not reflect the important hourly traffic variation pattern. 

! Inappropriate measures were used to evaluate the goodness-of-fit of the estimated 

models, for example R
2
 and Akaike Information Criteria (AIC). R

2
 has been shown to 
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be good only for deterministic models, whereas Poisson and negative binomial 

regression models are stochastic. Although AIC is applicable to nested models, it has 

been used to compare Poisson and ZIP. According to Greene 
5
, Poisson is not nested 

to ZIP regression models. Similarly, negative binomial is not nested to zero inflated 

negative binomial regression models.   

 The existing studies indicate that zero inflated models could be used to examine 

the influence of traffic variables on the occurrence of crashes. These zero inflated models 

include various forms of zero inflated Poisson and zero inflated negative binomial 

regression models. They are extensions of Poisson and negative binomial regression 

models, which account for greater frequency of zero events than those predicted by the 

conventional generalized linear regression models. Since preliminary investigation of 

crash data indicated many zero crashes, zero inflated models were therefore included in 

this study. Traffic parameters and curvature were selected as independent variables in this 

study. The influences of other factors were standardized by selecting observations under 

certain consistent conditions. For example, crashes in bad weather (rain, fog, snow, and 

so on) were filtered to eliminate the effects of the bad weather. Also, only crashes that 

occurred in the daytime were selected for analysis to eliminate the influence of lighting 

conditions. Due to the relative short length of each road section selected (one to three 

miles) and general flat terrain, geometric parameters other than curvature were not 

included in this study. 

 

1.1 Purpose and Scope 
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The purpose of this study is to describe the relationships between the crash 

probability and traffic and geometric characteristics. 

This study is limited to a selected section of Interstate 64 within Norfolk, Virginia 

Beach, and Chesapeake in Virginia. This road section was selected because both the 

crash and traffic data are available since July 1
st
, 1998. Both the crash data and 

corresponding traffic data come from the database of Integrated Transportation Systems 

Management (ITSM) of the Smart Travel Lab at the University of Virginia. The time 

period of the data set is from July 1
st
, 1998 through July 1

st
, 2001. 

 

1.2 Study Objectives 

The specific objectives of this study include: 

! To review the existing crash modeling methods and identify the feasible 

methodologies; 

! To examine the identified relationships between the occurrence of crashes and 

related causal factors including traffic and geometric variables; 

! To apply the selected methods of modeling using real data from the Smart Travel 

Lab (STL) at the University of Virginia; and 

! To identify how the independent variables contribute to the occurrence of crashes 

based on the obtained models. 
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CHAPTER 2: LITERATURE REVIEW 

 

 The literature on crash modeling has been thoroughly examined. The review 

identified the causal factors of crashes, relationships between crashes and causal factors, 

variables selected in the models, and different modeling methodologies. The literature 

review was summarized according to the following different modeling methods: 

! Single and multivariate deterministic models 

! Stochastic models 

! Multiple-logistic models 

! Artificial Intelligence approaches 

! Fault tree analysis 

! Classification and Regression Tree (CART) analysis 

 

2.1 Model Description 

2.1.1 Single and Multivariate Deterministic Models 

The main task of reviewing the deterministic models is to identify established 

relationships between the crash rate and traffic variables, highway geometric 

configurations, and environmental factors. Deterministic models have a major flaw: 

assuming that the number of crashes is continuous and the error of the dependent variable 

is normally distributed with a constant variance. This assumption is misleading because 

the occurrence of crashes is random, discrete, and rare. Despite this error, the results of 

previous studies indicate the influences of various factors on the occurrence of crashes. 
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At first, researchers only paid attention to relationships between crashes and 

different single variables. Various relationships were studied, such as the relationships 

between the number of lanes and crash rates,
8
 traffic volume and crash rates,

8,9,10
 

shoulder and lane width and crash rates.
11,12,13

 Traffic volume was believed to have a 

significant influence upon the occurrence of crashes. It is generally believed that the 

single-vehicle crash rate decreases while traffic volume increases, whereas the multiple-

vehicle crash rate increases with increasing traffic volume. Also, it is commonly accepted 

that the relationship between crash rates and traffic volumes presents a "U" shape.
9,10 

  

In one of the studies, Zegeer et al.
12

  reviewed 30 highway safety studies and 

selected four, and from which they extracted data to develop relationships between 

vehicle safety and lane width, shoulder width, and shoulder type. These three factors 

were indicated to have significant effects on highway vehicular safety.  

In two other studies, Glennon 
15,16 

 studied the effects of alignment and sight 

distance on highway safety by reviewing previous literature. He
16

 noted in his review that 

there was no clear effect of improved intersection sight distance on highway safety. 

Garber et al.
14

 studied the influence of causal factors on the occurrence of crashes. Speed 

variance was shown to have a positive relationship with the crash rate in this study. 

However, relationships regarding the influence of other variables, such as highway 

geometric parameters, upon crash rates were not consistent.  This may be due to the 

omission of influencing variables, the lack of ample consistent data, or the inherent 

disadvantage of deterministic models.  

Recognizing the complexity of crashes, researchers realized the necessity of using 

multivariate models in modeling crashes. However, although these models account for 
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the influences of multiple factors, they are more difficult to analyze. Graphs have been 

used to describe the influence of some variables while other contributing factors were 

kept fixed. In these cases, they could be regarded as single-variate models. At most, only 

three-dimensional graphs could be drawn, making it difficult to pictorially express the 

interactions among more than three variables. Both qualitative and quantitative models 

were used to describe the relationships between causal factors and safety in single-variate 

models and multivariate models, while researchers used more quantitative multivariate 

models  

Mohamedshah et al.
17

 used data from the Highway Safety Information System 

(HSIS) to formulate several general deterministic models and selected the multivariate 

linear regression model with the highest R
2
. Comprehensive data were used in this study. 

Although modeling methods in that study remained unimproved, the achieved models 

were better. Garber et al.
14 

developed multivariate deterministic models of highway 

crashes. In their study, several significant independent variables were identified, which 

included mean speed, standard deviation of speed, flow per lane, lane width, and shoulder 

width. Three kinds of deterministic models were performed, which included multiple 

linear regression, robust regression, and multivariate ratio of polynomials models. The 

results of this study showed that the relationships between crash rate and speed, flow, and 

geometric characteristics were not linear. The final models showed that speed variance 

had a significant influence on the crash rate.  

Persaud et al.
 18

 noted several problems of current modeling research, which 

included: 
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! ADT was used instead of corresponding traffic volumes, which is more appropriate 

than the former in describing traffic volumes when crashes occur. 

! The crash rate (crashes per unit of traffic) was widely used. In doing so, researchers 

made an assumption that crashes are proportional to traffic intensity, which is not 

necessary correct. 

! Conventional deterministic regression models assumed that the error of the dependent 

variable follows the normal distribution.  

 To compensate for these disadvantages, Persaud et al. used the hourly traffic 

volume and hourly crash count in this study and applied the Generalized Linear Modeling 

Computer Package (GLIM). GLIM allows for the specification of a negative binomial 

error structure for the dependent variable. 

Single and multivariate deterministic models show the influences of some causal 

factors over the occurrence of crashes, but the resulting quantitative relationships were 

not consistent. Deterministic models lack the ability to explain the stochastic occurrence 

of crashes. This deficiency could be one of the major reasons contributing to the 

performance of deterministic models. 

2.1.2 Stochastic Models 

What completely differentiates stochastic models from deterministic models is the 

assumption rooted under the former models: the occurrence of vehicular crashes is 

random. Early in 1989, Okamoto et al.
 19

 suggested that the occurrence of traffic crashes 

is stochastic. In 1990, Garber et al.
2
 first developed several Poisson regression models to 

describe the occurrence of crashes. Various studies 
3,20,21,22,23,24,25

further examined the 

goodness-of-fit of Poisson regression models. More stochastic models were proposed 
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other than Poisson regression models, which included ZIP
3
, Negative Binomial 

3,21,26,27
, 

and Extended Negative Binomial
24

 regression models. While dependent variables in these 

models are stochastic, the link functions are deterministic. The link functions are used to 

connect the mean of crash counts with independent variables.  

2.1.2.1 Model Forms 

2.1.2.1.1 Poisson Regression Models 

Poisson models assume that vehicle crashes are independent and follow Poisson 

distribution. Miaou et al.
23

 proposed two kinds of multiplicative models and one kind of 

revised Poisson model.  

! Multiplicative Poisson Regression Model 1 

 

Yi ~ ind Poisson ( µi)  

Or .,...,2,1
!

)()( ni
y

e
ypyYp

i

y

i

iii

ii

====
−µµ

 

Where: 

)( iyp  the probability of the occurrence of yi crashes for a given time period on 

roadway segment i. 

Yi  the number of crashes for a given time period for roadway segment i;  

iµ  mean value of crashes occurred for a given time period;  

.,...,3,2,1)( 1 nieYE

k

j

jijx

iii =

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




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

 ∑
== =

β

νµ  

ijx  the j
th

 independent variable for roadway segment i; 

jβ  the coefficient for the j
th

 independent variable; 
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iν   traffic exposure for roadway segment i. 

! Multiplicative Poisson Regression Model 2 

A different function was used as the link function. The symbols remain the same as 

above. 

 

nixYE
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! Revised Multiplicatve Poisson Regression Model 

Yi ~ ind Poisson ( µi)  

Or  .,...,2,1)()( ni
y

e
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Where 0β  is the coefficient for iv . 

The Poisson regression model assumes that the variance of the dependent variable 

is equal to the mean. However, in many applications, count data were found to display 

extra variation or over-dispersion relative to a Poisson model. The over-dispersion means 

the real variance is greater than that computed from the Poisson models. Miaou et al.
23

 

indicated that the violation of the assumption that the mean equals the variance does not 

change parameter estimates but causes the underestimation of the variances of the 

estimated coefficients. Several methods were proposed to remedy this deficiency: 
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! Multiply µi with the over-dispersion parameter τ and use the resulting τµi as the 

variance of Yi instead of µi.
 3
 

pN −
=

2χ
τ  

Where 

2χ is the Pearson�s chi-squared statistic for the model; 

∑
∧∧

−=
i iiiy µµχ /)( 22  

Where: 

iy   the number of crashes or the crash rate for i roadway segment;  

iµ  mean value of crashes occurred;  

N is the number of observations; and 

p is the number of parameters considered in the model.  

! Ivan et al.
25

 suggested using quasi-likelihood rather than maximum likelihood 

estimation. He indicated that "Both techniques use the same log-likelihood function, 

but quasi-likelihood estimation does not make any assumption about the distribution 

because it allows for separate mean and variance structures by computing the 

dispersion parameter and assuming that the variance is equal to the product of the 

mean and the dispersion. " 

! Miaou
3
 suggested dividing the t-statistics obtained from the Poisson regression model 

by τ1/2
 to get better estimates of the t-statistics. The significance level for acceptance 

was reduced somewhat after that adjustment, but, as the author indicated, the 

relationship between truck crashes and influencing factors remained unchanged. 
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2.1.2.1.2 Zero Inflated Poisson (ZIP) Regression Models  

Miaou
3
 applied the following ZIP model in the prediction of highway vehicular 

crashes:  
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Where: 

0< θ ≤1, when  θ = 1, the ZIP regression model is essentially Poisson regression model; 

)( iyp  the probability of the occurrence of 
iy  crashes on roadway segment i. 

Yi  the number of crashes for a given time period for roadway segment i;  

ir  the mean value of crashes for a given time period occurred;  
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Where iΦ  is a function of ri and θ. When 0< θ <1, the variance is greater than the 

expectation, which allows over-dispersion in the data.  

2.1.2.1.3 Negative Binomial Regression Models  

In Miaou 's study
3
, the negative binomial regression model was of the form: 
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Where: Γ(.)= Gamma function; α= rate of over-dispersion.  

2.1.2.1.4 Extended Negative Binomial Regression Models  

Miaou
1
 proposed extended negative binomial model to account for the 

heterogeneity within one segment of a roadway. The variability could result from 

significant changes in geometric characteristics within a single roadway segment. While 

the model form remained the same, one single segment was further divided into 

subsections. Then the mean of crashes was estimated for each subsection within one 

segment using constant coefficients for all the subsections. The expected mean for the 

entire section was obtained as a weighted sum of the means of all subsections with a 

single segment. By examining each subsection separately, the extended negative binomial 

regression model accounted for the variability within one segment. Vogt et al.
24

 applied 

                                                           
1  Source: Vogt, A., Bared, J., 1998. 
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extended negative binomial regression models to describe the occurrence of crashes for 

two-lane rural segments and intersections. 

 

2.1.2.2 Comparison of Stochastic Models 

The Poisson regression model has a more concise model form than other 

stochastic regression models. It has only one parameter to estimate. However, as 

mentioned above, over-dispersion is a major limitation with the Poisson regression 

model. The overwhelming occurrence of zero crashes contributes to the inequality of the 

variance and expected values in the estimated Poisson regression models. Zero inflated 

Poisson regression models have been adapted to account for the large percentile 

occurrence of zero crashes in a road segment during a specific time period. The 

interpretation of ZIP is difficult although it is more flexible than the Poisson regression 

model. The negative binomial regression models correct the over-dispersion caused by 

Poisson regression model. However, the computation to estimate model parameters is 

more comprehensive. Extended negative binomial models provide one method to account 

for the heterogeneity within single roadway segments. 

2.1.2.3 Model Estimation and Selection 

The Maximum Likelihood Estimation (MLE) and the quasi-likelihood estimation 

were used to estimate the stochastic models. These two methods do not assume that the 

error of the dependent variable follows normal distribution. 

Many studies 
2,3,14,20,21,22,23,24,26

 used Akaike�s Information Criterion (AIC) to 

measure the model performance and t-statistic to evaluate the significance of selected 

variables. AIC is defined as follows: 
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KMLAIC 22 +−=  

Where ML is the maximum log-likelihood and K is the number of free parameters in the 

model. The best model has the minimum AIC value. Pearson�s chi-square statistic and 

likelihood ratio statistic were also used to assess the overall goodness-of-fit of models.
20

 

Apart from mathematical criteria, Miaou
3
 suggested the following aspects could be 

examined for model acceptance:  

! Regression parameters should be consistent and have expected algebraic signs; 

! These estimated models should make good engineering sense; and 

! Estimated crash involvement should be consistent with the observed value.  

2.1.2.4 Variable Selection 

Highway geometric characteristics, traffic variables and other contributing 

variables have been selected in stochastic regression models for study. The number of 

variables selected is more than that in conventional regression models.  

Garber et al.
2
 studied the relationship between the probability of large-truck crash 

involvement and the following independent variables: number of lanes, lane width, 

shoulder width, and curvature change ratio. They also included absolute mean slope, 

slope change rate, segment length, AADT, mean speeds for trucks, non-trucks, and all 

vehicles, speed variance for all vehicles and trucks. Other variables selected were 

difference in mean speeds between trucks and non-trucks. Slope change rate, curvature 

change rate and AADT. They also used segment length, percent of large trucks, speed 

difference in the final models because of their significant influence on the large-truck 

crashes. Miaou et al.
22 

selected yearly dummy variables, AADT per lane, horizontal 

curvature, vertical grade, and deviation of paved inside (or left) shoulder width as the 
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covariates. Other than focusing on highway geometric and traffic factors, Fridstr∅m et 

al.
27

 applied the following variables in their models: weather, daylight, road investment 

and maintenance expenditure, crash reporting routines, vehicle inspection, law 

enforcement, seat belt usage, proportion of inexperienced drivers, and alcohol sales 

additional to exposure and traffic density. Karlaftis et al.
26

 studied the influence of VMT, 

population, total road mileage, the proportion of city mileage, time variable, and the 

proportion of urban roads in total VMT on the crashes. Hadi et al.
21

 indicated that 

transformations of the variables should also be investigated for possible inclusion in the 

final models. 

2.1.2.5 Deficiency of Stochastic Models 

Stochastic models have been proven effective to describe the occurrence of 

crashes. However, the complex nature of crashes makes the generalization of stochastic 

models a difficult task. There are differences among various models with respect to the 

variables selected and the significance of variables in the estimated models. Also, some 

dubious variables were adopted in the models, such as the AADT and crash rate. AADT 

does not represent the true traffic condition when the crash occurs. By using the crash 

rate as the dependent variable, a linear relationship has been assumed between the 

number of crashes and associated traffic exposure. The other problem with the crash rate 

is that the dependent variables in stochastic models could only be event counts while the 

crash rate is not an integer. Therefore, the stochastic models are not good for the 

modeling of the crash rate. Also, the probability itself is not as direct as the crash number 

or crash rate in quantifying the crashes. For people unfamiliar with the probability of 

certain number of crashes, this might be a slight problem. 
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2.1.3 Multiple-Logistic Models 

2.1.3.1 Multivariate Logistic Regression Models  

A logistic model is designed to describe the probabilities of count variables. The 

figure of logistic model is S-shaped. The value of dependent variable improves 

significantly when the independent variable or the function of independent variables of 

the model reaches certain thresholds. Garber et al.
2
 used multiple logistic regression 

models to analyze the relationship between the probability of truck crash involvement 

and highway geometric and traffic variables. Lin et al.
28

 applied time dependent logistic 

regression model to analyze the relationship between safety and truck driver service 

hours. Lin et al.
28

 studied the relationship between safety and truck driver service hours. 

Several other independent variables were also selected, which included age, experience, 

multi-day driving pattern, and off-duty time before the trip of interest. He developed 

logistic regression models and found that the driving time had a strong influence on 

safety performance. However, the first four hours of driving time had the least effect on 

safety. After that the accident risk increased significantly until the ninth hour. Below is 

the form of a multiple logistic regression model. 
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Where: 

k is the number of variables  

Xi is the i
th

 variable 

βi is the i
th

 coefficient 

Z is an index that combines the x�s. 
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2.1.3.2 Assess the Significance of the Variables and Goodness of 

Models 

Apart from likelihood ratio test, stepwise procedure was used to select the 

independent variables and AIC was used to measure the goodness-of-fit of models
2
. The 

wald test statistic is also a good option to measure the significance of the variables. Wald 

test statistic follows the Z distribution computed by dividing the estimated coefficient 

(
∧

β )by its standard errors (
∧

βs ). 

∧

∧

=
β

β

s

Z  is approximately N(0,1), 

LR ≈ 
2

WaldZ  in large samples. 

 Likelihood ratio (LR) statistic describes the difference between log likelihood 

statistics for the nested and full model. It has an approximate chi-square distribution in 

large samples. Its value is given in the following formula:   

Ratio of likelihood is













−=−−−
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∧
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21 ln2)ln2(ln2

L

L
LL .  

Where:   

The degrees of freedom for LR statistics are equal to the difference between the number 

of parameters in the two models; 

 1ln2
∧

− L  and 2ln2
∧

− L  are log likelihood statistics of the two compared  models; and 

 1

∧

L  and 2

∧

L are the maximized likelihood values of the two models.  

When the test sample is large, the likelihood ratio statistic and the corresponding 

squared wald statistic give approximately the same value. However, when dealing with 
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small to moderate samples, the two statistics may give different results. The likelihood 

ratio statistic has been shown to be better than the wald statistic. The wald statistic is 

convenient to use because only the full model needs to be fitted. 

 Another good measure for logistic models is the percentage of subjects in the data 

set that are classified correctly. Correct Classification Rate (CCR) is such a measure. 

Sometimes, models with similar CCR could have considerably different R
2
 because the 

predicted values are rounded when the CCR is computed. R square could be used as a 

supplementary measure to CCR when various models are compared.  

T

C
CCR =  

Where:  

C: number of correct classifications;  

T: total number of classifications. 

2.1.4 Artificial Intelligence Approaches 

Artificial Neural Networks (ANN) and fuzzy methods belong to the paradigm of 

artificial intelligence. ANN and fuzzy methods have been applied in highway safety 

research. 

2.1.4.1 Artificial Neural Networks 

In Award et al.'s
7
 study, apart from the linear regression, ANN and a hybrid 

system combining fuzzy logic and neural networks were applied to the data. The hybrid 

system took advantage of the properties and strengths of both fuzzy logic and neural 

networks. The final models had four variables: gore-to-taper distance, ramp traffic 

volume, main road traffic volume, and truck percentages on the main road. The 
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dependent variable was the truck crash frequency at each ramp location. The study 

indicated that the two ANN approaches showed good performance in identifying 

different patterns of crashes in the training data while their performance with test data 

was unsatisfactory. The authors thought that ANN techniques were good choices in 

analyzing highway vehicular crashes because simple models could not represent the 

complex relationships between crashes and causal factors. Apparently, ANN techniques 

require more training data to obtain satisfactory results. Vogt et al.
29 

 stated in their 

literature review that ANN could be a good alternative modeling method to the stochastic 

regression model. A typical neural network was presented in that report.  

 

Figure 2.1 A Typical Neural Network 

 

 

Where: 

W
(1) 

, W
(2)

  weight matrices, not limited only to two; 

X1, X2  independent variables, not limited only to two variables; 

H1, H2  hidden units, not limited only to two variables, which can be   
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H 2

H 3

Y 1

X 1
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∑=
k kjkj XWfH )( )1( ; 

Y1  dependent variable, which is 

∑=
k jiji HWfY )( )2(  

)(∗f is the activation function, which could be one of the following forms : step function, 

linear function, ramp function, and sigmoid function. The sigmoid function is of �S� 

shape. The simplest form of the sigmoid function is: 

ye
yf

−+
=

1

1
)(   

While the activation function tends to be the same for all the units and variables, it is not 

required to be universal for the whole network. 

2.1.4.2  Fuzzy Methods 

Vaija
30

discussed fuzzy methods and applied them in the study of safety. Three 

different fuzzy methods were discussed in that study: the simple fuzzy expert system, 

fuzzy linear regression and fuzzified linear programming. The simple fuzzy expert 

system is based on fuzzy simulation. It can accommodate heterogeneous and partially 

inconsistent data of different ranges of accuracy. For the fuzzy linear regression, the error 

term is assumed to be proportional to the indefiniteness of the whole system instead of 

being the deviation between the observed and estimated values of the dependent variable 

in conventional regression analysis. Thus, the error term can be described by the 

fuzziness of the parameters. The fuzzified linear programming is a modification of 

traditional linear programming. The uncertainty is considered to enter the system when 

the expert knowledge is used to specify values of and the relationships among variables. 

Although that paper was about the process control and accident analysis, it was very 
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helpful in the modeling of highway crashes since vagueness is common among all kinds 

of accident process. Fuzzy methods discussed in that paper presented good modeling 

alternatives. 

2.1.4.3 Hybrid Methods 

To combine merits of different methods, it is useful to fuse them. Award et 

al.
7
applied hybrid system using fuzzy logic and neural networks to predict crash 

frequency. The following fusion were taken in applications of many areas: (1) Neural 

networks for designing fuzzy systems; (2) Fuzzy systems for designing neural networks; 

(3) Evolutionary computing for the design of fuzzy systems; and (4) Evolutionary 

computing in training and generating neural networks. 

2.1.5 Fault Tree (FT) Analysis 

Garber et al.
2,31

performed fault tree analysis to examine the major factors 

associated with crashes and the interactions among those factors. The occurrence of a 

crash was regarded as a process ending with an undesired outcome. The outcome, i.e. a 

crash, was defined as the top event as it was located on the top of the fault tree. In their 

study
31

, a fault tree consisted of several paths. The authors stated that "these paths were 

defined such that all possible events or actions leading to the occurrence of crashes are 

sufficiently described." The possible events in different paths were defined as basic 

events. The probabilities of basic events in the fault tree were assessed according to the 

crash data in Virginia from 1984 through 1986. The authors first determined the basic 

events as major factors which might be one of the driver, vehicle, and environmental 

factors. Then, interactions between the major factors were accounted as secondary 
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factors. The probability of a top event was determined through the probabilities of major 

and secondary factors.  

The advantages of fault tree analysis include: 

! It can be used to identify the causal factors of crashes clearly and clarify the whole 

possible processes; 

! The probability of a crash can also be obtained; and 

! Effective strategies can be provided in accordance with the major and secondary 

factors. However, a FT analysis needs the incorporation of expert knowledge to 

decide the major and secondary factors, which might introduce subjective errors. 

Also, due to the complexity of crashes and interactions among different causal 

factors, it is hard to separate the influence of a single factor from other factors. 

Therefore, determining the pure probabilities of basic events is very challenging.   

2.1.6 Classification and Regression Tree (CART) Analysis 

CARTs are non-parametric procedures for explaining and/or predicting either a 

categorical or continuous response. Hakkert et al.
32

 used the classification and regression 

tree analysis as a preliminary tool to explain the relationships between independent 

variables and road crashes. Also, CART was used to identify significant variables for 

further analysis. It is adaptable in dealing with high dimensional and non-homogeneous 

data set. The tree structure is very helpful to clarify the relationships between 

independent variables and crash event and interactions among independent variables. 

2.2 Summary of Literature Review and Findings 

2.2.1 Variable Selection 
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! Various traffic and geometric variables were shown to have significant influences on 

the occurrences of crashes. Important traffic variables include volume, speed variance, 

and speed. The relationship between the crash rate and traffic volume presented a "U" 

shape. It was indicated that the larger the speed variance, the larger the crash rate. While 

speed remained an important factor in the occurrence of crashes, no consistent pattern 

was found between crashes and the speed. The following geometric variables were 

identified to be important: curvature, lane width, shoulder width, number of lanes, 

shoulder type, and grade. Deterministic models did not show consistent results regarding 

the relationships between crashes and the geometric elements. Recent stochastic 

regression models showed that adverse geometric conditions showed negative impacts 

upon crashes. Including as many as possible independent variables was suggested to 

account for over-dispersion. However, Elvik
33

 thought that the accuracy of prediction 

models depended on whether the safety effect of each variable included is significant or 

not. Many researchers performed tests on the independent variables before bringing them 

into modeling.  

2.2.2 Modeling Methods 

! Single-variate and multivariate deterministic models explored relationships between 

crashes and the influencing factors. Many of those relationships were qualitative, which  

incorporated the expert knowledge and past experience. The modeling techniques were 

relatively primitive and data were not very good. 

! Stochastic regression models showed great potential in obtaining the true models of 

crashes. Several stochastic regression models were applied and their theoretical 
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disadvantages were compensated. However, the following difficulties make the final 

success still futuristic: 

! Past research did not pay enough attention to traffic flow parameters. The 

most often-studied traffic variable was ADT. While the ADT does not represent the true 

traffic volume, hourly traffic volume can reflect the true traffic volume when crashes 

occur better. Flow data within shorter period can be used which would depend on the 

availability of data. 

! The used data were subject to both sampling and non-sampling errors. 

! The resulting models were of limited context without widespread 

applications to support their credibility. 

! Fault tree analysis can clearly identify the causal factors and the whole process of 

crashes, but it is not feasible in large- scale data modeling. Fault tree analysis needs the 

probabilities of the occurrence of a certain number of crashes caused by various single 

factors to calculate the probability of the occurrence of a certain number of crashes under 

certain circumstances. This probability is hard to be determined because of the difficulty 

to separate the influences of different factors. 

! CART can be used preliminarily to analyze the relationships between independent 

variables and crashes and identify critical independent variables to be included in the 

models. 

! Fuzzy methods are consistent with the characteristics of crashes.  

! ANN was applied in transportation since the early 1990s. There is only one study 

performed applying ANN to the modeling of truck crashes. In this study, the performance 

of ANN techniques was not satisfactory. However, neural networks showed promise in 
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analyzing the complex relationships between the occurrence of crashes and its causal 

factors. 

! Both stochastic regression models and artificial intelligence are worth further 

research. The specific artificial intelligence systems could be the separate techniques, 

such as artificial neural networks, or hybrid methods combining the different methods of 

artificial intelligence. However, equal attention should be paid to details, such as the 

traffic volume variable, lengths of the selected section of roadway, and cluster analysis of 

the selected section of roadway. After all these improvements, the model performance 

should be able to arrive at a higher level.  

 

2.3 Conclusion 

A great deal of improvements have been made in the previous research of 

modeling crashes. The modeling techniques shifted from conventional regression to 

stochastic regression and artificial intelligence network models. Different measures of 

evaluation were used including coefficient of determination, log likelihood, and AIC. 

Also, the availability of good data was improved. Researchers can expect better data to be 

applied in the modeling of crashes. The objective of modeling crashes was transferred 

from providing criteria and assessment for highway construction and maintenance to 

supporting advanced traffic management, incident management, and emergency 

management. The initial research emphasized the relationships between highway 

geometric variables and crashes, while current research focus more on exploring the 

relationships between traffic variables and crashes under a certain geometric 

characteristics. Although the previous research is helpful in identifying the attribution of 
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different causal variables to the occurrence of crashes, Further studies are still needed in 

order to obtain consistent and concise conclusion about the relationships between the 

occurrence of crashes and its causal factors. Further research is still needed to obtain 

more reliable and consistent crash models.  

In this study, two major efforts were made to contribute to the improvement of 

existing crash modeling research:  

! The traffic data at the time when the crashes occurred were used. These traffic data 

consist of hourly traffic volume per lane, speed, standard deviation of speed, and 

occupancy. They were referred to in this study as corresponding traffic 

characteristics.  

! Both conventional stochastic (Poisson and negative binomial) regression models and 

a specific form of zero inflated Poisson regression models have been shown to be 

effective in describing the occurrence of crashes. The data set obtained for this study 

were applied to examine the goodness-of-fit of both conventional stochastic and more 

zero inflated stochastic regression models. These zero inflated stochastic regression 

models include zero inflated Poisson and zero inflated negative binomial regression 

models, which were first applied in the crashing modeling.  
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CHAPTER 3: METHODOLOGY 

The following steps are included in this chapter: 

! literature review 

! data collection 

! data screening, reduction, and aggregation 

! Variables in the models 

 

3.1 Literature Review 

The previous studies were summarized in chapter 2. Independent variables, 

modeling techniques, and feasible model performance measures were identified for this 

study based on the literature review. Traffic volume, speed, occupancy, speed deviation, 

curvature, and exposure of crashes were selected in the models. Stochastic regression 

models were used in this study. The selected stochastic regression models consist of the 

Poisson, negative binomial, zero inflated Poisson, and zero inflated negative binomial 

regression models. Log likelihood value and vuong were used to measure the goodness of 

fit of models. Vuong
5
 was developed specifically to measure the model performance of 

zero inflated models. More details are given in chapter four. 

 

3.2 Data Collection 

Traffic, crash, and geometric data were applied in this study. The data were 

obtained from two sources: the Smart Travel Lab (STL) at the University of Virginia 

(UVA) and measurement of the digital Virginia Department of Transportation (VDOT) 
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county map. The traffic and crash data were extracted from the Integrated Transportation 

Systems Management (ITSM) database in the STL at UVA
Α
 while curvature was 

measured from the VDOT county map using AutoCAD 14.  

The total length of the selected road section is about 15.5 miles. This selected 

section of road was further defined in the oracle database in STL as 11 road segments, 

whose length vary from 0.95 to 2.68 miles. The traffic data are updated in ITSM in 

approximately every two minutes, which means very time-specific traffic data can be 

obtained from this database. The following figure and table show the basic information of 

the selected road segments. 

 

Table 3.1 Basic Information of Selected Roadway Segments 

Road Segment City Location(from-to) Length(mile) 

E64-03 Chesapeake  Greenbrier -Indian river 2.68 

E64-02 Virginia beach Indian river -Twin bridges 1.59 

E64-01 Norfolk Twin bridges -64/44 interchange 1.08 

W64-01 Norfolk 64/44 interchange -Northhampton 2.01 

W64-02 Norfolk Northampton -Military 1.07 

W64-03 Norfolk Military -Norview  1.24 

W64-04 Norfolk Norview - Chesapeake 0.95 

W64-05 Norfolk Chesapeake - Tidewater 1.00 

W64-06 Norfolk Tidewater - 64 HOV ramp 1.05 

W64-07 Norfolk 64 HOV ramp - Bay Ave 1.78 

W64-08 Norfolk Bay Ave - 4
th

 View 1.08 

 

 

The data collection consisted of the following four tasks: 

! Traffic data collection 

! Crash data collection 

                                                           
Α The author would like to thank Ling Qin for providing the SQL query for the extraction of traffic data. 
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! Curvature Measurement 

! Exposure Determination 

Figure 3.1 Roadway Segment Location 

 

3.2.1 Traffic Data Collection 

The traffic data include hourly traffic volume per lane (vehicle/hour/lane), 

occupancy (%), and speed (mile/hour) for each segment of roadway in both directions. 

The occupancy is the percentage of time during which vehicles are over detectors for a 

specific time, which is defined as: 
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s

k

q
Coccupancy

µ
*=  

Where: 

kC  is a constant; 

q is the traffic volume; and  

sµ is the space mean speed. 

The traffic data were collected over the whole three years from July 1
st
, 1998 to 

July 1
st
, 2001. In order to reflect the temporal traffic variation and its true influence over 

the occurrence of crashes, the data collection period was first divided into four weekday 

groups: (1) Monday, (2) Tuesday, Wednesday, and Thursday, (3) Friday, and (4) 

Saturday and Sunday. Then, each weekday group was divided into 24 hours and the 

traffic data were collected accordingly. The oracle database provides 6 sets of data every 

ten minutes within one hour. For example, from 7:00 am to 8:00 am, each set of traffic 

volume, speed, and occupancy could be obtained at 7:00 am, 7:10 am, 7:20 am, 7:30 am, 

7:40 am, and 7:50 am separately. The hourly traffic volume and occupancy were obtained 

as the average of the six sets of data within each hour. The hourly speed was obtained as 

the weighted average of the ten minutes speed data while the traffic volumes were used 

as the weights. The standard deviation of speed was obtained as: 

∑∑
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1
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Where: 

stdsp: hourly standard speed deviation of a particular hour, 

ivol : the i
th

 ten minutes traffic volume within the corresponding hour, 
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ispeed : the i
th

 ten minutes speed within the corresponding hour,   

speed : the weighted average speed of the corresponding hour, 

Where ∑∑=
i

ii

i

i volspeedvolspeed /)*(  

3.2.2 Crash Data Collection 

 The time period for the crash data is also three years from July 1
st
, 1998 to July 

1
st
, 2001. The following information was collected for crashes. The crashes were 

obtained from the database recording all incidents by selecting only those incidents 

whose type is "accident". Preliminary examination of the crash data indicated that the 

occurrence of secondary crashes is rare in this study. Therefore, it is reasonable to assume 

that crashes were mainly affected by geometric configurations, traffic variables, and 

environmental factors. The information provided the basis for data screening, data 

reduction, and data aggregation.  

! Tms_Call_Number: a specific nine digit number with a dash between the fourth 

and fifth number for each crash recorded in the database of ITSM. 

! Time: day of the year, day of the week, and time of the day were extracted for 

each crash. 

! Weather: the weather conditions when crashes occurred. Crashes happened on 

rain, snow, fog, and other inclement weather were screened out to eliminate the influence 

of weather upon the occurrence of crashes. 

! Lane: the cross sectional location where specifically the crashes happened were 

extracted for each crash. Only those crashes happened on mainline of freeway were 

selected. 

! Roadway segment: the specific segment of roadway where the crash happened 
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! Direction: for each section of  roadway, the direction might be east or west. Each 

direction of the same section of road has a different set of data. They were coded as 

different segments of roadway in the Oracle database. 

 

3.2.3 Curvature Measurement 

The actual curvature of the selected roadway sections was not available. Digital 

Virginia State county map was used instead. Those roadway sections were selected and 

imported into AutoCAD. Dimensions of curves, transition lines, and straight lines were 

measured using AutoCAD. The reason for using AutoCAD was that it can give the 

dimension of lines and curves automatically. After obtaining the lengths of straight lines, 

transition lines, and length and radius of each curve within one segment of  roadway, the 

average Curvature Change Rate (CCR) of each roadway section was calculated easily. 

The CCR was used to describe the curvature of each segment of roadway. 

CCR is defined as the absolute sum of the angular changes in horizontal 

alignment divided by the length of the highway segment.  
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Where: 

iL = length of circular curve i (m) 

sL = length of transition curves (m) 

iR = radius of circular curve i (m) 

L = total length of section (m) 

3.2.4 Exposure Determination  
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3.2.4.1 Exposure  

The exposure of crashes is defined as: 

NLose *exp =  

Where: 

Expose is the exposure of each crash (mile*day) 

L is the length of the segment of roadway where the crash occurred (mile) 

N is the number of days of the weekday groups when the crash occurred (day) 

3.2.4.2  Temporal Exposure 

The temporal exposure reflected the length of time for which the variable of crash 

counts was observed, which is given as alltime.  

daysyearsalltime 365*3=  

Where alltime is the temporal exposure of the crash counts. 

 

3.3 Data Screening, Reduction, and Aggregation 

 Only crashes that happened on mainline of roadway were extracted from the 

database for study. Those related with ramps and interchanges were removed to eliminate 

the possible influence of facilities other than mainline roadway. The crash data were 

reduced by weather and lighting conditions. The crashes happened during inclement 

weather were sorted out in order to eliminate the influence of weather. As a result, 330 

crashes were removed from the data set. Those inclement weather conditions included 

cold and ice, fog, rain, snow, national disaster, sleet, and missing records. Table 3.2 gives 

the detailed numbers of crashes in each class and the corresponding percentiles. The 

crashes happened during the time period of 8:00:00 pm through 7:00:00 am in the 
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morning of the next day were excluded to eliminate the influence of unfavorable lighting 

condition. Thus, 329 more crashes were removed from the data. After these two 

screenings, 1018 out of the total of 1677 crashes were kept for analysis. (please refer to 

table 3.3 for the crash distribution by hour of the day) Finally, the remaining crashes were 

aggregated to hourly counts by day of week over the three studied years. The hourly 

counts means the number of crashes occurred during each hour. 

 

 

Table 3.2 Crash Distribution By Weather 

 

 

Weather Number Percentage 

Clear 1030 61.42% 

Cool 79 4.71% 

Cloudy 213 12.70% 

Warm 6 0.36% 

Hot/Humid 19 1.13% 

Cold/Ice 29 1.73% 

Fog 13 0.78% 

Rain 244 14.55% 

Snow 11 0.66% 

National Disaster 1 0.06% 

Sleet 2 0.12% 

Missing 30 1.79% 

Summary 1677 100.00% 

Selected 1347 80.32% 

Rejected 330 19.68% 

 

 

Table 3.3 Crash Distribution By Hour of the Day 

 

 

Time Period Number Percentage 

0:00:00-6:59:00 219 16.26% 

7:00:00-19:59:59 1018 75.58% 

20:00:00-24:00:00 110 8.17% 

Total 1347 100.00% 
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 As mentioned above, raw traffic data including volume, occupancy, and speed 

were collected and sorted by hour of the day, day of the week over the studied three 

years. In order to make the counts of crashes statistical significant, the crash data were 

aggregated in three years instead of one year. So were the traffic data. Several road 

segments were found to have invalid traffic data because of the malfunction or 

breakdown of detectors. As a result, four sets of data were eliminated in the further 

analysis: E64-02 westbound, W64-01 westbound, W64-04 eastbound and W64-08 

westbound. As a result of the data reduction, 936 records were obtained for analysis. The 

data consisted of the following information: location, weekday, time, hourly crash count,  

traffic volume, occupancy, speed, and standard deviation of speed. 

 

3.4 Variables in the Models 

3.4.1 Variable Selection 

The dependent variable used in the link function in this study was the number of 

crashes. The crash rate was not considered because stochastic regression models only 

deal with count numbers. 

Table 3.4 Frequencies of Different Number of Crashes 

C rash Count 0 1 2 3 4 5 6 7 8 9 10 13 15 16 17 

No. of  Obs. 564 214 64 26 27 11 10 5 2 4 2 1 2 1 2 

Freq. (%) 60.3 22.9 6.8 2.8 2.9 1.2 1.1 0.5 0.2 0.4 0.2 0.1 0.2 0.1 0.2 

 

Independent variables include traffic volume, speed, standard deviation of speed, 

exposure, and occupancy. Also, temporal exposure was used as a constant in the link 

function. While as many as four traffic variables were included in this study, the only 
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selected geometric variable was curvature. The curvatures changed drastically within the 

selected roadway ( please refer to table 3.5). Therefore, it is necessary to include the 

curvature in the models to examine its influence over the occurrence of crashes. Other 

geometric variables were also showed to have significant influences over the occurrence 

of crashes, such as lane width, shoulder width, number of lanes, and grade. However, in 

this particular case, those geometric characteristics are relatively consistent. It is 

reasonable to assume that section of interstate 64 has uniform lane width and shoulder 

width. Also, that roadway segment selected is located in relatively level terrain. The 

influence of those factors is consistent over the whole roadway studied. Those factors can 

be considered as fixed environmental conditions to which the models are constrained. 

Therefore, exclusion of lane width, shoulder width, and grade would not hurt the model 

performance.  

Table 3.5 Descriptive Statistics For Independent Variables 

Variable Mean 

Standard 

Deviation 

Minimum Maximum 

Volume (veh./hr./lane) 
1292.6 433.8 250.6 2245.2 

Speed (mile/hr.) 
58.1 5.6 31.2 65.0 

Standard deviation  

of speed ((mile/hr)
2
) 

0.901 1.243 0.006 7.792 

Occupancy 
7.2% 3.9% 0.5% 23.4% 

Exposure (mile*day) 
2.47 1.58 0.95 8.05 

Curvature (degree/mile) 
43.8 21.7 6.9 78.5 
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3.4.2 Examination of Variables 

The occupancy is directly related with the traffic volume and space mean speed as 

indicated above. The speed obtained from STL is the time mean speed. However, 

Subramanyan
 34

 showed that the time mean speed and space mean speed were related by 

a linear relationship with very little difference between the two for the basic freeway 

segments in his study. Thus, the occupancy is also related closely with the traffic volume 

and speed data from STL. Two sets of independent variables would be included in the 

models. One set of models include occupancy, standard deviation of speed, and curvature 

while the other set include traffic volume, speed, standard deviation of speed, and 

curvature.   
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CHAPTER 4: STOCHASTIC REGRESSION MODELS 

 When researchers began to realize that the characteristics of crashes are discrete, 

sporadic, and random, stochastic regression models were applied to describe the 

occurrence of crashes instead of deterministic models. The most widely applied 

stochastic regression models consist of Poisson and negative binomial regression models. 

Zero inflated Poisson and negative binomial regression models are modifications of 

Poisson and negative binomial regression models. They were proposed to handle excess 

zeros in the data set. Examples of zero inflated data include:  

! Number of people infected by a certain disease per household 

! Number of delinquency of sixty days or more on a credit account 

! Number of crashes occurred on a road within a specific time period 

The zero inflated models are two-regime models. In the first stage, a binomial 

phenomenon is assumed. The probability of no event occurring is p, while the probability 

of non-zero events is 1-p. Then, if any event does occur, conventional stochastic 

regression models such as Poisson or negative binomial are used to describe the 

probability of any particular number of events. The previous studies proved the 

effectiveness of zero inflated regression models. 

4.1 Model Forms 

Poisson and negative binomial regression models belong to the generalized linear 

model, while zero inflate Poisson and zero inflated negative binomial regression models 

are their extensions. The counts of vehicle crashes are independently distributed with 

mean, while the mean is linearly related with a set of covariates. In the case of this study, 
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the covariates include volume, speed, occupancy, speed variance, exposure, and 

curvature.  

4.1.1 Poisson Regression Model 

 The probability distribution for a Poisson random variable is given by 
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Where iy is the number of crashes of the i
th

 observation 

it is the time interval 

iλ  is the mean number of crashes 

Let ti be the unit time interval, 

[ ] [ ] ix

iiiiiii etxyVartxyE
'

1,|1,|
βλ =====  

Where β' is the coefficients matrix 

ix  is the covariate matrix for the i
th

 observation. 

When an exposure is applied,  

[ ] [ ] ix

iiiiiiii evtxyVartxyE
'

1,|1,|
βλ =====  

Where iv  is the exposure for the i
th

 observation. 

 Poisson regression model assumes that the variance of the data is equal to the 

mean, while in many applications, count data were found to display extra variation or 

over-dispersion relative to a Poisson model. Over-dispersion (the ratio of variance over 

mean is greater than 1) and under-dispersion (the ratio of variance over mean is less than 

1) exist when the variance of the data was greater or less than that the Poisson models 
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indicate. Apart from the restriction of the Poisson distribution itself, heterogeneity of sub-

population and large percentile zero-occurrence of crashes may also attributed to the 

over- and under-dispersion. 

4.1.2 Negative Binomial Regression Model 

Some density functions Π(λ) have been used to cope with the restrictive equality 

of the mean and variance for the Poisson distribution, such as 

)(),(),( λλλ Π→ ypyp  

When Π(λ) is Gamma distribution, the mixture density becomes negative binomial 

distribution. 
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α  is the parameter of negative binomial model; 
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Other symbols have the same meaning as those in the Poisson regression model. 

The ratio of variance over expectation of the negative binomial model is greater than 1. 
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4.1.3 Zero Inflated Poisson and Negative Binomial Regression Models 

 Zero inflated regression models are two regime models. In the first stage, 

according to Greene, "The idea underlying the models is that binomial probability model 

governs the binary outcome of whether a count number is zero or positive number"
5
. In 

this study, the model of this stage is defined as the inflated model. Then, the positive part 

of the distribution is described by Poisson, negative binomial or other stochastic 

distributions. Similarly, the model of this stage is defined as the base model. Essentially, 

zero inflated models are mixture models. Mullahy
2
 proposed the hurdle model. Miao

3
 

applied this form of model in modeling the occurrence of crashes.  
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Where ρ  is a parameter between 0 and 1 to indicate the probability of zero events in the 

binary process. 

Another model form proposed
5
 is 
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Where ψ is a parameter between 0 and 1. Greene
5
 indicated that a single parameter does 

not reflect the effects of covariates in ψ. Lambert
4
 proposed the following zero inflated 

Poisson model, which was applied in this study: 

                                                           
2  Sited from Greene 
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Where 

0p  could be represented by probability model incorporating the effects of covariates, 

such as logit or probit model. When using the logit model,  
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'r  is the coefficients matrix and iw  is the i
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 covariate. It is possible that ii xwr '' τβ= . 
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In this study, ii xwr '' τβ≠ , which means that different variables are included in the 

inflated and base models.  

When the probit model is applied, )( '

0 iwrp Φ= . Φ  is the cumulative normal 

distribution function. 

The ratio of variance over expectation is also greater than 1. 
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Zero inflated negative binomial regression model is also a dual regime model. 

The only difference is to use negative binomial distribution to count for the positive 

counts of the occurrence of events.  
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Obviously, the ratio of variance over expectation is greater than 1 for the ZINB model. 

4.2 Model Estimation Technique 

Maximum likelihood estimation method has been widely used in estimating 

Poisson, negative binomial, and zero inflated regression models.
4,5,6

 Gan 
6
 proved the 

uniqueness and consistence of maximum likelihood estimators for zero inflated models. 
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According to Hayter
35

,"If a data set consists of observations 1x ,�, nx  from a 

probability distribution ),( θxf depending on one unknown parameter θ, the maximum 

likelihood estimate 
∧

θ  of the parameter is found by maximizing the likelihood function. 

).,(...),(),,...,( 11 θθθ nn xfxfxxL ××= " 
 

Similarly, when the parameters need to be estimated are more than one, the likelihood 

function is  

k is the total number of parameters. k is 1 for Poisson distribution and 2 for negative 

binomial distribution. The detailed likelihood functions have been skipped. Interested 

readers can refer to Greene for further details. A commercial statistics software named 

STATA was used in this study.  

4.3 Model Selection Criteria 

4.3.1 Log Likelihood Value 

According to the definition of maximum likelihood estimation method, the 

estimated parameters are the best when the maximum likelihood is obtained. It is also 

sustained for the maximum log likelihood. Since the data remain the same, it is 

comparable among different models. 

4.3.2 Akaike Information Criteria 

Log likelihood was used in computing Akaike Information Criteria (AIC) and 

corrected AIC (AICC) for nested models.  

AIC = -2 Log L+2k  

).,...,(...),...,(),...,,...,( 11111 knkkn xfxfxxL θθθθθθ ××=
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AICC = -2 Log L+2(k+1)n/(n-k-2).  

Where Log L is the log likelihood; 

 K is the number of estimated parameters; 

 n is the number of observations. 

The smaller the AIC or AICC value, the better the model. As the sample size increases, 

there is an increasing tendency to accept the more complex model when selecting model 

based on AIC. 

AICC is better than AIC by incorporating the numbers of both estimated 

parameters and observations. In the case of this study, the sample of observations would 

keep the same. Thus, AIC and AICC should be consistent in this context. Nested models 

are constructed such that a simpler model can be obtained from a more complex model 

by eliminating one or more parameters from the more complex model. If not related in 

this way, models are not nested. In this study, both nested and non-nested would be 

modeled, selected, and tested.  

4.3.3 Vuong Test Statistic 

Voung test statistic (V) was proposed for non-nested models by Vuong
3
 to 

compare the fitness of zero inflated Poisson model (or zero inflated negative binomial) 

                                                           
3 referred from Greene 



 58

versus Poisson model (or negative binomial model). 
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V has a standard normal distribution. There are three possible outcomes: 

! The absolute value of V is less than a threshold value such as 1.96 for 0.95 

confidence level, then neither model is preferred by the test result. 

! V is a large positive value, then model 1 is preferred. 

! V is a large negative value, then model 2 is preferred. 

4.4 Model Testing Technique 

 To test how well the models perform, the Error Rates (ER) were computed for 

selected models. ER was defined as the sum of absolute values of difference between the 

observed and estimated relative frequencies over the observed relative frequency. As 

Miaou 
3
 has shown:  
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Where: 

kr  is the error rate for k occurrence of events; 

kf  is the percentile of observations with k occurrence of events among the total data set; 
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∧

kf  is the estimated percentile of observations with k occurrence of events, i.e. relative 

frequency of k occurrence of events; 

nkypf iik /)( ==∑
∧∧

, 

Where )( kyp i =
∧

is the estimated probability of k occurrence of events under the 

prevailed covariate values and estimated parameters. 
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CHAPTER 5: RESULTS 

 Four kinds of stochastic regression models were estimated using the obtained 

data. They included Poisson, negative binomial, zero inflated Poisson, and zero inflated 

negative binomial regression models. The statistical software, STATA, contains the 

estimation function for stochastic models including the zero inflated models. Currently, it 

is the only commercial statistical program which deals with zero inflated regression 

models. It was used in this study 

5.1 Model Estimation 

5.1.1 Model Selection Criteria 

The following criteria were used for the model selection and measurement of 

model performance: 

! Reasonable algebraic signs of independent variables; 

! Good p-value of each independent variable; 

! Relatively low log likelihood value of the estimated models; 

! Vuong values used to compare the zero inflated and the corresponding stochastic 

regression models were greater than 1.96 for the selection of zero inflated models; 

! Relatively low AIC value when the nested and full models were compared; and 

! Concise model form. 

5.1.2 Two Sets of Zero Inflated Models 

 Both the logit and probit probability models were used to estimate the probability 

of zero events in the binary process. These models act as inflated models in the zero 

inflated regression models. Their performances were consistent. Independent variables 

such as volume, standard deviation, occupancy, and exposure were included in the logit 
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or probit models to incorporate the effects of those variables. It depended on the model 

performance to decide which variables to include or exclude.  

5.1.3 Variable Selection  

5.1.3.1 Two Sets of Independent Variables 

As mentioned in chapter 3, two sets of models were tested. The first set of models 

included volume, speed, standard deviation of speed, curvature, and exposure as the 

independent variables. The second set of models included occupancy, standard deviation 

of speed, curvature, and exposure.  The occupancy was separated from the volume and 

speed in the models. The reason for this separation was that the occupancy is directly 

related with the volume and speed. Therefore, the redundancy was avoided by 

considering the occupancy and the volume and speed in two sets of models. 

5.1.3.2 Curvature 

The sign of coefficients of curvature were shown to be negative for both sets of 

estimated models, which was not reasonable. Therefore, the curvature was excluded and 

new sets of models were developed. The new sets of models had the same structure as the 

models with the curvature. The models including the curvature were regarded as full 

models and the models without the curvature were nested models relative to the full 

models. it was found out that the two kinds of models generated close means of crash 

counts. For example, the means of the full and nested Poisson regression models are 

)592716.4*exp19749.0*006.0*0777812.0*075077.0*0009099.0(*1095 −+−+−== osecurvestdspspeedvolumefull

i

full

i emean λ  
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Applying these two models to the whole data set, it was found that the average absolute 
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difference between these two means is 0.089227, which generates little difference in the 

probabilities of various crashes. Thus, the difference can be ignored. 

The corresponding AIC and AICC values were compared among the nested and 

full models to see which set of models had better performance. The following tables 

(Table 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, and 5.8) show the performance of the two kinds of 

models. Each one of the four stochastic regression models was presented for illustration. 

The inflated models of these presented are logit models. During the modeling process, all 

models that can be selected showed that the curvature had the negative algebraic sign. 

Table 5.1 Full Poisson Regression Model (P) 

 
Poi sson r egr essi on    Log l i kel i hood = - 1111. 8009 
 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
   count  |       Coef .    St d.  Er r .        z      P>| z|        [ 95% Conf .  I nt er val ]   
- - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
  vol ume |    . 0009099   . 0000887     10. 252   0. 000       . 0007359    . 0010838  
   speed |   - . 0750077   . 0051985    - 14. 429   0. 000      - . 0851965   - . 0648189  
   s t dsp |    . 0777812   . 0245785      3. 165   0. 002       . 0296082    . 1259541  
   cur ve |   - . 0006000   . 0027163     - 3. 558   0. 000      - . 0149892   - . 0043414  
  expose |    . 1974899   . 0113324     10. 831   0. 000       . 1005298    . 1449519  
   _cons |   - 4. 592716    . 384622    - 11. 941   0. 000      - 5. 346562   - 3. 838871  
 al l t i me |  ( exposur e)                                                            
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

 

Table 5.2 Nested Poisson Regression Model (P') 

 
Poi sson r egr essi on    Log l i kel i hood = - 1118. 216 
 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
   count  |       Coef .    St d.  Er r .        z      P>| z|        [ 95% Conf .  I nt er val ]   
- - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
  vol ume |    . 0009003   . 0000898     10. 028   0. 000       . 0007244    . 0010763  
   speed |   - . 0802691   . 0050662    - 15. 844   0. 000      - . 0901986   - . 0703395  
   s t dsp |    . 0755886   . 0245365      3. 081   0. 002        . 027498    . 1236792  
  expose |    . 2026498    . 011408     11. 040   0. 000       . 1035884    . 1483071  
   _cons |   - 4. 536242   . 3912108    - 11. 595   0. 000      - 5. 303001   - 3. 769483  
 al l t i me |  ( exposur e)                                                            
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   

  

 

Table 5.3 Full Negative Binomial Regression Model  (NB) 

 

 
Negat i ve bi nomi al  r egr essi on     Log l i kel i hood = - 1035. 5609 
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- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
   count  |       Coef .    St d.  Er r .        z      P>| z|        [ 95% Conf .  I nt er val ]   
- - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
  vol ume |    . 0010988   . 0001271      8. 642   0. 000       . 0008496     . 001348  
   speed |   - . 0838335   . 0101925     - 8. 225   0. 000      - . 1038104   - . 0638566  
   s t dsp |    . 0527957   . 0446464      1. 183   0. 237      - . 0347096     . 140301  
   cur ve |   - . 0063011   . 0038063     - 2. 664   0. 008      - . 0175988   - . 0026782  
  expose |    . 2099129   . 0186026      7. 013   0. 000       . 0940013    . 1669221  
   _cons |   - 4. 367009   . 6634074     - 6. 583   0. 000      - 5. 667263   - 3. 066754  
 al l t i me |  ( exposur e)                                                            
- - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
/ l nal pha |   - . 3735875   . 1522498                         - . 6719918   - . 0751833  
- - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
   al pha |    . 6882607   . 1047876      6. 568   0. 000       . 5106904    . 9275734  
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   

 

 

 

Table 5.4 Nested Negative Binomial Regression Model  (NB') 

 

 
Negat i ve bi nomi al  r egr essi on     Log l i kel i hood = - 1039. 1043 
  
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
   count  |       Coef .    St d.  Er r .        z      P>| z|        [ 95% Conf .  I nt er val ]   
- - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
  vol ume |    . 0010614   . 0001267      8. 378   0. 000       . 0008131    . 0013097  
   speed |   - . 0932521   . 0096841     - 9. 629   0. 000      - . 1122326   - . 0742715  
   s t dsp |    . 0414902   . 0446943      0. 928   0. 353      - . 0461091    . 1290895  
  expose |    . 2136536   . 0186723      7. 111   0. 000       . 0961896    . 1693837  
   _cons |   - 4. 037511   . 6569174     - 6. 146   0. 000      - 5. 325046   - 2. 749977  
 al l t i me |  ( exposur e)                                                            
- - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
/ l nal pha |   - . 3476521   . 1507794                         - . 6431742   - . 0521299  
- - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
   al pha |    . 7063446   . 1065022      6. 632   0. 000       . 5256214    . 9492055  

 

 

 

 

 

Table 5.5 Full Zero Inflated Poisson Regression Model (ZIP) 

 

 
Zer o- i nf l at ed poi sson r egr essi on  Log l i kel i hood  = - 1089. 367 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
   count  |       Coef .    St d.  Er r .        z      P>| z|        [ 95% Conf .  I nt er val ]   
- - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -           
  vol ume |    . 0007873   . 0001027      7. 662   0. 000       . 0005859    . 0009886  
   speed |   - . 0670401   . 0055424    - 12. 096   0. 000       - . 077903   - . 0561771  
   s t dsp |    . 0635775   . 0250987      2. 533   0. 011       . 0143849    . 1127701  
   cur ve |   - . 0065580   . 0029037     - 3. 634   0. 000       - . 016243   - . 0048607  
  expose |    . 1837378   . 0126456      9. 030   0. 000       . 0894089    . 1389786  



 64

   _cons |   - 4. 518031   . 4047575    - 11. 162   0. 000      - 5. 311342   - 3. 724721  
 al l t i me |  ( exposur e)                                                            
- - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
i nf l at e  |                                                                       
   _cons |   - 1. 053938    . 206294     - 5. 109   0. 000      - 1. 458267   - . 6496093  
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
Vuong Test  of  Zi p vs.  Poi sson:         2. 337   Pr ob > Z   0. 990 

 

  

Table 5.6 Nested Zero Inflated Poisson Regression Model  (ZIP') 

 

 
Zer o- i nf l at ed poi sson r egr essi on  Log l i kel i hood  = - 1096. 042 
  
 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
   count  |       Coef .    St d.  Er r .        z      P>| z|        [ 95% Conf .  I nt er val ]   
- - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -           
  vol ume |     . 000759   . 0001041      7. 288   0. 000       . 0005549    . 0009631  
   speed |   - . 0728084    . 005395    - 13. 496   0. 000      - . 0833823   - . 0622345  
   s t dsp |    . 0594375   . 0251423      2. 364   0. 018       . 0101594    . 1087155  
  expose |    . 1857808   . 0127957      9. 024   0. 000       . 0903845    . 1405426  
   _cons |   - 4. 404276   . 4130305    - 10. 663   0. 000      - 5. 213801   - 3. 594751  
 al l t i me |  ( exposur e)                                                            
- - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
i nf l at e  |                                                                       
   _cons |   - . 9906476   . 2002664     - 4. 947   0. 000      - 1. 383163   - . 5981325  
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
Vuong Test  of  Zi p vs.  Poi sson:         2. 381   Pr ob > Z   0. 991 

 

 

Table 5.7 Full Zero Inflated Negative Binomial Regression Model (ZINB) 

 
 
Zer o- i nf l at ed negat i ve bi nomi al  r egr essi on        Log l i kel i hood  = - 1038. 618            
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
   count  |       Coef .    St d.  Er r .        z      P>| z|        [ 95% Conf .  I nt er val ]   
- - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
count     |                                                                       
  vol ume |     . 001396   . 0001358     10. 282   0. 000       . 0011299    . 0016621  
   speed |   - . 0831402   . 0106012     - 7. 843   0. 000      - . 1039182   - . 0623623  
   s t dsp |    . 0557153   . 0467788      1. 191   0. 234      - . 0359695    . 1474001  
   cur ve |   - . 0053439   . 0038893     - 2. 211   0. 027      - . 0162211   - . 0009754  
  expose |    . 2429839   . 0193619      7. 800   0. 000       . 1130669    . 1889642  
   _cons |   - 4. 959753   . 6885356     - 7. 203   0. 000      - 6. 309257   - 3. 610248  
 al l t i me |  ( exposur e)                                                            
- - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
i nf l at e  |                                                                       
   _cons |   - 98. 38801          0          .        .       - 98. 38801   - 98. 38801  
- - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
/ l nal pha |   - . 3205518   . 1496446     - 2. 142   0. 032      - . 6138498   - . 0272538  
- - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
   al pha |    . 7257485   . 1086043                          . 5412631    . 9731143  
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
Vuong Test  of  Zi nb vs.  Neg.  Bi n:  St d.  Nor mal  - 1. 241       Pr ob > Z     0. 1072   
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Table 5.8 Nested Zero Inflated Negative Binomial Regression Model (ZINB') 

 
Zer o- i nf l at ed negat i ve bi nomi al  r egr essi on        Log l i kel i hood  = - 1041. 561 
 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
   count  |       Coef .    St d.  Er r .        z      P>| z|        [ 95% Conf .  I nt er val ]   
- - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -            
  vol ume |    . 0013248   . 0001342      9. 875   0. 000       . 0010619    . 0015877  
   speed |   - . 0958184   . 0100809     - 9. 505   0. 000      - . 1155765   - . 0760602  
   s t dsp |    . 0310062   . 0465437      0. 666   0. 505      - . 0602177    . 1222302  
  expose |    . 2390355    . 019308      7. 694   0. 000       . 1107186    . 1864045  
   _cons |   - 4. 341601   . 6785342     - 6. 398   0. 000      - 5. 671503   - 3. 011698  
 al l t i me |  ( exposur e)                                                            
- - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
i nf l at e  |                                                                       
   _cons |   - 118. 2495          0          .        .       - 118. 2495   - 118. 2495  
- - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
/ l nal pha |   - . 3035684   . 1481558     - 2. 049   0. 040      - . 5939485   - . 0131883  
- - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
   al pha |    . 7381794   . 1093656                          . 5521428    . 9868983  
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
Vuong Test  of  Zi nb vs.  Neg.  Bi n:  St d.  Nor mal  - 1. 153       Pr ob > Z     0. 1244   

 

 

Table 5.9 Comparison of Full and Nested Models 

Models P P' NB NB' ZIP ZIP' ZINB ZINB' 

Log likelihood -1112 -1118 -1036 -1039 -1089 -1096 -1039 -1042 

K 6 5 7 6 7 6 8 7 

N 936 936 936 936 936 936 936 936 

AIC 2236 2246 2085 2090 2193 2204 2093 2097 

AICC 2238 2249 2087 2092 2195 2206 2095 2099 

∆AIC 10 5 11 4 

∆AICC 11 5 11 4 

Note: 

1. K is the number of parameters estimated 

2. N is the total number of observations 

3. ∆AIC is the difference of AIC values between the full and nested models 

4. ∆AICC is the difference of AICC values between the full and nested models 

 

 Table 5.9 shows that the nested and full models have very close AIC and AICC 

values. The differences of AIC and AICC between the nested and full models are 

negligible considering the fact that the AIC and AICC values are at the magnitude of 

2000. The full models are therefore not any better than the nested models according to the 

AIC or AICC values. Since the truck traffic on the selected section of I-64 is light, also 

curvature has much more influence on crashes involving trucks than those involving 
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passenger cars, it is very reasonable to discard the full models and select the nested 

models for further examination. 

5.1.3.3 Speed and Standard Deviation of Speed 

By examining the models including volume, speed, standard deviation of speed, 

and exposure, some general trends were found for all the estimated models. Poisson and 

ZIP have good performance. They have small p values for independent variables, which 

are less than 0.05. Vuong values for selected ZIP are greater than 1.96. However, 

negative binomial and ZINB regression models do not have such good performance. Not 

all the p values of independent variables are less than 0.05. The above nested negative 

binomial model (Table 5.4) indicates that the p value of standard deviation of speed is 

0.353. The above zero inflated negative binomial model (Table 5.8) also shows that the p 

value of standard deviation of speed is 0.505. The large p values indicate the 

insignificance of the variables in the estimated models.  

Then, the models including occupancy, standard deviation of speed, and expose 

were also examined. It was found that these models present good results. Table 5.10 and 

5.11 show the examples of negative binomial and zero inflated negative binomial 

regression models. All the p values in table 5.10 are 0.000, which indicates that all the 

independent variables in the model are significant including the constant. 

 

Table 5.10 An Example of Negative Binomial Regression Model 

 

 
Negat i ve bi nomi al  r egr essi on   Log l i kel i hood = - 1094. 3011 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
   count  |       Coef .    St d.  Er r .        z      P>| z|        [ 95% Conf .  I nt er val ]   
- - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
    occu |    12. 67423   1. 335323      9. 492   0. 000       10. 05705    15. 29142  
   s t dsp |    . 2872677   . 0407773      7. 045   0. 000       . 2073457    . 3671896  
  expose |     . 172161   . 0203826      5. 249   0. 000       . 0670493    . 1469478  
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   _cons |   - 9. 000146   . 1456089    - 61. 810   0. 000      - 9. 285535   - 8. 714758  
 al l t i me |  ( exposur e)                                                            
- - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
/ l nal pha |    . 1400335   . 1229362                          - . 100917    . 3809841  
- - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
   al pha |    1. 150312    . 141415      8. 134   0. 000       . 9040081    1. 463724  
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

 

Table 5.11 shows that all the p values for the independent variables except that of 

alpha are very good. Also, the vuong value is 2.675, which is larger than 1.96. This 

indicates that this ZINB model is acceptable. 

 

 

Table 5.11 An Example of ZINB Regression Model 

 
Zer o- i nf l at ed negat i ve bi nomi al  r egr essi on    Log l i kel i hood = - 1094. 3011 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
   count  |       Coef .    St d.  Er r .        z      P>| z|        [ 95% Conf .  I nt er val ]   
- - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -           
    occu |    15. 45177   1. 374715     11. 240   0. 000       12. 75738    18. 14616  
   s t dsp |    . 1963106   . 0397685      4. 936   0. 000       . 1183657    . 2742555  

  expose |      .103988   . 0199116      3. 246   0. 001       . 0256032    . 1036553  
   _cons |   - 8. 792633   . 1478045    - 59. 488   0. 000      - 9. 082325   - 8. 502942  
 al l t i me |  ( exposur e)                                                            
- - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
i nf l at e  |                                                                       
    occu |    26. 18221   6. 120585      4. 278   0. 000       14. 18608    38. 17834  
   s t dsp |   - 3. 941304   1. 162919     - 3. 389   0. 001      - 6. 220583   - 1. 662024  
  expose |   - 1. 186127   . 2363584     - 3. 119   0. 002      - 1. 200437   - . 2739288  
- - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
/ l nal pha |   - . 1653139   . 1475507     - 1. 120   0. 263      - . 4545079      . 12388  
- - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
   al pha |    . 8476276    . 125068                          . 6347602     1. 13188  
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
Vuong Test  of  Zi nb vs.  Neg.  Bi n:  St d.  Nor mal   2. 675       Pr ob > Z     0. 9963   

 

 

While standard deviation of speed does not have good p values in the models 

including volume and speed, it is shown to be significant in the models including 

occupancy.  It might be other variables instead of standard deviation of speed that caused 

the poor performance of certain models. More trials indicated that including speed and 

standard deviation of speed in the same model did not present good result for negative 

binomial and zero inflated negative binomial regression models. Manual stepwise 
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variable selection was performed to include only significant variables in the models. 

Previous studies indicate that the independent variables selected for study all have 

significant influence over the occurrence of crashes. Therefore, those variables were kept 

as many as possible in order to fully describe the crash. Among the four independent 

variables, each one was removed from the model to test the result. It was found that 

volume and exposure are absolutely necessary in order to have acceptable p values and 

reasonable log likelihood values. Also, they are needed for large vuong values in the case 

of zero inflated models.  For the inclusion of the speed or standard deviation of speed, 

they did not generate much difference with respect to Poisson and negative binomial 

regression models with similar model structure. The p values of independent variables are 

all good and the log likelihood values are very close. However, by comparing the 

competing zero inflated regression models including ZIP and ZINB, it was found that  

both of the two kinds of models could have good results if different structures of inflated 

models were used. Thus, it was decided that the speed and standard deviation of speed 

would be included in different sets of models. Their performance would be evaluated and 

compared in the model testing section. 

5.1.4 Transformations  

 Various transformations were tried for independent variables, such as log, square, 

and sin terms of the independent variables. Transformations were tried throughout the 

modeling process. Several general conclusions could be drawn about the effect of 

transformations in this study. First, transformations did not change the signs of 

independent variables. Second, transformations could change p value of the independent 

variable. Third, transformations did not have significant influence over the log likelihood 
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value. Transformations did not improve the model performance significantly. Therefore, 

no transformation was used in order to keep the model forms concise. 

5.1.5 Results 

Finally, three sets of models were developed with respect to the independent 

variables included in the models. The inflated part for zero inflated models includes logit 

and probit models. 

 

Table 5.12 Different Sets of Models 

Model  Variables In the Base Model Variables In the Inflated Model 

1 Occu, Stdsp, Expose Selected from Occu, Stdsp, Expose 

2 Volume, Speed, Expose Selected from Volume, Speed, Expose 

3 Volume, Stdsp, Expose Selected from Volume, Stdsp, Expose 

Note: Poisson and negative binomial regression models do not have inflated models. 

 

5.1.5.1 The First Set of Models 

Table 5.13 The Final Result(I): Poisson Regression Model 

 
Poi sson r egr essi on                   Log l i kel i hood = - 1231. 0627 
 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
   count  |       Coef .    St d.  Er r .        z      P>| z|        [ 95% Conf .  I nt er val ]   
- - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
    occu |    13. 28704   . 7075363     18. 779   0. 000       11. 90029    14. 67378  
   s t dsp |    . 2804112   . 0187751     14. 935   0. 000       . 2436126    . 3172098  
  expose |   . 18732895   . 0110761     10. 511   0. 000        . 094717    . 1381344  
   _cons |   - 9. 085271   . 0969487    - 93. 712   0. 000      - 9. 275287   - 8. 895256  
 al l t i me |  ( exposur e)                                                            
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

 

 

Table 5.13 gives the following actual model form
4
 

                                                           
4  iλ  is the mean occurrence rate of crashes per 1095 days•years.  
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Table 5.14 The Final Result(I): Negative Binomial Regression Model 

Negat i ve bi nomi al  r egr essi on          Log l i kel i hood = - 1094. 3011 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
   count  |       Coef .    St d.  Er r .        z      P>| z|        [ 95% Conf .  I nt er val ]   
- - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
    occu |    12. 67423   1. 335323      9. 492   0. 000       10. 05705    15. 29142  
   s t dsp |    . 2872677   . 0407773      7. 045   0. 000       . 2073457    . 3671896  
  expose |    . 1721607   . 0203826      5. 249   0. 000       . 0670493    . 1469478  
   _cons |   - 9. 000146   . 1456089    - 61. 810   0. 000      - 9. 285535   - 8. 714758  
 al l t i me |  ( exposur e)                                                            
- - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
/ l nal pha |    . 1400335   . 1229362                          - . 100917    . 3809841  
- - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
   al pha |    1. 150312    . 141415      8. 134   0. 000       . 9040081    1. 463724  
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

 

Table 5.14 gives the following model form: 
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Table 5.15 The Final Result(I): ZIP Regression Model (Logit) 

Zer o- i nf l at ed poi sson r egr essi on            Log l i kel i hood  = - 1163. 077 
 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
   count  |       Coef .    St d.  Er r .        z      P>| z|        [ 95% Conf .  I nt er val ]   
- - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -          
    occu |    11. 40821   . 8177328     13. 951   0. 000       9. 805485    13. 01094  
   s t dsp |    . 2051468    . 022978      8. 928   0. 000       . 1601108    . 2501827  
  expose |    . 1380964   . 0135287      6. 344   0. 000       . 0593117    . 1123432  
   _cons |   - 8. 223972   . 1136425    - 72. 367   0. 000      - 8. 446707   - 8. 001237  
 al l t i me |  ( exposur e)                                                            
- - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
i nf l at e  |                                                                       
   s t dsp |    - . 165369   . 0843004     - 1. 962   0. 050      - . 3305949   - . 0001432  
  expose |   - . 1199754   . 0278855     - 2. 674   0. 007      - . 1292198   - . 0199107  
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
Vuong Test  of  Zi p vs.  Poi sson:         4. 373   Pr ob > Z   1. 000 
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Table 5.15 gives the following model form: 

⋅⋅⋅⋅=−=

−+=
−

−

,2,1,!/)1()(

)1()0(

0

00

ii

y

ii yyepyP

eppP

ii

i

λλ

λ

 

)exp*0.1199754*165369.0(

)exp*0.1199754*165369.0(

0
1 osestdsp

osestdsp

e

e
p −−

−−

+
=

 

)*exp1380964.0*2051468.0*40821.11223972.8(*1095 osestdspoccu

i e +++−=λ  

 

Table 5.16 The Final Result(I): ZIP Regression Model (Probit) 

 

 
Zer o- i nf l at ed poi sson r egr essi on            Log l i kel i hood  = - 1163. 095 
 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
   count  |       Coef .    St d.  Er r .        z      P>| z|        [ 95% Conf .  I nt er val ]   
- - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -           
    occu |     11. 4021    . 816986     13. 956   0. 000        9. 80084    13. 00337  
   s t dsp |    . 2049714   . 0228834      8. 957   0. 000       . 1601206    . 2498221  
  expose |    . 1378998   . 0135159      6. 341   0. 000       . 0592146    . 1121959  
   _cons |    - 8. 22176   . 1132222    - 72. 616   0. 000      - 8. 443671   - 7. 999849  
 al l t i me |  ( exposur e)                                                            
- - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
i nf l at e  |                                                                       
   s t dsp |   - . 1016934   . 0492777     - 2. 064   0. 039      - . 1982759   - . 0051109  
  expose |   - . 0740611   . 0166252     - 2. 769   0. 006      - . 0786141   - . 0134445  
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
Vuong Test  of  Zi p vs.  Poi sson:         4. 364   Pr ob > Z   1. 000 

 

Table 5.16 gives the following model form: 
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Φ  is the cumulative normal distribution function. 

)exp*0.1378998*2049714.0*4021.1122176.8(*1095 osestdspoccu

i e +++−=λ  

Table 5.17 The Final Result(I): ZINB Regression Model (Logit) 

 

 
Zer o- i nf l at ed negat i ve bi nomi al  r egr essi on     Log l i kel i hood  = - 1076. 224 
 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
   count  |       Coef .    St d.  Er r .        z      P>| z|        [ 95% Conf .  I nt er val ]   
- - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -          
    occu |    15. 45177   1. 374715     11. 240   0. 000       12. 75738    18. 14616  
   s t dsp |    . 1963106   . 0397685      4. 936   0. 000       . 1183657    . 2742555  
  expose |    . 1039884   . 0199116      3. 246   0. 001       . 0256032    . 1036553  
   _cons |   - 8. 792633   . 1478045    - 59. 488   0. 000      - 9. 082325   - 8. 502942  
 al l t i me |  ( exposur e)                                                            
- - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
i nf l at e  |                                                                       
    occu |    26. 18221   6. 120585      4. 278   0. 000       14. 18608    38. 17834  
   s t dsp |   - 3. 941304   1. 162919     - 3. 389   0. 001      - 6. 220583   - 1. 662024  
  expose |   - 1. 186127   . 2363584     - 3. 119   0. 002      - 1. 200437   - . 2739288  
- - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
/ l nal pha |   - . 1653139   . 1475507     - 1. 120   0. 263      - . 4545079      . 12388  
- - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
   al pha |    . 8476276    . 125068                          . 6347602     1. 13188  
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
Vuong Test  of  Zi nb vs.  Neg.  Bi n:  St d.  Nor mal   2. 675       Pr ob > Z     0. 9963 

 

Table 5.17 gives the following model form: 
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)exp*0.1039884*1963106.0*45177.15792633.8(*1095 osestdspoccu

i e +++−=λ  

 

Table 5.18 The Final Result(I): ZINB Regression Model (Probit) 

 

 
Zer o- i nf l at ed negat i ve bi nomi al  r egr essi on     Log l i kel i hood  = - 1076. 097 
 
 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
   count  |       Coef .    St d.  Er r .        z      P>| z|        [ 95% Conf .  I nt er val ]   
- - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -          
    occu |    15. 39846   1. 376479     11. 187   0. 000       12. 70061    18. 09631  
   s t dsp |    . 1978606   . 0398325      4. 967   0. 000       . 1197902    . 2759309  
  expose |    . 1045362   . 0199828      3. 251   0. 001       . 0258042    . 1041353  
   _cons |   - 8. 795223   . 1476709    - 59. 560   0. 000      - 9. 084653   - 8. 505794  
 al l t i me |  ( exposur e)                                                            
- - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
i nf l at e  |                                                                       
    occu |    14. 91926    3. 20143      4. 660   0. 000       8. 644575    21. 19395  
   s t dsp |   - 2. 302216    . 668659     - 3. 443   0. 001      - 3. 612763   - . 9916683  
  expose |   - . 6840073   . 1261036     - 3. 371   0. 001      - . 6722718   - . 1779548  
- - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
/ l nal pha |   - . 1558964   . 1465879     - 1. 064   0. 288      - . 4432035    . 1314106  
- - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
   al pha |    . 8556478   . 1254276                          . 6419766    1. 140436  
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
Vuong Test  of  Zi nb vs.  Neg.  Bi n:  St d.  Nor mal   2. 756       Pr ob > Z     0. 9971 

 

 

Table 5.18 gives the following model form: 
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Φ is the cumulative normal probability function 
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)exp*0.1045362*1978606.0*39846.15795223.8(*1095 osestdspoccu

i e +++−=λ  

 

5.1.5.2 The Second Set of Models 

Table 5.19 The Final Result(II): Poisson Regression Model 

 
Poi sson r egr essi on                        Log l i kel i hood = - 1122. 7057 
 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
   count  |       Coef .    St d.  Er r .        z      P>| z|        [ 95% Conf .  I nt er val ]   
- - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
  vol ume |    . 0008843   . 0000913      9. 687   0. 000       . 0007054    . 0010632  
   speed |   - . 0880675   . 0043339    - 20. 320   0. 000      - . 0965619   - . 0795732  
  expose |    . 1935204   . 0113083     10. 636   0. 000       . 0981097    . 1424376  
   _cons |   - 3. 960136   . 3447918    - 11. 486   0. 000      - 4. 635915   - 3. 284356  
 al l t i me |  ( exposur e)                                                            

 

 

 Table 5.19 gives the following model form: 
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 Table 5.20 The Final Result(II): Negative Binomial Regression Model 

 

 
Negat i ve bi nomi al  r egr essi on          Log l i kel i hood =  - 1039. 535 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
   count  |       Coef .    St d.  Er r .        z      P>| z|        [ 95% Conf .  I nt er val ]   
- - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
  vol ume |    . 0010584   . 0001272      8. 322   0. 000       . 0008092    . 0013077  
   speed |    - . 098854   . 0076574    - 12. 910   0. 000      - . 1138622   - . 0838457  
  expose |    . 2097919   . 0185103      7. 044   0. 000        . 094107    . 1666659  
   _cons |   - 3. 660617   . 5195995     - 7. 045   0. 000      - 4. 679014   - 2. 642221  
 al l t i me |  ( exposur e)                                                            
- - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
/ l nal pha |   - . 3398058   . 1497743                          - . 633358   - . 0462536  
- - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
   al pha |    . 7119085   . 1066256      6. 677   0. 000       . 5308064    . 9547998  
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   

Table 5.20 gives the following model form: 
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Table 5.21 The Final Result(II): ZIP Regression Model (Logit) 

 

 
Zer o- i nf l at ed poi sson r egr essi on            Log l i kel i hood  = - 1078. 957 
 
 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
   count  |       Coef .    St d.  Er r .        z      P>| z|        [ 95% Conf .  I nt er val ]   
- - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -            
  vol ume |    . 0003361   . 0001257      2. 674   0. 007       . 0000898    . 0005825  
   speed |   - . 0829075   . 0052875    - 15. 680   0. 000      - . 0932708   - . 0725442  
  expose |    . 1538476   . 0150062      6. 372   0. 000       . 0662053    . 1250284  
   _cons |   - 2. 943303   . 4183755     - 7. 035   0. 000      - 3. 763304   - 2. 123302  
 al l t i me |  ( exposur e)                                                            
- - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
i nf l at e  |                                                                       
  vol ume |   - . 0017374    . 000311     - 5. 587   0. 000      - . 0023469   - . 0011278  
   speed |    . 0376874   . 0072403      5. 205   0. 000       . 0234966    . 0518781  
  expose |   - . 1810950   . 0506755     - 2. 221   0. 026      - . 2118735    - . 013229  
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
Vuong Test  of  Zi p vs.  Poi sson:         3. 398   Pr ob > Z   1. 000 

 

 Table 5.21 gives the following model form: 
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 Table 5.22 The Final Result(II): ZIP Regression Model (Probit) 

 

 
Zer o- i nf l at ed poi sson r egr essi on            Log l i kel i hood  =  - 1078. 55 
 
 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
   count  |       Coef .    St d.  Er r .        z      P>| z|        [ 95% Conf .  I nt er val ]   
- - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
count     |                                                                       
  vol ume |     . 000339   . 0001249      2. 713   0. 007       . 0000941    . 0005838  
   speed |   - . 0827737   . 0052447    - 15. 782   0. 000      - . 0930531   - . 0724942  
  expose |    . 1528379   . 0148719      6. 387   0. 000        . 065841    . 1241378  
   _cons |   - 2. 950776   . 4162002     - 7. 090   0. 000      - 3. 766514   - 2. 135039  
 al l t i me |  ( exposur e)                                                            
- - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
i nf l at e  |                                                                       
  vol ume |   - . 0010551   . 0001768     - 5. 968   0. 000      - . 0014016   - . 0007085  
   speed |    . 0231252   . 0043035      5. 374   0. 000       . 0146906    . 0315599  
  expose |   - . 115175     . 029487     - 2. 428   0. 015      - . 1293749   - . 0137881  
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
Vuong Test  of  Zi p vs.  Poi sson:         3. 444   Pr ob > Z   1. 000                  

 

 

Tabel 5.22 gives the following model form: 
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)exp*0.115175*0231252.0*0010551.0(0 osespeedvolumep −+−Φ=  

Φ is the cumulative normal distribution function. 

)exp*0.1528379*0827737.0*000339.0950776.2(*1095 oosespeedvolume

i e +−+−=λ  

 

 

 

Table 5.23 The Final Result(II): ZINB Regression Model (Logit) 

 

 
Zer o- i nf l at ed negat i ve bi nomi al  r egr essi on     Log l i kel i hood  = - 1029. 368 
 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
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   count  |       Coef .    St d.  Er r .        z      P>| z|        [ 95% Conf .  I nt er val ]   
- - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -           
  vol ume |    . 0011134   . 0001274      8. 741   0. 000       . 0008638    . 0013631  
   speed |   - . 0956421    . 007489    - 12. 771   0. 000      - . 1103204   - . 0809639  
  expose |    . 1616817   . 0189952      5. 290   0. 000       . 0632559    . 1377157  
   _cons |   - 3. 696897   . 5146413     - 7. 183   0. 000      - 4. 705575   - 2. 688218  
 al l t i me |  ( exposur e)                                                            
- - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
i nf l at e  |                                                                       
  expose |   - 16. 61638   3. 828047     - 2. 698   0. 007      - 17. 82999   - 2. 824319  
   _cons |     16. 4897   6. 306136      2. 615   0. 009       4. 129901     28. 8495  
- - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
/ l nal pha |   - . 5411487    . 163512     - 3. 310   0. 001      - . 8616264   - . 2206709  
- - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
   al pha |    . 5820793    . 095177                          . 4224744    . 8019805  
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
Vuong Test  of  Zi nb vs.  Neg.  Bi n:  St d.  Nor mal   2. 262       Pr ob > Z     0. 9882    

 

 

 Table 5.23 gives the following model form: 
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Table 5.24 The Final Result(II): ZINB Regression Model (Probit) 

 

 
Zer o- i nf l at ed negat i ve bi nomi al  r egr essi on     Log l i kel i hood  = - 1029. 297 
 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
   count  |       Coef .    St d.  Er r .        z      P>| z|        [ 95% Conf .  I nt er val ]   
- - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -            
  vol ume |    . 0011136   . 0001274      8. 742   0. 000       . 0008639    . 0013633  
   speed |   - . 0956922   . 0074892    - 12. 777   0. 000      - . 1103708   - . 0810136  

  expose |    .1620084   . 0189685      5. 308   0. 000       . 0635114    . 1378664  
   _cons |   - 3. 695898     . 51492     - 7. 178   0. 000      - 4. 705123   - 2. 686673  
 al l t i me |  ( exposur e)                                                            
- - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
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i nf l at e  |                                                                       
  expose |   - 10. 26771   2. 308006     - 2. 765   0. 006      - 10. 90504   - 1. 857816  
   _cons |    10. 19261   3. 812776      2. 673   0. 008       2. 719708    17. 66552  
- - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
/ l nal pha |   - . 5399951   . 1634059     - 3. 305   0. 001      - . 8602647   - . 2197255  
- - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
   al pha |    . 5827511   . 0952249                          . 4230501    . 8027391  
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
Vuong Test  of  Zi nb vs.  Neg.  Bi n:  St d.  Nor mal   2. 278       Pr ob > Z     0. 9886   

 

 

 Table 5.24 gives the following model form: 
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Φ  is the cumulative normal distribution function. 

)exp*0.1620084*0956922.0*0011136.0695898.3(*1095 osespeedvolume

i e +−+−=λ  

 

5.1.5.3 The Third Set of Models 

 

Table 5.25 The Final Result(III): Poisson Regression Model 

 

 
Poi sson r egr essi on                        Log l i kel i hood = - 1236. 6436 
 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
   count  |       Coef .    St d.  Er r .        z      P>| z|        [ 95% Conf .  I nt er val ]   
- - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
  vol ume |     . 001373   . 0000847     16. 214   0. 000       . 0012071     . 001539  
   s t dsp |    . 2625704   . 0187723     13. 987   0. 000       . 2257774    . 2993634  
  expose |    . 2786986    . 011105     15. 598   0. 000       . 1514469    . 1949778  
   _cons |   - 10. 10727   . 1517684    - 66. 597   0. 000      - 10. 40473   - 9. 809805  
 al l t i me |  ( exposur e)  

 

 Table 5.25 gives the following model form: 
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)exp*0.2786986*2625704.0*001373.010727.10(*1095 osestdspvolume

i e +++−=λ  

Table 5.26 The Final Result(III): Negative Binomial Regression Model 

 

 
Negat i ve bi nomi al  r egr essi on          Log l i kel i hood =  - 1084. 3266 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
   count  |       Coef .    St d.  Er r .        z      P>| z|        [ 95% Conf .  I nt er val ]   
- - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
  vol ume |    . 0014075   . 0001332     10. 566   0. 000       . 0011464    . 0016686  
   s t dsp |    . 3325017   . 0412491      8. 061   0. 000       . 2516549    . 4133485  
  expose |    . 2770803   . 0206218      8. 351   0. 000       . 1317885    . 2126246  
   _cons |   - 10. 24142   . 2315827    - 44. 224   0. 000      - 10. 69532   - 9. 787528  
 al l t i me |  ( exposur e)                                                            
- - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
/ l nal pha |    . 1026405   . 1213168                          - . 135136     . 340417  
- - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
   al pha |    1. 108093   . 1344302      8. 243   0. 000       . 8735971    1. 405534  
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
Li kel i hood r at i o t est  of  al pha=0:     chi 2( 1)  =   304. 63   Pr ob > chi 2 = 0. 0000 

 

 Table 5.26 gives the following model form: 
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Table 5.27 The Final Result(III): ZIP Regression Model (Logit) 

 

 
Zer o- i nf l at ed poi sson r egr essi on            Log l i kel i hood  = - 1170. 054 
 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
   count  |       Coef .    St d.  Er r .        z      P>| z|        [ 95% Conf .  I nt er val ]   
- - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -           
  vol ume |    . 0015089   . 0000932     16. 192   0. 000       . 0013263    . 0016916  
   s t dsp |    . 1644969   . 0211808      7. 766   0. 000       . 1229833    . 2060105  
  expose |    . 1791929    . 012802      8. 699   0. 000       . 0862777    . 1364605  
   _cons |    - 9. 53743   . 1730749    - 55. 106   0. 000      - 9. 876651    - 9. 19821  
 al l t i me |  ( exposur e)                                                            
- - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
i nf l at e  |                                                                       
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  vol ume |    . 0008557   . 0002494      3. 431   0. 001       . 0003669    . 0013445  
   s t dsp |   - . 7507441   . 2212027     - 3. 394   0. 001      - 1. 184293   - . 3171948  
  expose |   - . 621399    . 1169855     - 3. 301   0. 001      - . 6154894   - . 1569148  
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
Vuong Test  of  Zi p vs.  Poi sson:         4. 129   Pr ob > Z   1. 000 

 

 Table 5.27 gives the following model form: 
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 Table 5.28 The Final Result(III): ZIP Regression Model (Probit) 

 

 
Zer o- i nf l at ed poi sson r egr essi on            Log l i kel i hood  =  - 1170. 536 
 
 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
   count  |       Coef .    St d.  Er r .        z      P>| z|        [ 95% Conf .  I nt er val ]   
- - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -          
  vol ume |    . 0015212   . 0000909     16. 728   0. 000       . 0013429    . 0016994  
   s t dsp |    . 1651558   . 0211502      7. 809   0. 000       . 1237021    . 2066094  
  expose |    . 1770297     . 01258      8. 746   0. 000       . 0853684     . 134681  
   _cons |   - 9. 556837   . 1707638    - 55. 965   0. 000      - 9. 891528   - 9. 222146  
 al l t i me |  ( exposur e)                                                            
- - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
i nf l at e  |                                                                       
  vol ume |    . 0005421   . 0001428      3. 796   0. 000       . 0002622     . 000822  
   s t dsp |   - . 4487386   . 1236118     - 3. 630   0. 000      - . 6910133   - . 2064638  
  expose |    - . 401727   . 0668604     - 3. 734   0. 000      - . 3807189   - . 1186311  
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
Vuong Test  of  Zi p vs.  Poi sson:         4. 102   Pr ob > Z   1. 000                  

 

 

Table 5.28 gives the following model form: 
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)exp*0.401727*4487386.0*0005421.0(0 osestdspvolumep −−Φ=  

Φ  is the cumulative normal distribution function. 

)exp*0.1770297*1651558.0*0015212.0556837.9(*1095 osestdspvolume

i e +++−=λ  

  

 

 

Table 5.29 The Final Result (III): ZINB Regression Model (Logit) 

 

 
Zer o- i nf l at ed negat i ve bi nomi al  r egr essi on     Log l i kel i hood  = - 1072. 463 
 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
   count  |       Coef .    St d.  Er r .        z      P>| z|        [ 95% Conf .  I nt er val ]   
- - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -          
  vol ume |    . 0014793   . 0001328     11. 138   0. 000        . 001219    . 0017396  
   s t dsp |    . 3262934   . 0407186      8. 013   0. 000       . 2464863    . 4061004  
  expose |    . 2185748   . 0209906      6. 472   0. 000       . 0947042    . 1769859  
   _cons |   - 10. 07697   . 2314543    - 43. 538   0. 000      - 10. 53061   - 9. 623324  
 al l t i me |  ( exposur e)                                                            
- - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
i nf l at e  |                                                                       
  expose |   - 16. 9573    4. 067587     - 2. 591   0. 010      - 18. 51136   - 2. 566709  
   _cons |    16. 93089   6. 671905      2. 538   0. 011       3. 854196    30. 00758  
- - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
/ l nal pha |   - . 0912809   . 1327536     - 0. 688   0. 492      - . 3514731    . 1689114  
- - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
   al pha |    . 9127613   . 1211723                          . 7036508    1. 184015  
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
Vuong Test  of  Zi nb vs.  Neg.  Bi n:  St d.  Nor mal   2. 475       Pr ob > Z     0. 9933 

 

Table 5.29 gives the following model form: 
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Table 5.30 The Final Result(III): ZINB Regression Model (Probit) 

 

 
Zer o- i nf l at ed negat i ve bi nomi al  r egr essi on     Log l i kel i hood  = - 1072. 458 
 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
   count  |       Coef .    St d.  Er r .        z      P>| z|        [ 95% Conf .  I nt er val ]   
- - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
count     |                                                                       
  vol ume |    . 0014798   . 0001328     11. 142   0. 000       . 0012195    . 0017401  
   s t dsp |    . 3262291    . 040751      8. 005   0. 000       . 2463585    . 4060997  
  expose |    . 2195514   . 0209532      6. 512   0. 000       . 0953845    . 1775197  
   _cons |   - 10. 08195   . 2311406    - 43. 618   0. 000      - 10. 53498   - 9. 628926  
 al l t i me |  ( exposur e)                                                            
- - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
i nf l at e  |                                                                       
  expose |   - 10. 72279   2. 445224     - 2. 725   0. 006      - 11. 45681   - 1. 871706  
   _cons |    10. 70862   4. 016218      2. 666   0. 008       2. 836972    18. 58026  
- - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
/ l nal pha |   - . 0881219   . 1325587     - 0. 665   0. 506      - . 3479322    . 1716883  
- - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
   al pha |    . 9156492   . 1213772                          . 7061468    1. 187308  
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
Vuong Test  of  Zi nb vs.  Neg.  Bi n:  St d.  Nor mal   2. 477       Pr ob > Z     0. 9934 
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 Table 5.30 gives the following model form: 
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5.2 Model Result Examination 

 In order to examine the performance of the estimated models, the following tasks 

were performed: 

1. Examine the coefficients of variables in different models;  

2. Examine the diagnostic statistics of models; and 

3. Examine the sign of speed. 

5.2.1 Examine the Coefficients of Variables In Different Models 

For all the three sets of models, the four stochastic regression models have 

consistent algebraic sign for each variable in the base models (please refer to table 5.32, 

5.33, and 5.34). For the inflated models of zero inflated models, the algebraic signs of 

variables are also consistent with the exception of volume. In table 5.21 and 5.22, the 

signs of volume are negative. While in table 5.27 and 5.28, the signs of volume are 

positive. The different model structure might have attributed to the different signs of the 

same variable. The inflated models in table 5.21 and 5.22 include volume, speed, and 
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exposure, while the inflated models in table 5.27 and 5.28 include volume, standard 

deviation of speed, and exposure. The signs of the exposure and standard deviation of 

speed remain negative consistently in the inflated models. The coefficients for each 

variable in different models have close values. The coefficients of corresponding 

variables in Poisson and NB models are very close to each other.  

The logit and probit models used in the zero inflated models did not generate 

much difference. The corresponding coefficients in the base models are nearly identical. 

The two inflated models do not have the same structure, but probit and logit inflated 

models generate nearly identical results (table 5.31). The log likelihood and vuong 

statistics only changed slightly from using logit to probit as the inflated model.  For 

example, for the ZIP models in table 5.32, the log likelihood changed from -1163.08 to -

1163.1 and vuong changed from 4.373 to 4.364. These changes are so slight that they can 

be disregarded. Therefore, the logit and probit models can be applied interchangeably in 

this study. 

 

Table 5.31 Comparison of the Logit and Probit Inflated Models 

1st  set  of  model s 2nd set  of  model s 3r d set  of  model s 
0p∆  

ZI P ZI NB ZI P ZI NB ZI P ZI NB 

Maxi mum 0. 007301 0. 03 0. 0147301 0. 010324 0. 023784 0. 01129613 

Mean 0. 001065 0. 00537 0. 00352911 0. 001224 0. 0082594 0. 002078 

Mi ni mum 2. 40E- 06 1. 464E- 13 9. 032E- 06 1. 0985E- 51 4. 81E- 05 1. 09639E- 06 

Note: 0p∆  is the difference of 0p s between the logit and probit inflated models 

 

5.2.2 Examine the Diagnostic Statistics 

By comparing each set of models, it is found out that NB models have better log 

likelihood values than those of Poisson models. In table 5.31, the difference of log 
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likelihood values between the Poisson and NB models is 136.7616.  In table 5.31 and 

5.33, the corresponding differences are 83.1707 and 152.371 separately. This consistently 

significant difference indicates that the NB is superior to the Poisson models. 

The values of vuong statistics are uniformly greater than 1.96, which favors the 

selected zero inflated models over the corresponding base stochastic models. With the 

same model structure, ZIP is better than the Poisson model and ZINB is better than the NB 

model.  The p value of α in ZINB models is higher than 0.05, which indicates the 

insignificance of α in the models. When the α in the NB model is close to 0, the NB turns 

into the Poisson model. 

Table 5.32 The Summary of Model Results (1
st
 Set of Models) 

ZI P( I )  ZI NB( I )  
Model  Poi sson( I )  NB( I )  

Logi t  Pr obi t  Logi t  Pr obi t  
Occu 13. 28704 12. 67423 11. 40821 11. 4021 15. 45177 15. 3985 
St dsp 0. 2804112 0. 287268 0. 205147 0. 204971 0. 196311 0. 197861 
Expose 0. 18732895 0. 17216075 0. 138097 0. 137900 0. 103988 0. 1045363 

Base 
Model  

Cons - 9. 085271 - 9. 000146 - 8. 22397 - 8. 22176 - 8. 79263 - 8. 79522 
Occu     26. 18221 14. 91926 

St dsp   - 0. 16537 - 0. 10169 - 3. 94130 - 2. 30222 
I nf l at ed 
Model  

Expose   - 0. 11998 - 0. 07406 - 1. 18613 - 0. 68401 

α  1. 150312   0. 847628 0. 855648 

Log Li kel i hood - 1231. 0627 - 1094. 3011 - 1163. 08 - 1163. 1 - 1076. 22 - 1076. 1 

Vuong   4. 373 4. 364 2. 675 2. 756 

 

 

Table 5.33 The Summary of Model Results (2
nd

  Set of Models) 

ZI P( I I )  ZI NB( I I )  
Model  Poi sson( I I )  NB( I I )  

Logi t  Pr obi t  Logi t  Pr obi t  

Vol ume 0. 000884 0. 001058 0. 000336 0. 000339 0. 001113 0. 001114 

Speed - 0. 0880675 - 0. 098854 - 0. 08291 - 0. 08277 - 0. 09564 - 0. 09569 

Expose 0. 193520 0. 209792 0. 153848 0. 152838 0. 161682 0. 162008 

Base 
Model  

_Cons - 3. 960136 - 3. 660617 - 2. 9433 - 2. 95078 - 3. 6969 - 3. 6959 

Vol ume   - 0. 00174 - 0. 00106   

Speed   0. 037687 0. 023125   

Expose   - 0. 18110 - 0. 11517 - 16. 6164 - 10. 26771 

I nf l at ed 
Model  

_Cons     16. 4897 10. 19261 

α  0. 711909   0. 58208 0. 582751 

Log Li kel i hood - 1122. 7057 - 1039. 535 - 1078. 96 - 1078. 55 - 1029. 37 - 1029. 30 

Vuong   3. 398 3. 444 2. 262 2. 278 
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Table 5.34 The Summary of Model Results (3
rd

  Set of Models) 
ZI P( I I I )  ZI NB( I I I )  

Model  Poi sson( I I I )  NB( I I I )  
Logi t  Pr obi t  Logi t  Pr obi t  

Vol ume 0. 001373 0. 0014075 0. 001509 0. 001521 0. 001479 0. 00148 

St dsp 0. 26257 0. 3325017 0. 164497 0. 165156 0. 32629 0. 326229 

Expose 0. 27870 0. 27708 0. 17919 0. 17703 0. 21857 0. 21955 
Base 
Model  

_Cons - 10. 1073 - 10. 24142 - 9. 53743 - 9. 55684 - 10. 077 - 10. 082 

Vol ume   0. 000856 0. 000542   

St dsp   - 0. 75074 - 0. 44874   

Expose   - 0. 6214 - 0. 4017 - 16. 9573 - 10. 7228 

I nf l at ed 
Model  

_Cons     16. 9309 10. 70862 

α  1. 108093   0. 91276 0. 915649 

Log Li kel i hood - 1236. 644 - 1084. 327 - 1170. 05 - 1170. 54 - 1072. 46 - 1072. 46 

Vuong   4. 129 4. 102 2. 475 2. 477 

 

Similarly, when the α in the ZINB model is close to 0, it turns into the ZIP model. 

Therefore, in this study, the selected ZINB models can be replaced by the ZIP models 

with the same model structures without loss in their performance. 

5.2.3 The Sign of Speed 

In the base models, the sign of speed is negative, while the sign of standard 

deviation of speed is positive. It was found that the correlation coefficient between speed 

and standard deviation of speed is -0.61. This negative correlation coefficient suggests 

that a negative relationship exists between the speed and standard deviation of speed. 

Table 5.35 shows the mean speed and standard deviation of speed for each speed interval. 

When the speed is higher than a certain value, 40 mph in this case, the higher the speed, 

the lower the standard deviation of speed. For example, In the highest speed interval of 

60-65 mph, the standard deviation of speed is 0.34, which is much lower than those of 

lower speed intervals. Figure 5.1 shows the speed and standard deviation of speed for the 

936 observations. A general trend was found that when the speed is low, the maximum 

standard deviation of speed is high.  

Table 5.35 Speed and Standard Deviation of Speed 
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Speed I nt er val ( mph)  Number  of  Obser vat i ons Fr equency Speed( mean)  
 

St dsp( mean)  

<35 4 0. 4% 33. 33 1. 51 
35- 39. 9 14 1. 5% 37. 98 2. 97 
40- 44. 9 21 2. 2% 43. 35 3. 39 
45- 49. 9 30 3. 2% 47. 87 3. 37 
50- 54. 9 110 11. 8% 52. 57 1. 87 
55- 59. 9 372 39. 7% 57. 83 0. 76 
60- 65 385 41. 1% 62. 54 0. 34 

Note: 1. The unit of speed is mph. The unit of standard deviation of speed is mph2. 

2. The mean standard deviation of speed was calculated as the average value of derived standard deviation of speed within 

the corresponding speed interval. 

 

  

 

 

5.3 Model Result Testing 

  The same data was used for model testing as that of model estimation. 

The relative frequencies of the raw data and the estimated models and error rates between 

them were calculated and compared. Please refer to chapter 4 for the details of relative 

frequency. 

5.3.1 Compare the Relative Frequency and Error Rate  

The relative frequency and error rate were calculated for each estimated model 

and the raw data (please see Table 5.36 for the details). In this study, the crash counts 

were classified as 0, 1,�,6, and more. By examining table 5.36 and figure 5.2, 5.3, 5.4, it 

was found that Poisson regression models underestimated the probability of zero crashes, 

Figure 5.1         Speed and Standard Deviation of Speed
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while they gave higher estimates for all other crash counts. The Poisson regression 

models also have the largest error rates among the four kinds of regression models. This 

is consistent with all of the three sets of models.  The other three kinds of models gave 

close estimation of probabilities for each crash count although zero inflated Poisson 

models have slight higher error rates.  The error rates are consistent with log likelihood 

values of these models. 

Table 5.36 Relative Frequencies of the Raw Data and Estimated Models 

Count  
#/ f r eq( %)  

0 1 2 3 4 5 6 >6 
Er r or  
Rat e 

Raw 564/ 60. 3 214/ 22. 9 64/ 6. 8 26/ 2. 8 27/ 2. 9 11/ 1. 2 10/ 1. 1 19/ 1. 9 N/ A 

P 475/ 50. 7 268/ 28. 6 108/ 11. 5 43/ 4. 6 19/ 2 9/ 1 5/ 0. 5 10/ 1 3. 2 

NB 566/ 60. 5 195/ 20. 9 81/ 8. 6 38/ 4. 1 20/ 2. 1 11/ 1. 2 7/ 0. 7 17/ 1. 9 1. 4 

ZI P 555/ 59. 3 176/ 18. 8 102/ 10. 9 50/ 5. 4 24/ 2. 6 12/ 1. 3 7/ 0. 7 10/ 1. 1 2. 7 

I  

ZI NB 571/ 61 187/ 20 82/ 8. 7 39/ 4. 2 21/ 2. 2 12/ 1. 3 7/ 0. 8 18/ 1. 9 1. 5 

P 490/ 52. 4 270/ 28. 9 100/ 10. 7 36/ 3. 8 15/ 1. 6 8/ 0. 8 5/ 0. 5 13/ 1. 4 2. 9 

NB 562/ 60 209/ 22. 3 80/ 8. 5 34/ 3. 7 17/ 1. 8 10. 0/ 1 6/ 0. 6 20/ 2. 1 1. 7 

ZI P 559/ 60 179/ 19. 1 99/ 10. 6 46/ 4. 9 21/ 2. 3 11/ 1. 2 6/ 0. 7 14/ 1. 5 2. 3 

I I  

ZI NB 566/ 60. 5 204/ 21. 8 81/ 8. 6 35/ 3. 7 17/ 1. 8 1- Sep 6/ 0. 6 18/ 1. 9 1. 7 

P 471/ 50. 3 273/ 29. 1 111/ 11. 8 43/ 4. 6 18/ 18. 7 8/ 0. 9 4/ 0. 4 10/ 1. 0 3. 5 

NB 569/ 60. 7 194/ 20. 7 80/ 8. 5 37/ 4 20/ 2 11/ 1. 2 7/ 0. 7 19/ 2 1. 5 

ZI P 539/ 57. 6 190/ 20. 3 102/ 10. 9 50/ 5. 3 25/ 2. 6 13/ 1. 3 7/ 0. 7 11/ 1. 2 2. 6 

I I I  

ZI NB 573/ 61. 2 188/ 20 80/ 8. 6 38/ 4. 1 20/ 2. 1 11/ 1. 2 7/ 0. 7 19/ 2 1. 5 

Note: # means the number of observations. 
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5.3.2 0p  of Zero Inflated Regression Models 

Zero inflated models consist of two steps. In the first step, the probability of 

whether any event occurs at all is identified. In this study, 0p  is used to indicate the 

probability of zero crash counts and 01 p−  is used to indicate the probability of one or 

more crashes. During the model testing process, it was found that large percentages of 

small 0p s were obtained for ZINB models when compared with those for ZIP models. 

Taking the example of ZINB(II), 624 among 936 observations have 0p  smaller than 

0.01. This suggests that the two-step ZINB regression models are not necessary for this 

study because of the insignificance of the first step. On the contrary, when a large 

proportion of the observed data have significantly high 0p , this suggests the importance 
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of using the two step ZIP models. Even though the performance of ZINB regression 

models is not inferior to those of NB and ZIP, ZINB is not a good alternative for this 

study.  

 

5.4 Graphical Representation of Zero Inflated Models
36

 

Recall that the expectation of zero inflated Poisson model is λ*)1()( 0pXE −= ,  

a rectangle area is helpful in comparing the safety of various road sections. For example, 

road section A can be regarded better than road section B if and only if 

BA pp )1()1( 00 −≤−  and BA λλ ≤  ( with at least one inequality being strict). Figure 5.5, 

5.6 and 5.7 indicate the three conditions under which road section A is safer than road 

section B. 
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Figure 5.5         Comparison of Road Section A and B 
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5.5 Conclusions 

1. Base on the above discussion, NB and ZIP are preferred over Poisson and ZINB 

regression models. Poisson regression models underestimate the probability of zero 

crashes , while overestimating probabilities of crashes more than zero. ZINB regression 

models present good results. However, the large percentage of very small 0P s in ZINB 

models suggests that the two-regime ZINB regression models are unnecessary in this 

study. Both NB and ZIP regression models gave good results. NB regression models had 

slightly better log likelihood and error rate values than those of ZIP. However, the study 

showed that there is no significant difference in the performance of negative binomial 

and zero inflated Poisson regression models.  

2. Three sets of independent variables were applied. No significant difference was 

found among them. They include: (1) occupancy, standard deviation of speed, and 

exposure; (2) volume, speed, and exposure; and (3) volume, standard deviation of speed, 

and exposure. No significant difference were found among these three sets of models. 

Figure 5.7           Comparison of Road Section A and B
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3. Logit and probit models are good forms for use in zero infalted models. They can 

be used interchangeably. 

4. In the base models, all the independent variables have positive algebraic signs 

except speed. Traffic volume, occupancy, standard deviation of speed, and exposure were 

shown to have significant positive relationships with the mean of the dependent variable 

of the link function, i.e. the number of crashes. The larger those variables, the larger the 

mean of number of crashes. On the contrary, speed was shown to have significant 

negative relationship with the mean of number of crashes. In this study, speed and 

standard deviation of speed showed fairly strong negative correlation with each other, 

which indicates that the negative sign of speed is reasonable in this study.  
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Chapter 6 CONCLUSIONS 

6.1 Conclusions 

Based on the findings of this study, the following conclusions are made: 

! The closeness of the estimation and raw data indicates that stochastic regression 

modeling methods can be used to describe the probabilities of crash events. 

! The use of corresponding traffic data (those occurring at the time of the crashes) 

reflected the true influences of the independent variables on the occurrence of 

crashes. 

! The models that have been developed can be used in the field to predict the 

probability of a certain number of crashes under different geometric and traffic 

conditions, for which data can be obtained directly in the field. 

! These models will facilitate the use of real time data in the field to develop 

congestion relieving strategies that do not have negative impacts on safety.  

 

6.2 Recommended Further Research Efforts  

6.2.1 Other Modeling Methods 

Apart from the application of stochastic regression models, other promising 

methodologies include artificial neural networks, fuzzy methods, and genetic algorithms. 

Through the genetic evolution method, an optimal solution can be found and represented 

by the final winner of the genetic game.  

6.2.2 Development of Additional Estimation and Evaluation Procedures 

Additional programs are needed to accommodate more flexibility in the 

estimation and evaluation of stochastic models. For example, STATA only uses the 
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maximum likelihood estimation method for stochastic regression models, but it could 

also be feasible to use the quasi-likelihood estimation method.  

6.2.3 Wide Area Examination of Stochastic Regression Models 

This study has shown the effective modeling methods and significant 

independent variables in the models. However, more roadway sections need to be taken 

under study to verify and support the findings of this study before the wide area 

application of this study. 

6.2.4  Application Of Models In Advanced Transportation Management Systems 

One of the major objectives of crash modeling research is to support the traffic 

management including regular and real time management. Accurate and reliable 

relationships between the occurrence of crashes and highway geometric and traffic 

conditions under a certain environment could present useful insight to the potential 

corresponding safety and traffic operation performance. Therefore, more research should 

be performed to incorporate the models into traffic management systems. 
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Appendix A: Sample SQL Codes Used To Extract Crash Data from the Smart 

Travel Lab At University Of Virginia 

 

 

spool C:\e-64-01-w.txt 

 

COLUM CRASH  FORMAT A15 

COLUM HOUR  FORMAT A6 

COLUM DATEX FORMAT A11 

COLUM LANE  FORMAT A25 

COLUM WEATHER FORMAT A8 

BREAK ON noo SKIP 4 

REM ** INSERT SELECT STATEMENT 

SELECT  

 A.TMS_CALL_NUMBER as CRASH, 

 TO_CHAR(B.BEGIN,'hh24:mi') AS HOUR,  

TO_CHAR(B.BEGIN, 'mm-dd-yyyy') AS DATEX, 

 A.LANE, 

B.WEATHER 

FROM  

 HR.INC_ROADWAY A, 

HR.INCIDENT B      

WHERE  

 A.LOCATION ='E64-01' 

 AND upper(A.DIRECTION) in ('WEST','WEST BOUND') 

AND upper(B.TYPE) = 'ACCIDENT' 

 AND A.TMS_CALL_NUMBER = B.TMS_CALL_NUMBER 

AND B.BEGIN BETWEEN  to_date('07-01-1998','mm-dd-yyyy') and 

to_date('07-01-2001','mm-dd-yyyy') 

 

/ 

spool off 
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Appendix B: Sample Crash Data 

 
TMS-CALL Number DATE WEEKDAY TIME WEATHER LANE LOCATION DIRECTION 

1998-16021 11/15/98 1 19:32:00 Clear Right Shoulder W64-06 East Bound 

1999-10836 6/27/99 1 17:30:00 Cloudy Right Shoulder, Gore W64-06 East Bound 

1999-22126 11/14/99 1 16:01:00 Clear Right Shoulder, Reversible W64-06 East Bound 

2001-04344 2/18/01 1 22:29:00 Cool 5, Right Shoulder W64-06 East Bound 

2001-12766 5/6/01 1 23:00:00 Clear 1 W64-06 East Bound 

1998-10231 8/10/98 2 14:18:00 Clear Right Shoulder W64-06 East Bound 

1999-17888 9/20/99 2 17:33:00 Cloudy Left Shoulder, 1 W64-06 East Bound 

2000-18730 7/17/00 2 11:23:00 Clear Right Shoulder W64-06 East Bound 

2001-01260 1/15/01 2 8:24:00 Clear Left Shoulder, 3, Right Shoulder W64-06 East Bound 

1999-12278 7/13/99 3 19:20:00 Cloudy Gore W64-06 East Bound 

2000-10564 5/9/00 3 15:46:00 Clear Right Shoulder W64-06 East Bound 

2000-30046 10/24/00 3 16:36:00 Clear 5 W64-06 East Bound 

2001-22750 7/24/01 3 12:55:00 Cloudy Right Shoulder W64-06 East Bound 

1999-22916 11/24/99 4 11:32:00 Cloudy 5, Right Shoulder W64-06 East Bound 

2000-25539 9/13/00 4 9:13:00 Clear Left Shoulder W64-06 East Bound 

2001-22946 7/25/01 4 17:10:00 Hot / Humid 4 W64-06 East Bound 

2001-22947 7/25/01 4 17:13:00 Hot / Humid 4 W64-06 East Bound 

1998-08536 7/9/98 5 17:40:00 Clear Left Shoulder, 1 W64-06 East Bound 

1998-15420 11/5/98 5 15:52:00 Clear Left Shoulder W64-06 East Bound 

1998-17480 12/10/98 5 17:49:00 Clear 3, Shoulder Lane W64-06 East Bound 

1999-03817 3/11/99 5 16:27:00 Clear 5, Right Shoulder W64-06 East Bound 

1999-06361 4/22/99 5 10:03:00 Warm Right Shoulder W64-06 East Bound 

2000-14774 6/15/00 5 12:51:00 Clear 5 W64-06 East Bound 

2001-07506 3/22/01 5 17:47:00 Cloudy 5, Right Shoulder W64-06 East Bound 

2001-18413 6/21/01 5 8:26:00 Clear Right Shoulder W64-06 East Bound 

1999-02352 2/12/99 6 8:25:00 Clear Left Shoulder, 1, 2 W64-06 East Bound 

2000-04386 3/3/00 6 10:19:00 Clear 1, 2, 3 W64-06 East Bound 
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Appendix C: Sample Traffic Data 

 
STATIONID WEEKDAY TIME VOLUME OCCUPANCY SPEED 

104 1 0:00 719.1115 1.272917 49.25625 

104 1 0:10 611.3884 1.211579 48.9379 

104 1 0:20 583.725 1.207292 47.87604 

104 1 0:30 528.1469 0.884694 45.59286 

104 1 0:40 482.2212 0.817172 44.59192 

104 1 0:50 422.209 0.797 41.984 

104 1 1:00 381.9515 0.820202 43.11111 

104 1 1:10 287.9313 0.819192 43.53636 

104 1 1:20 251.3354 0.767677 42.85253 

104 1 1:30 243.7238 0.859406 42.88812 

104 1 1:40 215.4404 1.016162 43.40707 

104 1 1:50 248.087 1.04 42.249 

104 1 2:00 246.7726 1.030392 41.44314 

104 1 2:10 286.5153 1.380612 42.39286 

104 1 2:20 311.3485 1.140206 43.20825 

104 1 2:30 323.6697 1.128283 44.13939 

104 1 2:40 287.938 1.105 43.112 

104 1 2:50 193.499 1.305051 42.91111 

104 1 3:00 174.7612 1.285437 42.89223 

104 1 3:10 160.5901 1.316832 42.00297 

104 1 3:20 141.5529 1.275 39.5125 

104 1 3:30 115.3629 1.255238 38.9 

104 1 3:40 103.681 1.259048 38.01238 

104 1 3:50 92.68058 1.275728 39.09806 

104 1 4:00 86.62941 1.288235 37.12157 

104 1 4:10 75.91942 0.972816 37.16311 

104 1 4:20 65.32981 0.953846 38.21346 

104 1 4:30 66.61165 0.951456 38.89418 

104 1 4:40 62.69615 0.946154 38.18462 

104 1 4:50 64.8781 0.937143 35.90286 

104 1 5:00 76.17076 0.956604 38.39623 

104 1 5:10 71.98824 0.962745 45.55392 

104 1 5:20 78.35631 0.957282 44.78252 

104 1 5:30 104.5447 0.959223 44.72621 

104 1 5:40 115.3515 1.009901 47.01386 

104 1 5:50 130.1124 0.979048 43.85429 

104 1 6:00 137.4702 0.961538 41.35962 

104 1 6:10 140.9943 0.96381 43.60095 

104 1 6:20 158.5231 0.965385 43.17692 

104 1 6:30 174.4 1.036893 45.00874 

104 1 6:40 199.9874 0.912621 45.57476 

104 1 6:50 228.8495 0.821905 44.45048 

104 1 7:00 245.1914 0.879048 44.76857 

104 1 7:10 232.6238 0.87619 45.46571 

 
 


