
XYZ User’s Manual
Version 0.1

Work In Progress

Embedded Networks and Applications Lab (ENALAB)

Yale University

XYZ Team

Dimitrios Lymberopoulos

Andrew Barton-Sweneey

Quentin Lindsey

Andreas Savvides

For an updated version of this manual please visit the XYZ website

http://www.eng.yale.edu/enalab/XYZ

ACKNOWLEDGMENTS:

 National Science Foundation (NSF)

 Cogent Computer Systems, Inc.

 OKI Semiconductor

 ARM Ltd

 NESL SOS team @ UCLA

Report changes or errors at:

 abs@cs.yale.edu

ENALAB YALE UNIVERSITY

XYZ User Manual 9/16/2005 2

1. Introduction.. 4

2. XYZ Feature Set .. 5

3 XYZ Programming Tools Installation ... 7

3.1 Cygwin.. 7

3.2 ARM-GCC.. 8

3.3 SOS operating System .. 8

3.4 Seehau Software for the Nohau In-Circuit Emulator.. 9

3.4.1 Configuration of the Seehau Emulator ... 9

4 Basic Programming on XYZ ... 12

4.1 File Structure... 12

4.1.1 Building applications to run from FLASH or RAM................................. 13

4.2 Accessing the Registers – Basic Macros .. 14

4.3 GPIO Configuration.. 16

4.4 Configuring and Using Timers ... 17

4.5 Configuring and Using External Interrupts... 19

4.6 Configuring and Using Peripherals... 20

4.7 An Example Application... 21

4.8 Debugging applications on XYZ .. 27

5 Testing the XYZ sensor node .. 31

6 Testing an XYZ node using a pre-installed SOS binary image 31

6.1.1 Setup SOSSRV ... 32

6.1.2 Loading the Module.. 32

6.2 Compiling and Installing an SOS Module on the XYZ.................................... 34

6.3 Compiling and loading an SOS BLANK Kernel on the XYZ.......................... 35

7 Connecting XYZ to the PC and the Web... 36

7.1 Radio ... 36

7.2 UART.. 36

7.3 SOSBASE... 37

7.4 SOSSRV ... 37

7.4.1 Invoke SOSSRV from the Command-line.. 37

7.5 Using the POKE Application.. 38

8 Introduction to the SOS Operating System.. 40

8.1 Dynamic Modules... 41

8.2 Bootloader... 41

9 Basic programming in SOS ... 41

9.1 SOS Messaging Mechanism ... 41

9.2 Using Timers in SOS .. 42

9.3 Sampling the Sensors in SOS ... 42

10 Programming with SOS and Modules ... 42

10.1 Function pointers .. 42

10.1.1 Subscribed functions... 43

10.1.2 Provided functions .. 43

10.1.3 How to call function pointers.. 43

10.2 Timer interface.. 44

10.3 Recommended programming model for device drivers.................................... 45

ENALAB YALE UNIVERSITY

XYZ User Manual 9/16/2005 3

10.4 Enabling the Watch Dog Timer .. 45

10.5 Reading the on-board Sensors .. 45

10.6 Setting the Real Time Clock ... 47

11 Miscellaneous Features.. 47

11.1 Radio Signal Strength Indicator RSSI and Link Quality Indicator (LQI) 47

12 XYZ’s Advanced Features... 49

12.1 Low Power Long Term Sleep Modes ... 49

12.2 Enabling & Disabling Different Processor Peripherals 50

12.3 Radio Sleep Modes ... 50

12.4 Microcontroller Frequency Scaling .. 50

13 Wireless Network Protocol Support .. 51

14 ChipCon License.. 51

15 XYZ Schematics .. 52

16 XYZ Peripheral Boards & Support Software .. 56

16.1 XYZ Prototyping Board.. 56

17.2 Ulrasound and Mobility Board ... 58

17.3 Acoustic Processing Interface and Acoustic Signature Recognition................ 58

18 XYZ Errata... 59

19 References.. 59

ENALAB YALE UNIVERSITY

XYZ User Manual 9/16/2005 4

1. Introduction
The XYZ is a general-purpose sensor node designed for teaching and experimentation in

networked embedded systems and sensor network applications. The goal of the XYZ

architecture is to provide a wealth of peripherals and ample computation resources to

facilitate rapid experimentation with sensor networks problems, especially with

applications involving mobility. To reduce the fabrication cost for sensor boards and for

instructional purposes, the main board of the XYZ sensor node also includes 3 sensors: a

MEMs accelerometer, a temperature sensor and a light sensor.

This manual provides a brief overview of how to get started with XYZ. It describes the

tool chain setup, and documents the main XYZ hardware and software features. Our

description assumes that the reader is familiar with the basics of microcontroller

programming. Throughout the description, this manual provides a few hands-on

examples to familiarize the user XYZ and its development environement. With the

exception of a few embedded systems programming exercises, all XYZ software is

released as part of the SOS operating system developed at NESL, UCLA. The majority of

the code examples on the usage of the different XYZ features are written SOS. Features

related to authoring low level drivers and some performance demanding applications are

written in C. All the software development of XYZ is done using the ARM7TDMI GNU

tool chain. Pointers to the pre-compiled tool chains are provided on the XYZ website.

The latest updates, documentation and applications of XYZ are posted on the XYZ

website at :

http://www.eng.yale.edu/enalab/XYZ

For the latest information on the SOS operating system visit the SOS website at:

http://nesl.ee.ucla.edu/projects/SOS

The XYZ node is available to the research community from Cogent Computer

http://www.cogcomp.com

For access to the most recent developments and discussions on the XYZ, become a

member of the XYZ-users Mailing List: xyz-users@cs.yale.edu Please visit the

following webpage to join the list:

http://mailman.cs.yale.edu/mailman/listinfo/xyz-users

ENALAB YALE UNIVERSITY

XYZ User Manual 9/16/2005 5

2. XYZ Feature Set
The main XYZ sensor board provides the following hardware features.

• OKI Semiconductor ML67 series ARM THUMB microcontroller

o Processor controlled clock speed 1.8 – 58MHz

o 256KB FLASH, -32KB RAM, 2Mbit off-chip RAM

• Chipcon CC2420 IEEE 802.15.4 radio (250kbps raw data rate)

• A real-time clock circuitry for allowing ultra-low power long-term sleep modes

• MEMs accelerometer

• Light Sensor

• Thermometer

• A wide variety of microcontroller peripherals.

• Powered by 3AA 1.2V rechargeable batteries

The main software features include:

• IEEE 802.15.4 Medium Access Control Protocol (ported from Chipcon’s

implementation).

• SOS Operating System including dynamic module support provided by NESL

UCLA

• The XYZ low power API

• Identification of acoustic signatures on the XYZ

An overview of the XYZ architecture is shown in Figure 1. The sensor node is powered

by 3AA batteries. The voltage regulator and the supervisor circuitry are directly powered

by the batteries. All the other chips on the node are powered from the on-board voltage

regulator which can be enabled or disabled by the supervisor circuitry. The on-board

voltage regulator provides two voltages: the 2.5V required by the core of the CPU and the

3.3V required by the I/O of the CPU and the radio. These two voltages are fed to the rest

of the board through a power tracking interface that facilitates that is used to easily

monitor the power consumption of the sensor node.

Figure 1. The XYZ architecture

ENALAB YALE UNIVERSITY

XYZ User Manual 9/16/2005 6

The communication subsystem of the XYZ sensor node is the Chipcon CC2420 IEEE

802.15.4 compliant radio that is interfaced to the processor through the processor’s SPI

interface. The processor can completely turn on/off the radio and reset it in hardware or

in software while the radio is capable of sending interrupt signals to the processor. The

sensor subsystem of the node consists of a light sensor, a temperature sensor and a 2-axis

accelerometer. All the sensors, except the temperature sensor, which has a digital

interface, are connected to the on-chip ADC of the processor.

Two 30-pin connectors are used to facilitate interfacing external circuits and sensors to

the node. All free GPIO pins and the pins of the processor’s peripherals and all the power

voltages used on the XYZ are output on these connectors. An additional prototyping

accessory board is provided for interfacing new sensor designs to XYZ.

A mobility mechanism implemented as an accessory board allows the XYZ sensor node

to move along a string. An H-bridge is used to convert the 3.3V logic of the processor to

5V logic that is necessary for moving a miniature-geared motor at a decent speed. Using

this mechanism the sensor node can be attached to a string a move itself on both

directions along the string.

An external 2Mbit SRAM has been added to complement the internal 32KB of RAM of

the CPU chip. An overview of the OKI ML67Q500x ARM microcontroller is shown in

Figure 2. As it can be seen in Figure 2 a variety of peripherals are available including a 2-

channel DMA controller and 7 hardware timers.

Figure 2. The OKI ML67Q500x ARM 7 microcontroller

ENALAB YALE UNIVERSITY

XYZ User Manual 9/16/2005 7

Although there are many possibilities for programming the XYZ node, the supported

method is to program the onboard OKI ARM processor using the GNU toolchain and the

SOS operating system.

The SOS operating system [3] is a small, event-driven pseudo real-time operating system

designed at UCLA/NESL to facilitate research in wireless sensor networks. SOS is

comprised of a static OS kernel and a set of dynamic modules that act as application

building blocks. Modules communicate with each other through kernel calls or

messages, and they can be dynamically installed/uninstalled during the system lifetime. A

detailed SOS tutorial can be found on the SOS website at:

http://nesl.ee.ucla.edu/projects/sos/tutorial/

3 XYZ Programming Tools Installation

 Before delving into the actual details of programming, we first provide a description of

how to setup and test the XYZ node using a pre-compiled binary image of the SOS

operating system. This manual assumes a Windows environment. Support for other

environments will be added in the future.

The XYZ platform is built around an ARM architecture microprocessor from OKI

Semiconductor. The processor has built support for JTAG programming and remote

debugging. The development of software for SOS and the XYZ requires the ARM-GCC

compiler, GNU Tools and CYGWIN.

3.1 Cygwin

The CYGWIN program is required by the GNU Tools and recommended for the SOS

tools and provides a UNIX command line environment. The CYGWIN is available at

http://www.cygwin.com

Figure 3 The XYZ sensor node module

ENALAB YALE UNIVERSITY

XYZ User Manual 9/16/2005 8

The CYGWIN also provides useful support develop and deploy SOS sensor networks,

including a CVS client, webserver and database.

3.2 ARM-GCC

The ARM-GCC compiler tools from Code Sourcery are recommended for the XYZ. The

ARM-GCC compiler is ANSI compliant and supports C++ and linking for the ARM

architecture. The ARM-GCC tools are available at:

http://www.codesourcery.com/public/gnu_toolchain/arm/2004-Q3D/arm-none-elf-2004-

q3d.exe

The installation of the ARM-GCC tools is a standard windows-like installation. After

installing the tools the environment variable PATH must be updated with the path to the

executables just installed. Assuming that you have installed the tools under the folder:

C:\Program Files\CSL Arm Toolchain\ then the following directory should be added to

the PATH environment variable: C:\Program Files\CSL Arm Toolchain\bin. In order to

set the PATH environment variable follow these steps:

1) Right click on “my computer” and choose “Properties”.

2) Choose the “Advanced” tab and click on the “Environment Variables” at the

bottom of the window.

3) From the variables that appear, choose the variable PATH and at the end add the

following: ;C:\Program Files\CSL Arm Toolchain\bin.

After setting the environment variable PATH restart Cygwin so that the changes take

effect.

3.3 SOS operating System

The SOS Operating System is distributed by NESL at UCLA. SOS is available from the

CVS repository. Snapshots of repository are listed from the SOS website. See the SOS

documentation for more information on obtaining SOS. To view the SOS repository

online go to,

http://cvs.nesl.ucla.edu/cvs/viewcvs.cgi/sos/.

The latest source code and documentation for SOS is available directly from the CVS.

When prompted for password, enter "anon",

$ export CVS_RSH=ssh

$ export CVSROOT=anon@cvs.nesl.ucla.edu:/Volumes/Vol1/neslcvs/CVS

$ cvs co sos

ENALAB YALE UNIVERSITY

XYZ User Manual 9/16/2005 9

3.4 Seehau Software for the Nohau In-Circuit Emulator

The Seehau Emulator is an In-Circuit Emulator for the XYZ sensor node. It is not freely

available and therefore it is not available for download on the XYZ website. The

installation of the emulator is exactly the same with most of the window-based programs

installations.

3.4.1 Configuration of the Seehau Emulator

Before you use the Seehau Emulator you have to configure it. In order to configure the

emulator select: START-> Program Files -> Seehau ARM -> Config. You will be asked

to set the type of the JTAG and the type of the processor you use. Make sure that your

selections match the selctions shown in Figure 4.

Figure 4. Configuring the Seehau Emulator

After setting the type of the JTAG and the processor used choose: NEXT. In the next

screen you have to set the clock frequency for the JTAG. Set the clock frequency at

33MHz as shown in Figure 5 and click on FINISH.

ENALAB YALE UNIVERSITY

XYZ User Manual 9/16/2005 10

Figure 5. Setting the clock frequency

At this point you finished the basic configuration of the emulator. The next message on

your screen asks you if you want to start the emulator. First make sure that your JTAG is

properly connected to the USB port of your PC and that is also connected to a powered-

up XYZ sensor node and then choose YES. When connecting the JTAG to the XYZ

sensor node make sure that you can see the small arrow on the JTAG connector that goes

to the XYZ when you have a top view of the XYZ sensor node. A wrong connection

between the JTAG and the XYZ might damage the XYZ, the JTAG or both! If everything

was successful, you should be able to see whatever is shown in Figure 6. The main

window of the seehau emulator shows the contents of the flash memory inside the OKI

processor. As it is shown in Figure 6, all the addresses of the FLASH memory can be

seen. Also, the contents of the registers and the RAM are also available to the user for

reading and writing (the two remaining windows).

ENALAB YALE UNIVERSITY

XYZ User Manual 9/16/2005 11

Figure 6. Seehau emulator is up and running.

In order to be able to load executable files into the FLASH you should go to:

Config->Emulator and under the Misc Setup tab you should have the same settings as the

ones shown in Figure 7. After changing the settings click on APPLY and then click on

OK.

In order to be able to place breakpoints into your code go to: Run-> Force Hardware

Step. Now your Seehau Emulator has been fully configured. In order to save your new

settings exit the Seehau emulator and save the setup file of the emulator by overwriting

the existing one.

For more information on how to use the Seehau emulator see section 4.8.

ENALAB YALE UNIVERSITY

XYZ User Manual 9/16/2005 12

Figure 7. Setting the Seehau emulator to load executables to the FLASH.

4 Basic Programming on XYZ
The purpose of this section is to get you familiar with the low-level basic programming

on the XYZ sensor node without an operating system. In the following subsections we

will introduce a set of basic programming macros. We will also describe of how to access

the registers and how to configure and use the timers, the interrupts and the GPIO pins is

presented. The sample code for these examples can be found at:

http://www.eng.yale.edu/enalab/XYZ/programming/pa1_code.zip

4.1 File Structure

The necessary files for compiling XYZ applications along with a sort description are

listed below:

 Makefile: application makefile. All the rules for compiling the application and

the format of the output files are defined here.

 application.c: main application file containing user’s application.

 common.h: data type definitions and programming macros for register access.

 define.s: assembler common definitions file.

 init.s: Startup routine.

ENALAB YALE UNIVERSITY

XYZ User Manual 9/16/2005 13

 irq.c: Interrupt handler’s initialization functions.

 irq.h: Interrupt handler’s basic function declarations and definitions

(enable/disable interrupts etc).

 reentrant_irq.s: Reentrant interrupt handler routine.

 romarm.ld: Link command file for building programs. It contains the memory

definition and defines where the program and the data will be stored.

 ml674001.h: Processor specific header file. All the CPU registers and MACROS

for accessing them are defined in this file.

The main application file can be renamed from application.c to anything_else.c as long

as the Makefile is modified accordingly. The only change required in the Makefile is in

the object filename from application.o to anything_else.o. In the case where more than

one application files are needed (for instance: application1.c, application2.c etc) then the

corresponding object files (application1.o, application2.o etc) should be added in the

“OBJS = irq.o reentrant_irq.o init.o application.o ” line located in the Makefile.

4.1.1 Building applications to run from FLASH or RAM

Assuming that all the necessary files, described above, are in the same directory and the

application code is free of errors, the executable file can be obtained by typing the

following commands in cygwin:

$ make clean

$ make

If the application code is free of errors an executable file called application_rom.elf will

be produced. By default this executable file is produced to run from FLASH. However,

small changes in the linker file (romarm.ld) and the Makefile allow the produced

executable to run from RAM.

The linker file (romarm.ld) consists of two parts: the MEMORY part and the SECTIONS

part. In the MEMORY part, the start address and the size of both the FLASH and the

RAM are defined.

MEMORY {

 rom (rx) : ORIGIN = 0x00000000, LENGTH = 256K
ram (rx) : ORIGIN = 0x50000000, LENGTH = 32K }

 In the SECTIONS part, the final destination of the code and the data is defined among

others. The .text section corresponds to the code and the .data section corresponds to the

data of the application. The destination (FLASH or RAM) of the code and the data is

defined at the end of the .text and the .data sections respectively, as follows:

.text { .data {

 …….. …….

 …….. …….

ENALAB YALE UNIVERSITY

XYZ User Manual 9/16/2005 14

} > rom } > ram

 According to this configuration of the linker file, which is the default configuration, the

application code will be stored in FLASH and the application data will be stored in RAM.

In other words, the application will run from FLASH. In order to make the application

run from RAM the .text section should be changed as follows:

.text {

 …….

 …….

} > ram

and the line: elf: application_rom.elf in the Makefile should be replaced with the

following: ram: application_ram.elf. Now, by typing:

$ make clean

$ make

in cygwin, the executable file application_ram.elf is produced to run from RAM.

4.2 Accessing the Registers – Basic Macros

All the basic data types and the macros for accessing the registers of the ARM processor

are defined in the file: common.h.

The most commonly used data types are the following:

 BYTE: signed 8-bit.

 UBYTE: unsigned 8-bit.

 HWORD: signed 16-bit.

 UHWORD: unsigned 16-bit.

 WORD: signed 32-bit.

 UWORD: unsigned 32-bit.

The size of the internal CPU registers varies from 8-bit to 32-bit. Depending on the size

of the register, different MACROS have been defined for reading/writing these registers:

 put_value(register_name, hex_value): write the 8-bit hex_value in the register

called register_name.

 get_value(register_name): get the value of the 8-bit register called

register_name.

 put_hvalue(register_name, hex_value): write the 16-bit hex_value in the register

called register_name.

 get_hvalue(register_name): get the value of the 16-bit register called

register_name.

 put_wvalue(register_name, hex_value): write the 32-bit hex_value in the register

called register_name.

 get_wvalue(register_name): get the value of the 32-bit register called

register_name.

ENALAB YALE UNIVERSITY

XYZ User Manual 9/16/2005 15

The [put_value(), get_value()], [put_hvalue(), get_hvalue()], and [put_wvalue(),

get_wvalue()] pairs of macros should be used only with 8-bit, 16-bit and 32-bit registers

respectively. For instance, if your application goal is the following:

1. Read the value of the 16-bit register GPPOB.

2. Write the value you read in the 16-bit register GPPOA.

3. Write the value 0x3C in the register WDTCON.

then your application file should look like this:

int main(void) {

/* Unsigned 16-bit integer*/

UHWORD read_data;

/* Read the 16-bit register GPPOB*/

read_data = get_hvalue(GPPOB);

/*Write the 16-bit register GPPOA*/

put_hvalue(GPPOA, read_data);

/*Write the 8-bit register WDTCON*/

put_value(WDTCON, 0x3C);

return 0; }
In many cases, it is desirable to set or clear independent bits of a register. Note that the

macros presented so far automatically set all the bits in a register. In order to

independently set or clear individual bits in a register, a separate set of MACROS is

available:

 set_bit(register_name,2
n
): set the n-th bit in the 8-bit register called

register_name.

 clr_bit(register_name, 2
n
): clear the n-th bit in the 8-bit register called

register_name.

 set_hbit(register_name, 2
n
): set the n-th bit in the 16-bit register called

register_name.

 clr_hbit(register_name, 2
n
): clear the n-th bit in the 16-bit register called

register_name.

 set_wbit(register_name, 2
n
): set the n-th bit in the 32-bit register called

register_name.

 clr_wbit(register_name, 2
n
): clear the n-th bit in the 32-bit register called

register_name.

Note, that the second arguments in all of these macros is not the actual bit position but

number 2 to the power of the bit position that has to be set or cleared. The right most bit

in a register is considered to be bit 0 while the right most bit is considered to be bit 7, 15,

or 31 depending on the size of the register. For instance, the following lines of code set

bits 0 and 5 and clear bit 23 in the 32-bit register ILC1:

set_wbit(ILC1, 0x00000001); /* Set bit 0 */

set_wbit(ILC1, 0x00000020); /* Set bit 5 */

ENALAB YALE UNIVERSITY

XYZ User Manual 9/16/2005 16

clr_wbit(ILC1, 0x00800000); /* Set bit 23 */

4.3 GPIO Configuration

The OKI processor on the XYZ sensor node provides 5 GPIO ports that correspond to 42

GPIO pins. Ports A, B, C and D are 8-bit ports while port E is a 10-bit port. Each GPIO

pin has a primary and a secondary function. By default the primary function of a GPIO

pin is to act as general purpose input or output. The secondary function of a single or a

set of GPIO pins is . A complete list of the GPIO pins and their secondary functions can

be found in [5] (Chapter 13).

The steps for configuring and using a GPIO pin as a general purpose input/output are the

following:

1. Configure the GPIO pins to be used as their primary functions. This can be done

by writing the appropriate value to the GPCTL register. Every bit in the GPCTL

register controls a group of GPIO pins. Setting a bit in the GPCTL register to 1

configures the corresponding group of GPIO pins as their secondary function.

Conversely, setting a bit in the GPCTL register to 0 configures the corresponding

group of GPIO pins as their primary functions (general purpose I/O). In order to

use a GPIO pin as a general purpose I/O pin you must first find the bit in the

GPCTL register that corresponds to this pin and set it to 0.

2. After setting a GPIO pin as a general purpose I/O pin, the direction (input or

output) of this pin must be defined. This can be done by writing the registers

GPPMX, where X=A, B, C, D, or E. Each GPPMX register is a 16-bit register

that controls the I/O directions of every pin that belongs in the port X. The least

significant bit of the GPPMX register corresponds to port’s X GPIO pin 0. The 7
th

bit (ports: A, B, C, or D) or the 9
th

 bit (port E only) correspond to the 8
th

 and 10
th

bit respectively of the ports A through D and E. Setting a bit in this register to 1,

configures the corresponding GPIO pin as output. Conversely, setting a bit in this

register to 0 configures the corresponding GPIO pin as input.

3. If a GPIO pin is configured as output then the state of the pin can be changed by

writing register GPPOX, where X=A, B, C, D, or E. The format of the GPPOX

register is exactly the same with the format of the GPPMX register. Each bit of

the GPPOX register corresponds to a GPIO pin that belongs in port X. Writing 1

to a bit will force the corresponding GPIO pin that is set as output, to become 1.

Conversely, writing 0 to a bit will force the corresponding GPIO pin that is set as

output, to become 0. In the case where a GPIO pin is configured as input, its state

can be retrieved by reading the register GPPIX, where X=A, B, C, D or E. As

before, each pin in this register corresponds to a GPIO pin. Reading this register

corresponds to reading all the GPIO pins that are controlled by this register.

As an example of configuring and using the GPIO pins as general purpose I/O pins

consider the following application:

1. Set PIOA[0] as input and PIOA[1] as output.

2. Output 1 at PIOA[1] and read the value of PIOA[0].

3. Turn on all the LEDs on the XYZ. The 3 LEDs are connected to pins PIOD[4],

PIOD[5] and PIOD[7].

ENALAB YALE UNIVERSITY

XYZ User Manual 9/16/2005 17

The code for this example application is the following:

int main(void) {

/* Unsigned 16-bit integer*/

UHWORD read_data;

/* Configure pins PIOA[0] and PIOA[1] as their primary functions*/

clr_hbit(GPCTL, 0x0001); /* bit 1 controls the whole A port, PIOA[0:7]*/

/*Configure PIOA[0] as input*/

clr_hbit(GPPMA, 0x0001);

/*Configure PIOA[1] as output*/

set_hbit(GPPMA, 0x0002);

/*Output 1 at PIOA[1]*/

set_hbit(GPPOA, 0x0002);

/*Read the value of PIOA[0]*/

read_data = get_hvalue(GPPIA); /*Read all pins in port A, PIOA[0:7]*/

read_data = read_data & 0x0001 ; /*Isolate pin PIOA[0]*/

/* read_data now contains the value of input pin PIOA[0] */

/*Turn on the LEDs. Pins PIOD[4:6] do not have a secondary function!*/

/* Configure pins PIOD[4:6] as outputs */

set_hbit(GPPMD, 16); /*PIOD[4]*/
set_hbit(GPPMD, 32); /*PIOD[5]*/

set_hbit(GPPMD, 64);/*PIOD[6]*/

/*Turn on the LEDs by writing 0 to PIOD[4:6]*/

clr_hbit(GPPOD, 16);

clr_hbit(GPPOD, 32);

clr_hbit(GPPOD, 64);

return 0; }

4.4 Configuring and Using Timers

The CPU chip supports a system timer and 6 dedicated hardware timers (TIMER0

through TIMER5). Applications that need accurate timing is recommended to use the

dedicate hardware timers. Each of the 6 hardware timers has a set of configuration

registers (more detailed information can be found in chapter 15 in [5]):

 TIMECNTL0-TIMECNTL5: Timer control register. This register is responsible

for:

o Defining the operating clock frequency of the timer.

ENALAB YALE UNIVERSITY

XYZ User Manual 9/16/2005 18

o Configuring the timer as one-shot timer or interval timer.

o Starting or stopping the timer.

o Enabling/Disabling the timer interrupts.

 TIMEBASE0-TIMEBASE5: Timer base register. The initial value of the timer

counter.

 TIMECNT0-TIMECNT5: Timer counter register. The current value of the

timer counter.

 TIMECMP0-TIMECMP5: Timer compare register. The “overflow” value of

the timer .When the timer counter register becomes equal to the timer compare

register a timer interrupt is fired.

 TIMESTAT0-TIMESTAT5: Timer status register. It indicates if a timer

interrupt was fired or not.

The procedure for configuring and using a timer (we assume TIMER0 here) is the

following:

1. Stop the timer by clearing bit 3 in register TIMECNTL0.

2. Set the timer interrupt handler and set its priority level. Note that all interrupts

have priority level 0 by default. In other words they are masked. In order to

activate an interrupt a priority level higher or equal to 1 is required.

3. Set the operating clock frequency of the timer by writing bits 5 through 7 in

register TIMECNTL0.

4. Set the mode of the timer by writing bit 0 in register TIMECNTL0. Every timer

can be configured as an interval timer or as a one-shot timer. The one-shot timer

gives only one interrupt and then it is disabled. Conversely, the interval timer

periodically gives timer interrupts until it is stopped by the user by clearing bit 3

in register TIMECNTL0.

5. Write the initial value of the timer in the register TIMEBASE0. This is the value

from which the timer counter will start counting.

6. Write the overflow value of the timer in the TIMECMP0 register.

7. Clear the status bit by writing 1 to bit 0 in register TIMESTAT0.

8. Enable interrupts by setting bit 4 in register TIMECNTL0.

9. Start the timer by setting bit 3 in register TIMECNTL0 to 1.

Every time that the value of the TIMECNT0 register becomes equal to the value of the

TIMECMP0 register, a timer interrupt will be fired and the timer interrupt handler will be

called. If the timer is configured as a one shot timer the timer handler will be called only

once. Conversely, if the timer is configured as interval timer the timer handler will be

called repeatedly. Independently of the configuration of the timer, the timer interrupt

handler should always clear the status bit of the timer before returning, otherwise future

timer interrupts will be ignored. An example of an interval timer is the following:

static void timer0_interrupt_handler() {

 /* Clear the status bit */

 put_hvalue(TIMESTAT0, 1);

 ……

 ……

}

ENALAB YALE UNIVERSITY

XYZ User Manual 9/16/2005 19

int main(void) {

/* initialize interrupt handling */

 init_irq();

 // set timer interrupt handler

 IRQ_HANDLER_TABLE[INT_TIMER0] = timer0_interrupt_handler;

/* Enable the interrupts */

 ENABLE_GLOBAL_INT();

/* Set the timer interrupt priority level to 1 */

set_wbit(ILC, ILC_ILC16 & ILC_INT_LV1);

 /* set timer base value to 0 */

 put_hvalue(TIMEBASE0, 0);

 /* set timer comparison value */

 put_hvalue(TIMECMP0, 0xFFFF);

 /* set timer to interval mode */

 clr_hbit(TIMECNTL0, TIMECNTL_INT);

/* Clear the status bit */

put_hvalue(TIMESTAT0, 1);

 /* enable timer interrupts */

 set_hbit(TIMECNTL0, TIMECNTL_IE);

 /* start timer */

 set_hbit(TIMECNTL0, TIMECNTL_START);

while(1){;} /* Do not return so that the timer interrupt handler is called! */

return 0; }

4.5 Configuring and Using External Interrupts

Configuring and using external interrupts is very similar to using the timer interrupts.

Detailed information on how to configure and use the external interrupts can be found in

chapter 8 in [5].

DIMITRIS (I will finish this section)

ENALAB YALE UNIVERSITY

XYZ User Manual 9/16/2005 20

4.6 Configuring and Using Peripherals

The procedure for configuring and using the on-chip peripherals is almost the same for all

the available peripherals. In general, the steps to use a peripheral are the following:

1. Find the GPIO pins whose secondary function is the peripheral you want to use.

Configure these GPIO pins as their secondary functions by writing the appropriate

values in the GPCTL register.

2. Write the configuration registers of the peripheral according to your application

needs and use it!

In this section, the configuration and usage of the SIO peripheral is demonstrated (a

detailed description of the SIO peripheral can be found in chapter 17 in [5]). The GPIO

pins that implement the SIO interface as a secondary function are pins PIOB[6] and

PIOB[7]. The configuration registers for the SIO peripheral are the following:

 SIOBUF: This register holds transfer data (either sent or received data).

 SIOSTA: Status register. It indicates errors in transmission and provides

“ready” flags for transmitter and receiver.

 SIOCON: Control register. It specifies the frame format for data transfers.

 SIOBCN: Baud rate control register. It starts and stops the baud rate timer

counter.

 SIOBT: Baud rate timer register. The value of this register sets the baud

rate. For more information about setting the baud rate please see chapter

17 in [5].

An example application where the SIO interface is configured and used to send a byte is

presented below.

void configure_SIO(void); /* Configuration of the SIO interface */

void output_byte(int); /* Send a byte through the SIO interface */

int main(void)

{

configure_SIO(); /* Configure the SIO interface */

output_byte(0xF0); /* Send a byte */

return 0;

}

void configure_SIO(void)

{

 /*Configure pins PIOB[6] and PIOB[7] as their secondary functions */

 put_wvalue(GPCTL, GPCTL_SIO);

 /* Specify the frame format: 8 data bits, parity is disabled, 1 stop bit */
 put_wvalue(SIOCON, 0x000C);

 /* Set the baud rate */

ENALAB YALE UNIVERSITY

XYZ User Manual 9/16/2005 21

 put_wvalue(SIOBT, 162);

 /* Start the SIO interface */

 put_wvalue(SIOBCN, 0x0010);

}

void output_byte(int outputByte)

{

 long int sio_status;

 short transfer_ready;

 put_wvalue(SIOBUF, outputByte); /* Send the byte */

 do

 {

 sio_status = get_wvalue(SIOSTA); /* Check the status register */

 transfer_ready = (sio_status % 64) >> 5;

 } while (!transfer_ready); /* Check if the transmission is finished */

 /* Clear the status bit */

 put_wvalue(SIOSTA, sio_status | 0x0020);

}

4.7 An Example Application

In this section an example application is presented that demonstrates the use of several

peripherals on the XYZ sensor node. The goal of the application is to sample the on-

board light sensor every 5 seconds. Based on the value sampled each time, the application

outputs a specific pattern on the onboard LEDs. In addition, the application outputs to the

UART port the value that was sampled each time. The configuration and use of the

hardware timers, the on-board ADC and the UART is demonstrated in this application.

In order to test this application, replace the application.c file the code fragment at the end

of this paragraph. Compile the application and load the application on the XYZ using the

JTAG. Using a male-to-female RS232 cable, connect XYZ’s RS232 port to the RS232

port on your PC. On the PC side you can use a program like Teraterm to establish

communication through the serial port. The settings on your serial port program running

on the PC side should be the following:

 Baud rate: 58600

 Data bits: 8

 Stop bits: 1

 Flow control: None

#include "ML674001.h"

#include "common.h"

ENALAB YALE UNIVERSITY

XYZ User Manual 9/16/2005 22

#include "irq.h"

// 58 * 10^6 / (32 * TMR0_CMP * TMR0_COUNT) = 5 seconds

#define TMR0_CMP 12500

#define TMR0_COUNT 725

#define DISABLE_GLOBAL_INT() do{ irq_dis(); } while(0)

#define ENABLE_GLOBAL_INT() do{ irq_en(); } while(0)

/* Globals: */

long int interval_count;

/* define functions: */

void configure_SIO(void);

void configure_ADC(void);

void configure_timer(void);

static void set_timer(unsigned long interval);

static void timer0_interrupt_handler();

void output_byte(int outputByte);

void configure_leds(void);

void light_leds(int value);

int main(void);

/**/

/* Configures SIO

*/
/* Function : configure_SIO */

/* Parameters */

/* Input : Nothing

*/

/* Output : Nothing */

/**/

void configure_SIO(void)

{

 put_wvalue(GPCTL, GPCTL_SIO);

 put_wvalue(SIOCON, 0x000C);

 put_wvalue(SIOBT, 162);

 put_wvalue(SIOBCN, 0x0010);

}

/**/

/* Configures ADC

*/

/* Function : configure_ADC */

/* Parameters */

ENALAB YALE UNIVERSITY

XYZ User Manual 9/16/2005 23

/* Input : Nothing

*/

/* Output : Nothing */

/**/

void configure_ADC(void)

{

 put_wvalue(ADCON2, 0x0003); /* CCLK / 8 */

 put_wvalue(ADINT, 0x0000); /* Disable Interrupts */

 put_wvalue(ADCON1, (get_wvalue(ADCON1) & 0xFFFC)); /* set channel 0 */

}

/**/

/* Configures Timer0

*/

/* Function : configure_timer */

/* Parameters */

/* Input : Nothing

*/

/* Output : Nothing */

/**/

void configure_timer(void)

{

 DISABLE_GLOBAL_INT(); /* critical section */

 IRQ_HANDLER_TABLE[INT_TIMER0] = timer0_interrupt_handler;

 set_wbit(ILC, ILC_ILC16 & ILC_INT_LV1);

 set_timer(TMR0_CMP); /* set timer interval */
 ENABLE_GLOBAL_INT();

 put_wvalue(TMEN, 0x01); /* enable timer */

}

/**/

/* Sets the timer0 interval */

/* Function : set_timer */

/* Parameters */

/* Input : interval

*/

/* Output : Nothing */

/**/

static void set_timer(unsigned long interval)

{

/*shut it down */

put_wvalue(TIMECNTL0, (get_wvalue(TIMECNTL0) & 0xFFE7));

 put_wvalue(TIMECMP0, interval); /* set comparison val */

 put_wvalue(TIMEBASE0, 0x0000); /* set base timer val */

ENALAB YALE UNIVERSITY

XYZ User Manual 9/16/2005 24

 put_wvalue(TIMECNTL0, (get_wvalue(TIMECNTL0) & 0xFFF7));

 /* set divisor */

 put_wvalue(TIMECNTL0, (get_wvalue(TIMECNTL0) | 0x00A0));

 /* enable interrupt & start timer */

 put_wvalue(TIMECNTL0, (get_wvalue(TIMECNTL0) | 0x0018));

 return;

}

/**/

/* What to do when Timer0 interrupts */

/* Function : timer0_interrupt_handler() */

/* Parameters */

/* Input : Nothing

*/

/* Output : Nothing */

/**/

static void timer0_interrupt_handler()

{

 int i;

 long int ADC_interrupt_reg;

 long int ADC_done;

 long int light_reading;

 int leading_zeros_flag;
 int output[5];

 if (interval_count == 0) {

 interval_count = TMR0_COUNT;

 /* turn on ADC */

 put_wvalue(ADCON1, (get_wvalue(ADCON1) | 0x0010));

 do

 {

 ADC_interrupt_reg = get_wvalue(ADINT);

 ADC_done = (ADC_interrupt_reg % 4) / 2;

 } while (!ADC_done);

 /* wait for conversion */

 light_reading = get_wvalue(ADR0) % 1024;

 put_wvalue(ADINT, 0x0002);

 put_wvalue(ADCON1, (get_wvalue(ADCON1) & 0xFFEF)); /* turn off ADC */

ENALAB YALE UNIVERSITY

XYZ User Manual 9/16/2005 25

 if (light_reading < 300) light_leds(1);

 else if (light_reading < 700) light_leds(3);

 else light_leds(7);

 for (i = 0; i < 5; i++) /* calculate the digits in base 10 */

 {

 output[i] = light_reading % 10;

 light_reading = light_reading / 10;

 }

 leading_zeros_flag = 1;

 for (i = 4; i >= 0; i--) /* output the digits in base 10 */

 {

 if (output[i] != 0) leading_zeros_flag = 0;

 if (!leading_zeros_flag) output_byte('0' + output[i]);

 }

 output_byte('\r');

 output_byte('\n');

 } else {

 interval_count--;

 }

 put_wvalue(TIMESTAT0, 0x01); /* clear the interrupt bit */

}

/**/

/* Outputs a Byte over the serial port */

/* Function : output_byte */

/* Parameters */

/* Input : outputByte */

/* Output : Nothing */

/**/

void output_byte(int outputByte)

{

 long int sio_status;

 short transfer_ready;

 put_wvalue(SIOBUF, outputByte);

 do

 {

 sio_status = get_wvalue(SIOSTA);

 transfer_ready = (sio_status % 64) >> 5;

 } while (!transfer_ready);

 put_wvalue(SIOSTA, sio_status | 0x0020);

}

ENALAB YALE UNIVERSITY

XYZ User Manual 9/16/2005 26

/**/

/* Configures the GPIO D port for LED usage */

/* Function : configure_leds */

/* Parameters */

/* Input : Nothing

*/

/* Output : Nothing */

/**/

void configure_leds(void)

{

 /*make them outputs*/

 put_wvalue(GPPMD, (get_wvalue(GPPMD) | 0x00E0));

 /* turn them off */

 put_wvalue(GPPOD, (get_wvalue(GPPOD) | 0x00E0));

}

/**/

/* Lights Up the LEDs according to the argument led_val */

/* Function : light_leds */

/* Parameters */

/* Input : led_val

*/

/* [0x111 -> all on]

 */

/* [0x100 -> red on]
 */

/* [0x010 -> green on]

 */

/* Output : Nothing */

/**/

void light_leds(int led_val)

{

 long int gppod_val;

 led_val = led_val % 8; /* make sure its only 3 bits */

 gppod_val = ((led_val % 4) << 1) + (led_val >> 2); /* fix schematic error*/

 gppod_val = gppod_val << 5; /* shift to correct pins */

 /* write to GPIO D port */

 put_wvalue(GPPOD, (get_wvalue(GPPOD) | 0x00E0) - gppod_val);

}

/**/

/* Entry point */

/* Function : main */

/* Parameters */

ENALAB YALE UNIVERSITY

XYZ User Manual 9/16/2005 27

/* Input : Nothing */

/* Output : 0 */

/**/

int main(void)

{

 configure_leds(); /* configure the LED registers */

 configure_timer(); /* configure the Timer0 registers*/

 configure_ADC();

 configure_SIO();

 interval_count = TMR0_COUNT;

 ENABLE_GLOBAL_INT(); /* enable interrupts */

 while(1);

 return 0;

}

4.8 Debugging applications on XYZ

The Seehau Emulator facilitates the debugging of your applications on the XYZ sensor

node. For moreinformation on how to install and configure the Seehau emulator see

section 3.8.

As it was mentioned in the previous subsections the output of the make command is an

ELF type executable file. The executable is loaded into the FLASH memory of the XYZ

sensor with a JTAG programmer. The JTAG programmer provides a useful debugging

environment and allows using break points and single stepping through the program on

the sensor node.

So far we have tested 2 JTAG interfaces, one from Nohau and one from Macraigor

system. The Nohau JTAG pod requires the Seehau debugger and runs under windows.

The Macraigor Raven pods are lower cost devices that work with GDB, and can operate

on Windows and Linux platforms. The drawback of the current version of the Macraigor

interface is that it does how have any Flash programming software. Macraigor systems is

considering the development of a Flash programmer designed specifically for XYZ.

Assuming that you have followed the instructions given in section 3.8, when you start the

Seehau emulator while the JTAG is connected to both the PC and a powered up XYZ

sensor node you should be able to see something similar to figure 6 (page 11). In order to

load an executable file to the flash you have to go to: FILE->LOAD and select the

executable ELF file that you want to run. The Seehau emulator will automatically erase

the whole FLASH and then it will reprogram the XYZ sensor node. Hitting the GO

button will result in the execution of your application. You can stop the execution of your

application at any time by hitting the STOP button. If instead of the GO button you hit

the STEP IN TO button then the first line of code in the main function will be executed

and the execution will be stopped as shown in Figure 8.

ENALAB YALE UNIVERSITY

XYZ User Manual 9/16/2005 28

Figure 8. Stepping into the code.

Every time you hit the STEP INTO button another instruction is executed and the

execution is stopped. When the program is running from the flash the user can also place

breakpoints anywhere in his code and hit the GO button. The execution will be

automatically stopped when it reaches a breakpoint. A maximum number of two

breakpoints is allowed.

User can set breakpoints anywhere in his code. By simply opening a source code file

(FILE->OPEN FILE) and clicking on the left side of each line in the code users can place

a breakpoint. Breakpoints can be placed only in lines of code that have a blue dot on the

left side. If a line of code does not have a blue dot on the left side in the Seehau

emulator’s editor then this means that this line of code is independent of the actual

executable running on the XYZ node. When a user places a breakpoint in a line of code,

the left part of that line becomes red as it can be seen in Figure 8 where a breakpoint has

been set in line 218. By clicking the GO button the program will be executed and it will

stop when it reaches the breakpoint as it can be seen in Figure 9. Note that the red color

has been changed to pink indicating that this breakpoint forced the execution to stop. By

clicking on the breakpoint again, the breakpoint is cleared.

When the user is stepping through his code and the execution is stopped, he has the

ability to read and write all the internal registers of the processor as it can be seen in

Figure 10. In order to see the contents of the registers go to: VIEW -> S F Regs.

ENALAB YALE UNIVERSITY

XYZ User Manual 9/16/2005 29

Furthermore, when the execution is stopped the user can see the values of all the local

variables. This can be done by selecting: VIEW->LOCAL VARIABLES. A list with the

local variables will appear as it can be seen in Figure 11.

Figure 9. Using the breakpoints.

ENALAB YALE UNIVERSITY

XYZ User Manual 9/16/2005 30

Figure 10. Viewing the internal registers of the processor.

ENALAB YALE UNIVERSITY

XYZ User Manual 9/16/2005 31

Figure 11. Viewing the local variables.

5 Testing the XYZ sensor node
A precompiled executable file called blink_test.elf can be found on the XYZ website

(http://www.eng.yale.edu/enalab/XYZ). Download the executable file and load it on the

XYZ sensor node as it is described in section 4.8.

6 Testing an XYZ node using a pre-installed SOS binary
image

Assuming that the SOS kernel is already loaded on the XYZ, we will use the SOS server

application, SOSSRV, running on a PC to install a pre-compiled binary module that

blinks the LEDs on a set of XYZ nodes. SOSSRV communicates with an XYZ node. To

install the module on an XYZ follow the steps below:

1. Connect the XYZ to the serial port of your PC.

2. Open a new Cygwin shell.

ENALAB YALE UNIVERSITY

XYZ User Manual 9/16/2005 32

3. Launch the SOS server.

4. Open another Cygwin shell.

5. Start the modd_gw client application to insert the module into SOS.

6.1.1 Setup SOSSRV

The SOSSRV tool allows the sensor network to communicate through the serial port of a

PC and over the Intranet or Internet. Build the SOSBASE application and load the

program onto the SOSBASE. Build the SOSSRV tool on the computer connected to the

SOSBASE and start the program.

$ cd sos-1.x/tools/sos_server/bin

$ make clean

$ make

$./sossrv.exe -s /dev/ttyS0

6.1.2 Loading the Module

The SOS file for a module is loaded in the sensor network through the MODD_GW

program. The MODD_GW program is an SOS module that runs on the host PC and

communicates with the sensor network through SOSSRV. After SOSSRV is setup, set the

path to include the MODD_GW program and run the program with the proper options to

connect to the SOSSRV or use the default options. The MODD_GW accepts three

commands from user: insmod, rmmod and debug. The commands are entered as the

module id +1000 followed by the command name followed by options for the command.

To load the blink module, copy the blink.sos file into the directory of the MODD_GW

program. Start MODD_GW and use the insmod command to load the module. Use the

rmmod command to unload the module and the debug command to enable debugging

output. See the SOS documentation for more information about MODD_GW.

Figure 12 The XYZ sensor node connected to the PC and SOSSRV.

ENALAB YALE UNIVERSITY

XYZ User Manual 9/16/2005 33

$ cd sos-1.x/config/modd_gw

$ make clean

$ make emu ADDRESS=65534 SOS_GROUP=1

$./modd_gw.exe –a sossrv-ip

Make sure the SOS_GROUP of the MODD_GW is the same as the SOS_GROUP of the

kernel running the XYZ nodes. See the section on compiling and loading a kernel for

more information about setting the SOS_GROUP.

To load the SOS module, type into the MODD_GW command line,

1136 insmod blink.sos

At this point MODD_GW will print the status of the module loading to the shell. The

output will be similar to the following:

module id = 128

memory size = 24

version = 4

addr_start = 0

Figure 13 The setup for loading modules onto the XYZ using MODD_GW.

ENALAB YALE UNIVERSITY

XYZ User Manual 9/16/2005 34

addr_end = 233

simulate fix_address...

***Flash buffer write page 192, addr = 49152

loading complete, sending advertiment to network

The SOSSRV program will receive a message from the MODD_GW and print something

similar to the following:

--- Received from Desktop ---

Dest Mod Id: 14

Src Mod Id: 136

Dest Addr : FFFF

Src Addr : 92

Msg Type : 13

Msg Length : 5

Msg Data:

80 4 E9 0 1

CRC: 0 0

To remove a module, use the rmmod command followed by the name of the module:

1136 rmmod blink.sos

To enable debugging output from MODD_GW, enter the command:

1001 debug on

To suppress debugging output from MODD_GW, enter the command:

1001 debug off

The MODD_GW command will install a module the module on SOS on the XYZ node

by writing the module to the OKI/ARM processor FLASH and start executing it. At the

same time, the default loader module of SOS will propagate the new module to all the

XYZ nodes within radio range. This happens with a process that advertises the existence

of a new module to nearby nodes. Neighboring nodes that do not have the module will

respond to the advertising node requesting the new module. All nodes that run the new

module should now be blinking their LEDs. If the LEDs are blinking, the module was

successfully installed and your XYZ nodes are functioning correctly.

6.2 Compiling and Installing an SOS Module on the XYZ

The Blink application demonstrates the basic principles of the SOS sensor network. Set

the path to the blink module directory and build the module.

$ make clean

$ make xyz

ENALAB YALE UNIVERSITY

XYZ User Manual 9/16/2005 35

$ make install2

Do not specify an address or other kernel specific options for the build of the module.

The build process generates a file blink.sos that is the loadable module image. The

install2 target to make copies the module image to the MODD_GW directory. Follow the

procedure described in the section on the loading a precompiled module image for

instructions on how to load the module onto the XYZ.

6.3 Compiling and loading an SOS BLANK Kernel on the
XYZ

The kernel is compiled as a static executable image and loaded onto the XYZ using a

JTAG programmer. Some modules may be included in the compilation of the kernel and

loaded onto the XYZ through the JTAG without using the MODD_GW program. The

build of the kernel image is controlled by the file called Makerules in the config

directory. See the SOS documentation for more information on building static

applications. To compile a blank kernel use the following commands,

$ cd sos-1.x/config/sos_blank

$ make clean

$ make xyz ADDRESS=1 SOS_GROUP=1

The ADDRESS sets the address of the node. The SOS_GROUP sets the group number of

the nodes. Make sure that each node has a unique address and that groups of nodes share

the same SOS_GROUP number. See the section on Loading the executable with the

JTAG for instructions on loading the static kernel image onto the XYZ. Make sure to

build a new image with a unique address for each XYZ node.

ENALAB YALE UNIVERSITY

XYZ User Manual 9/16/2005 36

7 Connecting XYZ to the PC and the Web
The sensor network of XYZ nodes running SOS is designed to easily connect to a PC and

the Internet for configuration of the network, sensing and control applications. The

communication inside the sensor network relies on the radio that is integrated into every

XYZ node. The sensor network is linked to the PC by a serial data link. An XYZ that is

configured as an SOSBASE has an integrated UART and is connected to the PC. The

SOSBASE application allows the PC to send and receive SOS messages over the UART

and forward the message to a routing module or directly to the radio and the neighbors

within one-hop radio range. The PC runs the SOSSRV application to manage to the

UART and the SOSBASE and provide an standard interface for client applications to

access the sensor network.

7.1 Radio

The Kernel on the XYZ uses the IEEE 802.15.4 Radio built into the XYZ platform for

messaging with the sensor network. The physical layer of the IEEE 802.15.4 radio is

implemented on the CC2420 radio chip and operates at 2.4GHz. The CC2420 has 24

channels and 7 power selectable power levels. The MAC layer of the IEEE 802.15.4

radio is implemented in software on the XYZ. The MAC layer is ported from the IEEE

802.15.4 MAC developed by ChipCon. The radio packs SOS message structures in the

IEEE 802.15.4 packets. The maximum length of an SOS message is 256 bytes.

7.2 UART

The XYZ platform has a built in UART for serial port communications with a PC. The

UART uses a MAX232 level conversion chip to generate RS232 voltage levels. See the

XYZ schematic for the pins used by the UART. A package is available for the XYZ

sensor that integrates the serial port DB9 connector for the UART on the sensor node.

Connect the XYZ sensor to the PC with a male-to-female DB9 cable. The XYZ is

capable of outputting a single direction stream of text to the serial port and PC or using a

bidirectional UART protocol to transfer SOS messages to from the sensor to the PC and

from the PC to the sensor.

The single direction text stream is called a raw stream and contains no SOS messages

headers. The support for the raw stream is compiled into the static kernel image by

including the definition in the Makefile of the kernel image,

DEFS += -DUSE_UART_RAW_STREAM.

The raw stream disables the sensor from running the SOSBASE application. The text is

sent to the UART by calling the ker_uart_send() command.

The SOSBASE application enables the UART messaging support that provides

bidirectional communication over the UART with the PC. The SOSSRV program is run

on the PC and forwards the messages from the sensor node clients and from the clients to

the sensor node. The SOSBASE program forwards the UART messages to the sensor

network without processing. Messages from the sensor network are received by the

ENALAB YALE UNIVERSITY

XYZ User Manual 9/16/2005 37

SOSBASE and forwarded to the SOSSRV without processing. A checksum is appended

to the SOS messages over the UART and verified at the receiving end.

7.3 SOSBASE

The SOSBASE is an XYZ sensor with the SOSBASE static application. The SOSBASE

acts as an interface between the wireless sensor network and the host PC. The XYZ

sensor is available in a package for running a SOSBASE. The power supply for the

SOSBASE provides +5VDC. WARNING: if you use a different power supply you risk

destroying the XYZ sensor. The SOSBASE has a DB9 connector built into the package.

Connect the XYZ sensor to the PC with a male-to-female DB9 cable. The address of the

SOSBASE application must be different from the address of the programs running on the

host PC.

7.4 SOSSRV

The SOSSRV tool allows the sensor network to communicate through the serial port of a

PC and over the Intranet or Internet. The SOSSRV program transmits messages between

sensor nodes in the network and programs running on the host PC. The programs on the

PC connect to SOSSRV through TCP or UDP sockets. The SOSSRV requires an XYZ

configured as a SOSBASE connected to a serial port on the PC.

To install SOSSRV, follow the instructions in the section “Testing an XYZ node using a

pre-installed SOS binary image”. Make sure the PC is connected to an XYZ that is

configured as an SOSBASE.

7.4.1 Invoke SOSSRV from the Command-line

The SOSSRV program accepts a few of command line options to configure the server

port and the serial port. The following are the command line options for SOSSRV:

sossrv [-p <Port>] [-s <COM Port>] [-n <TCP Port>] [-b <baudrate>] [-h]

 -p <Port> The port number of the sossrv server. (Default = 7915)

 -s <COM Port> SOSBASECOM Port.COM Port can be local device

e.g. /dev/ttyUSB0 (Default = /dev/ttyS0)

 -n <TCP Port> TCP Port can be <IP Addr:Port Num> e.g. 192.69.10.3:6009

 -b <baudrate> SOSBASE Baudrate. (Default = 57600 bps)

 -h Print this help message

The SOSSRV program uses built-in default options for the server port and serial port if

they are not specified on the command line. On Windows computers, the COM1

corresponds to /dev/ttyS0 and the numbers increase respectively. The SOSSRV program

can run directly from a shell or the Windows Start Menu. To exit the program, type,

<Ctrl-C>

ENALAB YALE UNIVERSITY

XYZ User Manual 9/16/2005 38

to the SOSSRV shell. The SOSSRV can run as a background process. The most effective

way to run SOSSRV in the background is by using ssh to log into the host PC and type

the following command,

$ nohup ./sossrv.exe [options] &

This allows the SOSSRV to continue running in the background after the user logs off.

The output of the SOSSRV is saved in the file nohup.out in the directory of the SOSSRV

program. The SOSSRV can be stopped by sending a signal to the SOSSRV process. In

CYGWIN, use the following command to find the pid of the SOSSRV process,

$ ps –e | grep sossrv

Use the kill command to send a signal to the SOSSRV process as follows,

$ kill <pid>

where pid is the pid of the SOSSRV process. For more information on the nohup, ps and

kill commands see the info and man pages.

7.5 Using the POKE Application

Poke is a client application running on a PC that interacts with the SOS server to

communicate with the sensors in the wireless sensor network. The poke command reads a

poke script (*.pk) from the standard input and writes the result of the poke as a poke

script to the standard output. The poke script contains a sequence of sos messages. The

first part of an sos message is the version of sos (ex. SOS: 1 0 is sos-1.0). Poke can be

invoked from the command line as follows:

poke -h hostname [-v -p port -w delay -t timeout -c count -d daddr -s saddr -m sid]

The command line options to poke control how the messages are sent and received.

-v Enables debugging output.(default: off)

-h Set hostname of the sos server. (default: none! must be specified)

-p Set port for the sos server. (default: 7915)

-w Set amount of time to wait between sending messages in seconds. (default: 0)

-t Set timeout value while waiting to receive a message. (default: 1)

-c Set maximum number of messages to receive. (default: 1)

-d Set destination address in outgoing messages. (default: 2)

-s Set source address in outgoing messages. (default: 1)

-m Set source pid in outgoing messages. (default: 128)

The following example reads a sequences of sos messages from the file example.pk and

sends the messages to the sos server at localhost and the default port. The delay between

the outgoing messages is 1 second. The timeout for incoming messages is 2 seconds. The

ENALAB YALE UNIVERSITY

XYZ User Manual 9/16/2005 39

maximum number of messages to receive is 4. The received messages are appended to

the reply.pk file.

$ poke -h localhost -w 1 -t 2 -c 4 < example.pk >> reply.pk

The following is an example of a poke script. The SOS version field must be the first line

of the message header. The order of the remaining lines in the message header is not

important. The length field specifies the length of the data payload. The data is not

required if the length of the message is 0. The values in the data payload begin after a line

the contains the word DATA and are separated by white space, including spaces, tabs and

new-lines. A line that starts with a period '.' character delimits the end of the header

section of a message. The last line of the data section may optionally contain the crc

values of the data. If the crc values are specified, they will terminate the data section. If

the crc values are not specified, the a line that starts with a period '.' character is required

to delimit the end of the data section. The data values are read from left to right.

 SOS: 1 0

 DADDR: 2

 SADDR: 1

 DID: 156

 SID: 128

 TYPE: 33

 LEN: 4

 .

 DATA:

 1 2

 3 4

 CRC:

 .

The following shows a partial message. Poke will fill in the missing values for DADDR,

SADDR and SID. Poke will try to use values from the command-line. If the values are

not specified, then the default values are used. If a value is specified both in the message

and on the command-line, the command-line value will override the vlaue in the

message.

 SOS: 1 0

 DID: 156

 TYPE: 33

 LEN: 4

 .

The poke command can be used as a sub-component within higher levels scripts to

integrate communication with sensors. The poke command can also accept inline

message definitions using the "here" document syntax available in most shells. The

following example demonstrates an inline message definition.

ENALAB YALE UNIVERSITY

XYZ User Manual 9/16/2005 40

 $post -h localhost <<EOF

 >SOS: 1 0

 >SADDR: 65534

 >DADDR: 3

 >SID: 128

 >DID: 157

 >TYPE: 32

 >LEN: 0

 >.

 >EOF

8 Introduction to the SOS Operating System
SOS is an open-source operating system specifically developed for driving small wireless

sensor nodes. Before reading this section, the reader is encouraged to read the SOS

tutorial available on the SOS website at:

 http://nesl.ee.ucla.edu/projects/SOS

The Kernel provides a number of basic services to the application software. Some

important services are the Scheduler, Timers, Radio, UART and ADC. See following

sections for more information on the interfaces for XYZ platform. The SOS provides a

standard API for application code to interact with the XYZ platform. The API increases

the portability of the application code. The Kernel also provides the moduled, which is

used for dynamically loading module images over the network. The kernel software is

located in the kernel directory in the source tree from the CVS. The kernel directory

contains all of the C code that is used to make the core kernel common on all platforms

and processors. For more information about SOS see the doc directory in the source tree

from the CVS. The files in the include directory in the source tree from the CVS describe

the core API provided by SOS.

The application code is located in sections of code called Modules. The modules can

contain message handlers that implement the messaging protocols of algorithms in the

sensor network. The modules communicate to each other by sending messages with a

sensor destination address, the module pid and the message type. The modules can also

provide functions to other modules for similar to a shared library. The separation and

organization of the application code into related and modular sections aids the code

development and portability. The modules software is located in the modules directory in

the source tree from the CVS.

The software that is specific to the XYZ node is located in the xyz directory inside the

platform directory in the source tree from the CVS. The software that is specific to the

OKI processor is located in the oki directory inside the processor directory in the source

tree from the CVS.

ENALAB YALE UNIVERSITY

XYZ User Manual 9/16/2005 41

Tools for configuring the sensor network are located in the tool directory in the source

tree. This consists of PC tools used with SOS including: the sos server, tools for

automated testing of the code base, and the SOS GUI.

8.1 Dynamic Modules

The SOS operating system supports dynamically loadable modules. The modules are

important for maintaining the sensor network and developing software for the network.

As sensor network increase in size and complexity, network maintenance and debugging

becomes more critical and difficult. Intermittent bugs will occur in the deployment of

large and long-term sensor networks. Large networks and extreme environments require

remote management of the sensor network. The dynamic modules allow fixing bugs in

the software and quickly update programs without disturbing the sensor network

installation. The dynamic modules improve the process of developing software for the

sensor network and allow researchers to test their program in-situ of the sensor network.

8.2 Bootloader

The kernel and the module loader code running in the kernel implement the bootloader

that is required to load the module in the FLASH program memory of the sensor nodes in

the network and execute the program. See the SOS documentation for the module loader

protocol. The module loader propagates module images and updates through the network.

The module images are loaded into memory and integrated into the scheduler without

restarting the sensor.

The module loader and the kernel resolve the references between module code and the

kernel code after the module is loaded on the sensor node. The modules interact

asynchronously through message passing and synchronously though function pointers.

The function pointers for kernel code are stored in the kernel jump table in the image of

the static kernel. The function pointers for module code are stored in the function pointer

table, and registered dynamically after the module is loaded into memory. The linkage to

the module handlers are stored with the modules in FLASH and scanned in the module

handler table in RAM at the startup of the sensor node.

9 Basic programming in SOS
Andrew this section is yours…

9.1 SOS Messaging Mechanism

 Explain the notion of messages in SOS

 Mention the INIT and FINAL messages

 Mention how you can define your own messages.

 Explain the SOS messaging mechanism: post_net().

 How can you send a message in a module on the same node and how you can

send a message through the radio?

ENALAB YALE UNIVERSITY

XYZ User Manual 9/16/2005 42

 Include a simple example where you use your own message types and send

messages to other modules on the same node and on other nodes.

9.2 Using Timers in SOS

Explain the interface that SOS provides for starting/stopping timers.

9.3 Sampling the Sensors in SOS

Explain the SOS sensor interface...

10 Programming with SOS and Modules
In SOS each module has a header to describe the functionalities it uses and provides.

Here is one example from fnclient.c

static const mod_header_t mod_header SOS_MODULE_HEADER =
{
 mod_id: MOD_FN_C_PID,
 state_size: sizeof(fnclient_state_t),
 num_sub_func: 1,
 num_prov_func: 0,
 module_handler: module,
 funct: {
 {NULL, "Svv0", MOD_FN_S_PID, MOD_GET_NODE_ID_FID},

 {NULL, "cCC2", MOD_FN_S_PID, MOD_SET_LED_FID},
 },
};

mod_id is the module ID.

State_size is the size of state module uses.

Num_sub_func is the number of subscribed functions in this module.

Num_prov_func is the number of provided functions.

Module_handler is the function pointer pointing to module message handler.

Funct is an array of data structure that describes the function pointer pointers.

Every loadable module and kernel module that will use messaging are expected to

declare the header. SOS ensures this header is placed in the program memory to save

RAM space.

10.1 Function pointers

ENALAB YALE UNIVERSITY

XYZ User Manual 9/16/2005 43

Function pointers that module both uses and provides have to be declared in the module

header. Subscribed functions are declared first followed by provided functions.

Continuing the example in the previous section, there are four pieces of information that

needs to fill in. They are function pointer to real implementation, function prototypes,

module ID, and function ID. We separate the discussion into subscribed functions and

provided functions.

10.1.1 Subscribed functions

In subscribed functions, there are two types of subscription. One is static, which module

specifies the function it will use at compile time; the other is dynamic, which module

describes only the type information at compile time and subscribe function pointers at

runtime.

For static subscribed functions,

Field 1: NULL

Field 2: type encoding for the function prototypes

Field 3: the module ID of the provider

Field 4: the function ID of the provider

For dynamic subscribed functions,

Field 1: NULL

Field 2: type encoding for the function prototypes

Field 3: RUNTIME_PID

Field 4: RUNTIME_FID

10.1.2 Provided functions

For function providers,

Field 1: the function pointer to real implementation

Field 2: type encoding for the function prototypes

Field 3: the module ID of this module

Field 4: the function ID of this function

10.1.3 How to call function pointers

To use a function, it is critical to include the function pointer in module state. For

example,

typedef struct {
 func_cb_t *get_id;
 func_cb_t *set_led;
 sos_timer_t timer;
} fnclient_state_t;

Above is the state declaration for the module described earlier. To use a function, one

has to include a function pointer in the module state. The order of included function

pointer in state is also critical as SOS will modify the pointer value during module

insertion and when provider is removed. For example, get_id is the first function pointer

ENALAB YALE UNIVERSITY

XYZ User Manual 9/16/2005 44

included in module state, MOD_GET_NODE_ID_FID should be placed the first entry in

the funct inside module header.

To call a function, one needs to use the macro SOS_CALL. For example,

SOS_CALL(s->set_led, func_i8u8u8_t, RED, TOGGLE);

The first two parameters are fixed for all function calls. First parameter is the function

pointer in the module state. The second parameter is a typedef to the real function

pointers. It is expected that the function provider will do the typedef. For example,

typedef int8_t (*func_i8u8u8_t)(char* proto, uint8_t arg0,
uint8_t arg1);

The first argument to the real function is always “char* proto”. This is used to recover

from the failure when the provider does not exist.

10.2 Timer interface

In SOS each module maintains its own timer data structure. That is, when module needs

to use timer, it passes the pointer to timer data structure to kernel timer interface. To use

the timer, module can either declare a sos_timer_t in module state or declare a pointer to

sos_timer_t and ker_malloc at runtime. It is up to module write to make that decision.

Before timer is first used, module should call,

sos_timer_init(sos_timer_t *tt, sos_pid_t pid, uint8_t tid,
uint8_t type)

First argument is the pointer to timer data structure. Second argument is the module ID

that uses the timer. Third argument is the timer ID. The last argument is the type of timer.

This can be,

TIMER_REPEAT
TIMER_ONE_SHOT
SLOW_TIMER_REPEAT
SLOW_TIMER_ONE_SHOT

The slow version is to post timeout event using low priority. To start a timer, one should

call,

ker_timer_start(sos_timer_t *tt, int32_t interval)

Note that the timer interval or timeout value is specified here. This type of timer start has

one failure condition when the timer is already started. To simplify typical use of timer,

one can call

ker_timer_restart(sos_timer_t *tt, int32_t interval)

ENALAB YALE UNIVERSITY

XYZ User Manual 9/16/2005 45

ker_timer_restart will restart the timer even when existing timer is already running. When

one needs to stop the timer, one should call,

ker_timer_stop(sos_timer_t *tt)

10.3 Recommended programming model for device drivers

For device drivers that are never removed such as core SOS kernel components and low

level hardware drivers, we suggest the following:

 Use static variables since it is more compact than dynamic memory.

 Use kernel version of module registration:

sched_register_kernel_module(

sos_module_t *handle, /* pointer to sos_module_t */
const mod_header_t *h, /* pointer to module header */
void *state_ptr) /* pointer to state variable */

This version of module registration is for static module only and does not involve any

ker_malloc operation.

 Expose functionality through function pointer. Whenever there are additional

functions to be provided, it is recommended to use function pointers.

10.4 Enabling the Watch Dog Timer

Andrew (Do we really need this?) This is SOS independent!!!!

10.5 Reading the on-board Sensors

All the on-board sensors, except the temperature sensor, are connected to the 4-channel

ADC that is embedded on the OKI processor chip. Table 1 shows in detail how the on-

board sensors are interfaced to the processor.

On-board Sensor Interface

Light ADC Channel #0

Accelerometer (x) ADC Channel #1

Accelerometer (y) ADC Channel #2

Temperature Digital: PIOE[5] (GPIO/External Interrupt)

VBAT (3AA battery level) ADC Channel #3

Any sensor that is connected to the ADC can be configured/read in two different ways:

1. Through the SOS ADC driver interface.

2. Directly, through accessing the CPU registers.

Table 4. On-board sensor interfaces

ENALAB YALE UNIVERSITY

XYZ User Manual 9/16/2005 46

The easiest way to access the light and accelerometer sensors is through the SOS ADC

driver interface. The SOS functions that implement the ADC interface are the following:

extern int8_t ker_adc_bindPort(uint8_t port, uint8_t
adcPort, sos_pid_t driverpid)

SOS application with id equal to driverpid binds the ADC channel adcPort to the logical

port called port. In order to access the ADC channel the logical port is used. Port is the

logical port number to which the desired ADC channel will be bound to. The adcPort is

the ADC channel to be bound, an integer ranging from 0 to 3. DriverPid is the SOS

application id that request the bind.

extern int8_t ker_adc_getData(uint8_t port)

Port is the logical port created by the ker_adc_bindPort() function. The function returns a

10-bit ADC value that corresponds to the logical port given as an argument. You can

convert the raw voltage read at the ADC port using the following equation:

ADC = (Vport * 1024) / Vref

Where Vport is the value returned by the ker_adc_getData() function and Vref is the

reference voltage which is equal to 2.5V for the XYZ sensor node.

extern int8_t ker_adc_startData(uint8_t port, uint8_t type,
uint32_t period)

This function reads the logical port port continuously for the specified time period

period. Port is the logical port from which data will be sampled. Type is reserved for

future use. Period is the time period for getting data out of the specified logical port.

extern int8_t ker_adc_stopData(uint8_t port)

This function terminates the process of data readings from the logical port specified. Port

is the logical port from which data sampling will stop.

The on-board sensors can be very easily configured/read directly though accessing the

CPU registers. There are four ADC configuration registers:

ADCON0

This register controls the scan mode operation of the ADC. You can select the number of

channels to scan, you can start/stop the ADC and you can also choose between

continuous and one-shot sampling.

ADCON1

This register controls the select mode operation of the ADC (only one channel is

sampled). You can choose the channel of the ADC to sample and you can start/stop the

ADC by properly configuring this register.

ENALAB YALE UNIVERSITY

XYZ User Manual 9/16/2005 47

ADCON2

This register specifies the operating clock frequency for the ADC. The available speeds

are CCLK/2, CCLK/4 and CCLK/8 where CCLK is the current operating clock

frequency of the processor (1.8-57.6 MHz).

ADINT

This register contains the ADC interrupt settings. Interrupts can be enabled/disabled by

properly setting this register. In any case, this register informs the user when the ADC

operation (scan or select mode) has been completed. The ADC readings can be found in

the registers ADR0, ADR1, ADR2, and ADR3 that correspond to the channels 0, 1, 2,

and 3 respectively. In order to access the on-board sensors by directly setting the CPU

registers you have to follow these steps:

1) Stop the ADC (registers ADCON0 and ADCON1)

2) Set the clock frequency of the ADC (register ADCON2)

3) Set the channel(s) you want to sample and the mode of the ADC (registers ADCON0

and ADCON1)

4) Enable of disable the ADC interrupt (register ADINT)

5) Start the ADC (register ADCON0 or ADCON1)

6) Wait for the ADC conversion to be completed (register ADINT)

7) Read the sample (registers ADR0, ADR1, ADR2, ADR3)

8) Clear the interrupt/completion flags in the ADINT register

10.6 Setting the Real Time Clock

Stay tuned for updates!

11 Miscellaneous Features
This section discusses different XYZ features and software that have not yet been fully

integrated with the SOS operating system. Nonetheless, they can still be used in

conjunction with SOS as we describe in the following subsections.

11.1 Radio Signal Strength Indicator RSSI and Link Quality
Indicator (LQI)

The Chipcon CC2420 IEEE 802.15.4 radio transceiver operates in the 2.4GHz ISM band

and includes a digital direct sequence spread spectrum (DSSS) modem providing a

spreading gain of 9dBm and an effective data rate of 250Kbps. It was specifically

designed for low power wireless applications and supports 8 discrete power levels as

shown in Table 2. A built-in received signal strength indicator gives an 8-bit digital

value: RSSI_VAL. The RSSI_VAL is always averaged over 8 symbol periods (128µs) and

a status bit indicates when the RSSI_VAL is valid (meaning that the receiver was enabled

ENALAB YALE UNIVERSITY

XYZ User Manual 9/16/2005 48

for at least 8 symbol periods). The power P at the RF pins can be obtained directly from

RSSI_VAL using the following equation:

P = RSSI_{VAL} + RSSI_{OFFSET} [dBm]

where the RSSI_OFFSET is found empirically from the front-end gain and it is

approximately equal to -45dBm.

In the IEEE 802.15.4 protocol specification the Link Quality Indication (LQI) is defined.

LQI is a characterization of the strength and/or quality of a received packet. The

RSSI_VAL value is used by the MAC layer to produce the LQI value. The LQI value is

limited to the range 0 through 255, with at least 8 unique values.

The MAC layer and the SOS operating system provide support for both the RSSI_VAL

and the LQI values. Every time that an application wants to send a packet of size x bytes

through the wireless link a buffer of size x+2 bytes should be sent. In that way the

receiver receives a packet of x+2 bytes where the first x bytes are the payload bytes and

the x+1 and x+2 bytes are the RSSI_VAL and LQI byte values respectively.

ENALAB YALE UNIVERSITY

XYZ User Manual 9/16/2005 49

12 XYZ’s Advanced Features
In this section some of the XYZ’s advanced features are presented.

12.1 Low Power Long Term Sleep Modes

The XYZ sensor node makes available to the user several low power long term sleep

modes. The OKI processor itself provides two low power modes: STANDBY and HALT.

In the STANDBY mode the clock oscillation is completely stopped but the processor is

still powered up. The processor can exit from the STANDBY state only in the event of an

external interrupt (radio or RTC interrupt etc.). In STANDBY mode the power

consumption of the CPU chip is the minimum possible given that the processor is

powered up. The disadvantage of this mode is that when waking up the processor a delay

is required before the clock oscillation is stabilized again.

In HALT mode the clock oscillation is not stopped but the clock signal is blocked to

several internal CPU blocks. The processor can exit the HALT state in the event of any

internal or external interrupt. The power consumption in the HALT mode is significantly

higher than the power consumption in the STANDBY mode. However the time, and

therefore the energy, required in order to exit the HALT state is significantly less than the

energy required to exit the STANDBY state since the processor does not have to wait for

the clock oscillation to stabilize.

In addition to the CPU internal low power modes, the XYZ architecture incorporates a

supervisor circuitry that provides support for long term, extremely low power sleep

modes. An overview of the supervisor circuitry can be seen in Figure 4. The main part of

the circuit is the DS1337 Real Time Clock (RTC) from Dallas Semiconductors. Note that

the RTC is powered directly from the 3AA batteries and not from the voltage regulator.

Also, note that the enable signal of the voltage regulator is controlled by the power

switch, a GPIO pin on the processor and the RTC. This circuit allows to the software

running on the CPU to turn off the whole sensor node (including the processor and the

Figure 14 Supervisor Circuitry

ENALAB YALE UNIVERSITY

XYZ User Manual 9/16/2005 50

radio) for a predetermined by the software time period. The process for completely

turning off the sensor node is the following:

1. Initially, turn the power switch to the ON position in order to turn on the node

2. The software running on the CPU immediately takes control of the voltage

regulator’s enable pin through the GPIO pin.

3. Turn the power switch to the STBY position. The sensor node is still on because

the voltage regulator’s pin is controlled in software through the GPIO pin.

4. At some point the software decides that the sensor node has to be turned off for a

specific time period. The software programs the RTC to fire an interrupt after the

specified time period through the I
2
C interface.

5. After programming the software running on the processor changes the state of

the GPIO pin that controls the enable pin of the voltage regulator. Now the

whole sensor node (including the processor and the radio) is turned off. The only

chip that is powered is the RTC since it is powered directly by the 3AA batteries

and not the voltage regulator.

6. After the specified by the software time period has elapsed the RTC fires an

interrupt that automatically enables the voltage regulator and thus powers up the

whole sensor node.

7. The software running on the node immediately takes control of the voltage

regulator’s enable pin through the GPIO pin. Now the sensor node is turned on

and it can be turned back off whenever the software running on the node decides

it.

The current consumption of the sensor node while it is turned off is approximately 30µA.

The RTC can wake up the node from this deep sleep mode after minutes, hours, days,

months, or even years.

12.2 Enabling & Disabling Different Processor Peripherals

Stay tuned for updates!

12.3 Radio Sleep Modes

Stay tuned for updates!

12.4 Microcontroller Frequency Scaling

Stay tuned for updates!

ENALAB YALE UNIVERSITY

XYZ User Manual 9/16/2005 51

13 Wireless Network Protocol Support
Stay tuned for updates!

14 ChipCon License
The source code for the MAC layer used on the XYZ is provided under a license by

ChipCon. The license restricts access to the source code but allows unrestricted use of the

compiled radio libraries. A pre-compiled version of the MAC layer is included with the

standard SOS distribution and the source for the MAC layer is available under a separate

license. If you obtain access to the source code for the MAC layer, you can build the

radio drivers from source. After you have obtained the sources for the radio drivers, copy

the lib directory that contains the sources to the xyz platform directory.

$ cp lib sos-1.x/platform/xyz

Then uncomment the sources for the radio drivers in the Makerules file in the config

directory.

SRCS += mac_tx_pool.c mac_scan.c mac_scheduler.c mac_support.c
mac_timer.c mac.c
SRCS += hal_rf_wait_for_crystal_oscillator.c hal_wait.c
SRCS += mac_general.c mac_indirect_queue.c mac_beacon_handler.c
mac_security.c
SRCS += mac_indirect_polling.c mac_power_management.c mac_rx_engine.c
SRCS += mac_tx_engine.c mac_rx_pool.c

Next, comment out the pre-compiled radio library,

#OBJS += $(ROOTDIR)/platform/xyz/cc2420_mac.a

Finally, change to target in the config directory and build the radio drivers and copy them

to the xyz platform directory,

$ cd sos-1.x/config/blank/

$ make cc2420_mac

ENALAB YALE UNIVERSITY

XYZ User Manual 9/16/2005 52

15 XYZ Schematics

ENALAB YALE UNIVERSITY

XYZ User Manual 9/16/2005 53

ENALAB YALE UNIVERSITY

XYZ User Manual 9/16/2005 54

ENALAB YALE UNIVERSITY

XYZ User Manual 9/16/2005 55

ENALAB YALE UNIVERSITY

XYZ User Manual 9/16/2005 56

16 XYZ Peripheral Boards & Support Software

16.1 XYZ Prototyping Board

The prototyping board has been designed to facilitate the prototyping of various sensors

and peripherals on the XYZ. It includes a prototyping area, a connector for a COTs

camera module, an additional connector with all the available GPIO pins and a serial port

pin-PIN D connector for communicating with a PC.

To facilitate the prototyping process we make the fabrication files for this board available

on the XYZ website. The bill of materials provides the Digikey part numbers for the

connectors on the board.

ENALAB YALE UNIVERSITY

XYZ User Manual 9/16/2005 57

ENALAB YALE UNIVERSITY

XYZ User Manual 9/16/2005 58

Bill of Materials (Partial):

Description Digikey Part #

32-pin .1” dual row header for

camera(Female)

S4216-ND

32-pin .1” dual row header (male) S2012-16-ND

.1” GPIO Header S2012- -ND

9-POS D-SUB UART connector A23301-ND

3.3V, 25MHz oscillator for camera 535-9193-5-ND

8-DIP 2.5V regulator, 500mA TPS7325QP

30-pin 2mm dual receptacle (XYZ

interface connector)

S2201-15-ND

17.2 Ulrasound and Mobility Board

Stay tuned for updates!

17.3 Acoustic Processing Interface and Acoustic Signature
Recognition

Stay tuned for updates!

ENALAB YALE UNIVERSITY

XYZ User Manual 9/16/2005 59

18 XYZ Errata

- Silkscreen bug on the power switch - labels STBY and ON labels should be switched

- Schematic bug order of GREEN and YELLOW leds should be reversed PIOD7

GREEN, PIOD6 YELLOW, PIOD5 RED

19 References

[1] D. Lymberopoulos, A. Savvides, XYZ: A Motion-Enabled, Power Aware Sensor

Node Platform for Distributed Sensor Network Applications, to appear in the

Proceedings of IPSN 05, Los Angeles, CA, April 25-27 2005.

[2] D. Lymberopoulos, Q. Lindsey and A. Savvides, An Empirical Analysis of Radio

Signal Strength Variability in IEEE 802.15.4 Networks using Monopole Antennas,

Proceedings of IEEE Conference on Mobile Ad-Hoc and Sensor Systems, 2005.

[3] C. C. Han, R. Kumar, R. Shea, E. Kohler, and M. Srivastava, A Dynamic Operating

System for Sensor Nodes, to appear in the Proceedings of MobiSys 2005.

[4] Dallas Semiconductor MAXIM: DS1337 Real Time Clock. http://www.maxim-

ic.com/quick_view2.cfm/qv_pk/3128.

[5] OKI semiconductor: 32-bit ARM Based General Purpose Microcontrollers

ML67Q5002. http://www2.okisemi.com/us/docs/intro-9980.html.

