
ON THE TRACE OF HECKE OPERATORS FOR MAASS FORMS

XIAN-JIN LI

❆❜str❛❝t✳ The trace of the Hecke operator T (n) acting on a Hilbert space of func-
tions spanned by the eigenfunctions of the Laplace-Beltrami operator with a positive

eigenvalue is computed, which can be considered as the analogue of Eichler-Selberg’s
trace formula for non-holomorphic cusp forms of weight zero.

1. Introduction

Denote by Γ the group PSL2(❩). The Laplace-Beltrami operator ∆ on the upper
half-plane H is given by

∆ = −y2

(
∂2

∂x2
+

∂2

∂y2

)
.

Define D to be a fundamental domain of Γ, which contains the points z = x + iy
with 0 < x < 1 and |z − 1

2 | > 1. Eigenfunctions of the discrete spectrum of ∆ are
nonzero real-analytic solutions of the equation

∆ψ = λψ

such that ψ(γz) = ψ(z) for all γ in Γ and such that

∫

D

|ψ(z)|2dz <∞

where dz represents the Poincaré measure of the upper half-plane.
The Hecke operators T (n), n = 1, 2, · · · , which act in the space of automorphic

functions with respect to Γ, are defined by

(T (n)f) (z) =
1√
n

∑

ad=n, 0≤b<d

f

(
az + b

d

)
.

An orthogonal system of eigenfunctions of ∆ exists [6] such that each of them is an
eigenfunction of all the Hecke operators. Let λ be a positive discrete eigenvalue of
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∆. Then λ > 1
4 . If ψ(z) is such an eigenfunction of ∆ with a positive eigenvalue λ,

then

ψ(z) =
√
y

∑

m 6=0

ρ(m)Kiκ(2π|m|y)e(mx)

where κ =
√
λ− 1

4 and where Kν(y) is given by the formula §6.32, [13]

Kν(y) =
2νΓ(ν + 1

2 )

yν
√
π

∫ ∞

0

cos(yt)

(1 + t2)ν+ 1

2

dt. (1.1)

If ψ(z) is normalized so that ρ(1) = 1, then the identity [6]

(T (n)ψ) (z) = ρ(n)ψ(z)

holds for all positive integers n. The Petersson-Ramanujan conjecture for non-
holomorphic cusp forms of weight zero says that the inequality

|ρ(n)| ≤ d(n)

holds for all positive integers n, where d(n) denotes the number of divisors of n.
Let Eλ be a Hilbert space of functions spanned by the eigenfunctions of ∆ with a
positive eigenvalue λ. The inner product of the space is given by

〈F (z), G(z)〉 =

∫

D

F (z)Ḡ(z)dz. (1.2)

The Eichler-Selberg trace formula [8], p.85 is a useful formula for studying holomor-
phic modular forms of integral weights (cf. Deligne [1] and Ihara [4]). The analogue
of Eichler-Selberg’s trace formula for non-holomorphic cusp forms of weight zero is
obtained in the Main Theorem, whose proof is given in section 4. In particular,
the trace trT (n) of Hecke operators acting on the space Eλ is computed, and the
computation is already implicit in Hejhal [2].

Write τ = 1
2 + iκ. Denote by hd the class number of indefinite rational quadratic

forms with discriminant d. Define

ǫd =
v0 + u0

√
d

2
(1.3)

where the pair (v0, u0) is the fundamental solution [11] of Pell’s equation v2−du2 =
4. Denote by Ω the set of all the positive integers d such that d ≡ 0 or 1 (mod 4)
and such that d is not a square of an integer.
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Main Theorem. Define

Ln(σ) =
∑

d∈Ω, u

hd ln ǫd
(du2)σ

for Reσ > 1, where the summation on u is taken over all the positive integers u
which together with t are the integral solutions of the equation t2 − du2 = 4n. Then

trT (n) = 2niκResσ=τLn(σ)

for every positive integer n, where Ln(σ) is an analytic function of σ for Reσ > 1
and can be extended by analytic continuation to the half-plane Reσ > 0 except for

possible simple poles at σ = 1, 1
2 ,

1
2 ± iκ with 1

4 +κ2 being taken over all the positive

discrete eigenvalues of the Laplace-Beltrami operator for the modular group.

2. Trace formula

Let σ be a complex number with Reσ > 1. Define

k(t) = (1 +
t

4
)−σ

and

k(z, z′) = k

( |z − z′|2
yy′

)
,

for z = x+ iy and z′ = x′ + iy′ in the upper half-plane. Then k(mz,mz′) = k(z, z′)
for every 2 × 2 matrix m of determinant one with real entries. The kernel k(z, z′)
is of (a)-(b) type in the sense of Selberg [8], p.60. Let

g(u) =

∫ ∞

w

k(t)
dt√
t− w

with w = eu + e−u − 2. Write

h(r) =

∫ ∞

−∞
g(u)eirudu.

Then

g(u) =
√
w

∫ 1

0

(t+
w

4
)−σtσ−

3

2

dt√
1 − t

= c(1 +
w

4
)

1

2
−σ (2.1)

where c = 2
√
πΓ(σ − 1

2 )Γ−1(σ). Since

h(r) = c4σ− 1

2

∫ ∞

0

(u+
1

u
+ 2)

1

2
−σuir−1du
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for Reσ > 1
2 , by computation we find that

lim
σ→τ

(σ − τ)h(r) =

{
4τ
√
π Γ(iκ)

Γ(τ) , for r = ±κ;
0, for r 6= ±κ.

(2.2)

Define

Γ∗ = ∪ad=n
0≤b<d

1√
n

(
d −b
0 a

)
Γ.

Then γT belongs to Γ∗ whenever γ ∈ Γ and T ∈ Γ∗. Every element of Γ∗ is
represented uniquely in the form

1√
n

(
d −b
0 a

)
γ

with ad = n, 0 ≤ b < d and γ ∈ Γ. It follows that Γ∗ satisfies all the requirements
given in [8], p.69. The Eisenstein series is given by

E(z, s) =
1

2

∑

(c,d)=1

ys

|cz + d|2s

for z in the upper half-plane when Re s > 1. Define

K(z, z′) =
∑

T∈Γ∗

k(z, Tz′)

and

H(z, z′) =
∑

ad=n, 0≤b<d

1

4π

∫ ∞

−∞
h(r)E(

az + b

d
,
1

2
+ ir)E(z′,

1

2
− ir)dr.

Let ℓ be a positive number such that 1
4 + ℓ2 is a discrete eigenvalue of ∆ distinct

from λ. Denote by tℓ the trace of the Hecke operator T (n) acting on the space
E 1

4
+ℓ2 . It follows from (2.14) of [8], the argument of [5], pp.96-98, Theorem 5.3.3

of [5], and the spectral decomposition formula (5.3.12) of [5] that

∑

d|n
dh(− i

2
) +

√
nh(κ)trT (n) +

√
n

∑

ℓ

h(ℓ)tℓ =

∫

D

{K(z, z) −H(z, z)}dz (2.3)

for Reσ > 1, where the summation is taken over all distinct positive numbers ℓ not
equal to κ such that 1

4 + ℓ2 is a discrete eigenvalue of ∆.
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3. Evaluation of components of the trace

For every element T of Γ∗, denote by ΓT the set of all the elements of Γ which
commute with T . Put DT = ΓT \H. The elements of Γ∗ can be divided into
four types, of which the first consists of the identity element, while the others are
respectively the hyperbolic, the elliptic and the parabolic elements. If T is not a
parabolic element, put

c(T ) =

∫

DT

k(z, Tz)dz.

3.1. The identity component.

If Γ∗ contains the identity element I, then

c(I) =
π

3
.

3.2. Elliptic components.

There are only a finite number of elliptic conjugacy classes.

Lemma 3.1. Let R be an elliptic element of Γ∗. Then

c(R) =
π

2m sin θ

∫ ∞

0

k(t)√
t+ 4 sin2 θ

dt,

where m represents the order of a primitive element of ΓR and where θ is defined

by the formula trace(R) = 2 cos θ.

Proof. Since R is an elliptic element of Γ∗, an element η exists in SL2(❘) such that

ηRη−1 =

(
cos θ − sin θ
sin θ cos θ

)
= R̃

for some real number 0 < θ < π. Denote by (ηΓη−1) ❡R the set of all the elements of

ηΓη−1 which commute with R̃. We have

c(R) =

∫

D❡R

k(z, R̃z)dz

where D ❡R = (ηΓη−1) ❡R\H.

Let γ =
(

α β

γ δ

)
be an element of Γ which has the same fixed points as R =

(
a b

c d

)
.

Then (α − δ)c = γ(a − d) and βc = γb. It follows that γ commutes with R. By
Proposition 1.13 of [9], a primitive elliptic element γ0 of Γ exists such that (ηΓη−1) ❡R
is generated by ηγ0η

−1. Since ηγ0η
−1 commutes with R̃, it is of the form

(
cos θ0 − sin θ0
sin θ0 cos θ0

)
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for some real number θ0. By Proposition 1.16 of [9], θ0 = π/m for some positive
integer m. In fact, m = 2 or 3. It follows from the argument of [5], p.99 that

c(R) =
1

m

∫ ∞

0

∫ ∞

−∞
k

( |z2 + 1|2
y2

sin2 θ

)
dz.

By the argument of [5], p.100 we have

c(R) =
π

2m sin θ

∫ ∞

0

k(t)√
t+ 4 sin2 θ

dt. ✄

3.3. Hyperbolic components.

Let P be a hyperbolic element of Γ∗. Then an element ρ exists in SL2(❘) such
that

ρPρ−1 =

(
λP 0
0 λ−1

P

)
= P̃

with λP > 1. The number λ2
P is called the norm of P and will be denoted by NP .

It follows that

c(P ) =

∫

D❡P

k(z,NPz)dz

where D ❡P = (ρΓρ−1) ❡P \H.

Lemma 3.2. Let P be a hyperbolic element of Γ∗ such that ΓP 6= {12}. If P0 is a

primitive hyperbolic element of Γ which generates the group ΓP , then

c(P ) =
lnNP0

(NP )1/2 − (NP )−1/2
g(lnNP ).

Proof. An argument similar to that made for the elliptic elements shows that every
element of Γ, which has the same fixed points as P , commutes with P . Because

ρP0ρ
−1 commutes with P̃ , it is of the form(

λP0
0

0 λ−1
P0

)

for some real number λP0
> 1. Then

c(P ) =

∫ NP0

1

dy

y2

∫ ∞

−∞
k

(
(NP − 1)2

NP

|z|2
y2

)
dx.

The stated identity follows. ✄

Let Y be a large positive number. Define

DY = {z ∈ D : Imz < Y }.
Denote by (DY )P the set ∑

γDY

where the summation is taken over all elements γ of Γ. Write

c(P )Y =

∫

(DY )P

k(z, Pz)dz.
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Lemma 3.3. Let P be a hyperbolic element of Γ∗ such that ΓP = {12}. Then

c(P )Y =
ln Y

2ρ

(NP )1/2 − (NP )−1/2
g(lnNP )

+

∫ ∞

1

k

(
(NP +

1

NP
− 2)t

)
ln t√
t− 1

dt+ o(1)

where the term o(1) has a limit zero as Y → ∞ and where ρ is defined in the proof.

Proof. Since ΓP = {12}, the fixed points of P are cusps of Γ by Proposition 1.13
of [9]. Since cusps of Γ are exactly the points in ◗ ∪ {∞}, an element γ of Γ exists
such that γ(∞) is one of the fixed points of P . Since c(P ) depends only on the
conjugacy class {P} represented by P , the element P can be replaced by γ−1Pγ
without changing the value of c(P ). Thus, P can be chosen in its conjugacy class
to be of the form

1√
n

(
a b
0 d

)

with 1 ≤ b ≤ |a− d|. Let a, b and d be positive integers. Define

α =
b

(b, |a− d|)

and

γ =
d− a

(b, |a− d|) .

Then integers β and δ exist such that

αδ − βγ = 1.

Let b1 = δ(b, |a− d|). Write

A =

(
α β
γ δ

)
.

We have

A−1

(
a b
0 d

)
A =

(
d b1
0 a

)
.

It follows that elements of the form

1√
n

(
a b
0 d

)
: ad = n, 0 < d < a, 1 ≤ b ≤ a− d (3.1)

constitute a complete set of representatives for the conjugacy classes of hyperbolic
elements of Γ∗ whose fixed points are cusps of Γ.

Let

γ =

(
p r
q s

)
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be an element of Γ. The linear fractional transformation, which takes every complex
z in the upper half-plane into γ(z), maps the horizontal line Imz = Y into a circle
of radius 1

2q2Y with center at p
q + i

2q2Y . Let

µ =

(
1 b

a−d
0 1

)
.

Then

c(P )Y =

∫

µ{(DY )P }
k(z,

a

d
z)dz.

Let γ is an element of Γ such that (µγ)(∞) = 0. Then the linear fractional trans-
formation, which takes every complex z in the upper half-plane into (µγ)(z), maps
the horizontal line Imz = Y into a circle of radius ρ with center at ρi, where

ρ =
(b, a− d)2

2Y (a− d)2
.

It follows that

c(P )Y =

∫ π

0

dθ

∫ Y/ sin θ

2ρ sin θ

k

(
(a− d)2

n sin2 θ

)
dr

r sin2 θ
+ o(1)

=

∫ ∞

1

k

(
(a− d)2

n
t

)
ln( Y

2ρ t)√
t− 1

dt+ o(1)

where o(1) has a limit zero when Y → ∞. The identity

c(P )Y =

√
n ln Y

2ρ

a− d
g(ln

a

d
) +

∫ ∞

1

k

(
(a− d)2

n
t

)
ln t√
t− 1

dt+ o(1)

holds when ad = n, 0 < d < a and 1 ≤ b ≤ a− d. ✄

3.4. Parabolic components.

Let S be a parabolic element of Γ∗. An argument similar to that made for the
elliptic elements shows that every element of Γ which has the same fixed point as S
commutes with S. Since the cusps of Γ are exactly the points in ◗∪{∞}, it follows
from Proposition 1.17 of [9] that an element ν of Γ exists such that

νΓSν
−1 =

{(
1 b
0 1

)
: b ∈ ❩

}
.

Since νSν−1 commutes with every element of νΓSν
−1, it is of the form

1√
n

(
a b
0 a

)
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for some integers a and b. It follows that Γ∗ has parabolic elements only if n is the
square of an integer. Furthermore, elements of the form

(
1 b/

√
n

0 1

)
, 0 6= b ∈ ❩

constitute a complete set of representatives for the conjugacy classes of parabolic
elements of Γ∗. If n is the square of an integer, then ∞ is the only cusp of Γ∗ up
to Γ-equivalence. Define δn to be one if n is the square of an integer and to be zero
otherwise.

Lemma 3.4. Put

c(∞)Y = δn

∫ Y

0

∫ 1

0

∑

0 6=b∈❩
k(z, z +

b√
n

)dz −
∫

DY

H(z, z)dz.

Then

c(∞)Y√
n

=g(0)δn ln

√
n

2
+
δn + d(n)

4
h(0)

− lnY
∑

ad=n,a 6=d>0

g(ln
a

d
) − δn

2π

∫ ∞

−∞
h(r)

Γ′

Γ
(1 + ir)dr

+
1

4π

∫ ∞

−∞
h(r)

ϕ′

ϕ
(
1

2
+ ir)

∑

ad=n, d>0

aird−irdr + o(1).

Proof. By the argument of [5], pp.102–106 we have

1√
n

∫ Y

0

∫ 1

0

∑

0 6=b∈❩
k(z, z +

b√
n

)dz

= g(0) ln(
√
nY ) − 1

2π

∫ ∞

−∞
h(r)

Γ′

Γ
(1 + ir)dr − g(0) ln 2 +

1

4
h(0) + o(1).

If

ϕ(s) =
√
π

Γ(s− 1
2 )ζ(2s− 1)

Γ(s)ζ(2s)
,

then
E(z, s) = ys + ϕ(s)y1−s + r(z, s)

for z = x+ iy with y > 0, where

r(z, s) = 2
√
yπsΓ(s)−1

∑

m 6=0

|m|s− 1

2ϕm(s)Ks− 1

2

(2|m|πy)e(mx)
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and

ϕm(s) =
∑

d|m

d1−2s

ζ(2s)
.

By the functional identity of the Riemann zeta function ζ(s), we have |ϕ(s)| = 1
for Re s = 1/2. It follows from Theorem 2.3.3 of [5] that

∫

DY




∑

ad=n, 0≤b<d

E(
az + b

d
, s)


E(z, s̄)dz

=
∑

ad=n,d>0

asd1−s

(
Y s+s̄−1 − |ϕ(s)|2Y 1−s−s̄

s+ s̄− 1
+
ϕ(s̄)Y s−s̄ − ϕ(s)Y s̄−s

s− s̄

)
+ ωY (s)

for Re s > 1
2 with s not equal to one, where

ωY (s) = −
∑

ad=n

0≤b<d

∫ 1

0

∫ ∞

Y

[ϕ(s̄)y1−s̄ + r(z, s̄)]r(
az + b

d
, s)

dxdy

y2
.

The argument of [5], p.107 shows that

1√
n

∫

DY

H(z, z)dz

=
lnY

2π

∫ ∞

−∞
h(r)

∑

ad=n
d>0

aird−irdr − 1

4π

∫ ∞

−∞
h(r)

ϕ′

ϕ
(
1

2
+ ir)

∑

ad=n
d>0

aird−irdr

+
1

4
√
nπ

∫ ∞

−∞
h(r)ωY (

1

2
+ ir)dr − d(n)

4
h(0) + o(1).

By partial integration, we obtain

h(r) =
1

r4

∫ ∞

0

g(4)(lnu)uir−1du (3.2)

for nonzero r. It follows from (3.2) and partial integration of (1.1) that

1

4
√
nπ

∫ ∞

−∞
h(r)ωY (

1

2
+ ir)dr = o(1)

as Y → ∞. Then the stated identity holds. ✄



ON THE TRACE OF HECKE OPERATORS FOR MAASS FORMS 11

It follows from Lemma 3.3, Lemma 3.4 and the statement concerning (3.1) that

lim
Y →∞


c(∞)Y +

∑

{P},ΓP ={12}
c(P )Y




=
1

2

∑

ad=n, d>0

1≤b≤|a−d|


 ln (a−d)2

(b,a−d)2

|a− d|
√
ng(ln

a

d
) +

∫ ∞

1

k

(
(a− d)2

n
t

)
ln t√
t− 1

dt




+ δng(0)
√
n ln

√
n

2
+

√
n

4
{δn + d(n)}h(0) − δn

√
n

2π

∫ ∞

−∞
h(r)

Γ′

Γ
(1 + ir)dr

+

√
n

4π

∫ ∞

−∞
h(r)

ϕ′

ϕ
(
1

2
+ ir)

∑

ad=n, d>0

aird−irdr.

(3.3)

Denote by c(∞) the right side of the identity (3.3). We conclude that the formula
(2.3) can be written as

∑

d|n
dh(− i

2
) +

√
nh(κ)trT (n) +

√
n

∑

ℓ

h(ℓ)tℓ

= c(I) +
∑

{R}
c(R) +

∑

{P}, ΓP 6={12}
c(P ) + c(∞)

(3.4)

for Reσ > 1, where the summations on the right side of the identity are taken over
the conjugacy classes.

Lemma 3.5. The series ∑

{P}, ΓP 6={12}
c(P )

represents an analytic function in the half-plane Reσ > 0 except for possible simple

poles at σ = 1, 1
2 ,

1
2 ± iκ with 1

4 + κ2 being taken over all the positive discrete

eigenvalues of ∆.

Proof. Write

g(4)(log u) = A(σ)u
1

2
−σ +Oσ(u−

1

2 ),

where A(σ) is an analytic function of σ for Reσ > 0 and where Oσ(u−
1

2 ) means
that, for every complex number σ with Reσ > 0, there exists a finite constant B(σ)
depending only on σ such that

|Oσ(u−
1

2 )| ✻ B(σ)u−
1

2 .
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Moreover, for every fixed value of u, the term Oσ(u−
1

2 ) also represents an analytic
function of σ for Reσ > 0. By (3.2), we have

h(r) =
1

r4

∫ ∞

1

g(4)(lnu)(uir + u−ir)
du

u

=
A(σ)

r4

∫ ∞

1

u−
1

2
−σ(uir + u−ir)du+Oσ

(
1

r4

∫ ∞

1

u−
3

2 du

)

=
A(σ)

r4

(
1

σ − 1
2 − ir

+
1

σ − 1
2 + ir

)
+Oσ(r−4)

for Reσ > 1
2 . By analytic continuation, we obtain that

h(r) =
2A(σ)(σ − 1

2 )

r4[(σ − 1
2 )2 + r2]

+Oσ(r−4) (3.5)

for Reσ > 0. It follows from (2.1) and the results of [12] that the left side of (3.4)
is an analytic function of σ for Reσ > 0 except for simple poles at σ = 1, 1

2 ,
1
2 ± iκ

with 1
4 + κ2 being taken over all the positive discrete eigenvalues of ∆. Then the

right side of (3.4) can be interpreted as an analytic function of σ in the same region
by analytic continuation.

It follows from the definition of k(t) and Lemma 3.1 that c(R) is analytic for
Reσ > 0 except for simple poles at σ = 1

2 . There are only a finite number of
elliptic conjugacy classes. The term c(I) is a constant. We have

ϕ′

ϕ
(s) = 2 lnπ − Γ′

Γ
(s) − Γ′

Γ
(1 − s) − 2

ζ ′

ζ
(2s) − 2

ζ ′

ζ
(2 − 2s) (3.6)

when Re s = 1
2 . By Stirling’s formula the identity

Γ′

Γ
(z) = ln z +O(1) (3.7)

holds uniformly when | arg z| ≤ π− δ for a small positive number δ. The expression
(3.3) together with (2.1), (3.5), (3.6) and (3.7) implies that c(∞) is an analytic
function of σ in the half-plane Reσ > 0 except for possible simple poles at σ =
1, 1

2 ,
1
2 ± iκ with 1

4 + κ2 being taken over all the positive discrete eigenvalues of ∆.
Therefore the series ∑

{P}, ΓP 6={12}
c(P )

represents an analytic function of σ in the half-plane Reσ > 0 except for possible
simple poles at σ = 1, 1

2 ,
1
2 ± iκ with 1

4 +κ2 being taken over all the positive discrete
eigenvalues of ∆.
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4. Proof of the Main Theorem

Lemma 4.1. We have

4τ
√
πn

Γ(iκ)

Γ(τ)
trT (n) = lim

σ→τ
(σ − τ)

∑

{P}, ΓP 6={12}
c(P )

where the right side is defined as in Lemma 3.5.

Proof. It follows from (3.5) and the results of [12] that

lim
σ→τ

(σ − τ)
∑

ℓ

h(ℓ)tℓ = 0.

By (3.5), (3.6) and (3.7), we have

lim
σ→τ

(σ − τ)

∫ ∞

−∞
h(r)

Γ′

Γ
(1 + ir)dr = 0

and

lim
σ→τ

(σ − τ)

∫ ∞

−∞
h(r)

ϕ′

ϕ
(
1

2
+ ir)aird−irdr = 0,

where ad = n with d > 0. The stated identity then follows from (2.2), (3.3), (3.4)
and Lemma 3.1. ✄

A quadratic form ax2 + bxy + cy2, which is denoted by [a, b, c], is said to be
primitive if (a, b, c) = 1 and b2 − 4ac = d ∈ Ω. Two quadratic forms [a, b, c] and
[a′, b′, c′] are equivalent if an element γ of Γ exists such that

(
a′ b′/2
b′/2 c′

)
= γt

(
a b/2
b/2 c

)
γ,

where γt is the transpose of γ. This relation partitions the quadratic forms into
equivalence classes, and two such forms from the same class have the same discrim-
inant. The number of classes hd of a given discriminant d is finite, and is called the
class number of indefinite quadratic forms.

Remark. Siegel [10] proved that

lim
d→∞

ln(hd ln ǫd)

ln d
=

1

2
. (4.1)
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Lemma 4.2. We have

∑

{P}, ΓP 6={12}
c(P ) = c

√
n

∑

d∈Ω,u

2hd ln ǫd√
du

(1 +
du2

4n
)

1

2
−σ

for Reσ > 1, where the summation on u is taken over all the positive integers u
which together with t are integral solutions of the equation t2−du2 = 4n. The series

on the right side of the identity converges absolutely for Reσ > 1.

Proof. Let

P =
1√
n

(
A B
C D

)

be a hyperbolic element of Γ∗ such that ΓP 6= {12}. Then fixed points r1, r2 of P are
not cusps of Γ. This implies that ΓP is the subgroup of Γ consisting of hyperbolic
transformations with r1, r2 as fixed points. Define [a, b, c] to be the primitive
quadratic form such that r1, r2 are the roots of the equation ar2 + br + c = 0. By
Sarnak [7], the subgroup ΓP consists of matrices of the form

(
v−bu

2 −cu
au v+bu

2

)

with v2 − du2 = 4 and is generated by the primitive hyperbolic element

P0 =

(
v0−bu0

2 −cu0

au0
v0+bu0

2

)

where the pair (v0, u0) is the fundamental solution of Pell’s equation v2 − du2 = 4.
Since P and P0 have the same fixed points, we have A = D−bC/a and B = −cC/a.
Since P belongs to Γ∗ and AD −BC = n, C satisfies the equation

{
aD2 − bDC + cC2 = na

a|C.
(4.2)

Let λP be an eigenvalue of P . Then

λP − 1

λP
= ±C

√
d

a
√
n

(4.3)

and

λP +
1

λP
=

1√
n

(2D − b

a
C). (4.4)

Conversely, let a pair (C,D) be a solution of the equation (4.2). Define

A = D − b

a
C
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and
B = − c

a
C.

Then the matrix

P =
1√
n

(
A B
C D

)

has the same fixed points as P0, and eigenvalues of P satisfies the identity (4.3).
We have the decomposition

P =
1√
n

( n
(D,C) − c

aαC − (D − b
aC)β

0 (D,C)

)
σ · σ−1

(
α β

C/(D,C) D/(D,C)

)
,

where α and β are integers such that

αD − βC = (D,C)

and where σ =
(

1 ∗
0 1

)
∈ Γ is chosen so that

(
n/(D,C) ∗

0 (D,C)

)
σ =

(
n/(D,C) −s

0 (D,C)

)

with 0 ≤ s < n/(D,C). Therefore, P belongs to Γ∗.
Let P ′

0 be the primitive hyperbolic element of Γ corresponding to [a′, b′, c′]. Since
the identity

(
v0/2 0

0 v0/2

)
+ u0

(
0 −1
1 0

)
γt

(
a b/2
b/2 c

)
γ = γ−1P0γ

holds for every element γ of Γ, two forms [a, b, c] and [a′, b′, c′] of the same discrimi-
nant are equivalent if, and only if, an element γ of Γ exists such that γ−1P0γ = P ′

0.
For a given discriminant d, let C be a solution of the equation (4.2). Then the quo-
tient C/|a| depends only on the equivalence classes {[a, b, c]} by the identity (4.3).
Let F be the set of all the pairs ({P0}, C), where d belongs to Ω and where C sat-
isfies the equation (4.2) with [a, b, c] being a representative of its equivalence class.
Then an one-to-one correspondence exists between F and the set of all conjugacy
classes of hyperbolic elements of Γ∗ whose fixed points are not cusps of Γ.

It follows from (2.1) and Lemma 3.2 that

∑

{P}, ΓP 6={12}
c(P ) = c

√
n

∑ 2 ln ǫd√
d |C|

|a|

(
1 +

dC2

4na2

) 1

2
−σ

where the summation is taken over the set of all the pairs ({P0}, C) in F . Define
v = 2D − bC

a and u = C
a . Then the equation (4.2) becomes

v2 − du2 = 4n. (4.5)
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Moreover, we have

1√
n

(
A B
C D

)
=

1√
n

(
v−bu

2 −cu
au v+bu

2

)
. (4.6)

It follows that the stated identity holds.
Two solutions (v, u) and (v′, u′) of the equation (4.5) are said to be equivalent if

v′ + u′
√
d = (v + u

√
d)ǫqd

for some integer q. This relation partitions all the solutions of (4.5) into equivalence
classes. Denote by Jd the number of such equivalence classes. Assume that T1 =
1√
n

(
a b

0 d

)
γ1 and T2 = 1√

n

(
a b

0 d

)
γ2 with γi in Γ are of the form (4.6). Since T1

and T2 have the same two distinct fixed points, they commute with each other.
This implies that γ−1

1 γ2 commutes with T1. It follows that γ−1
1 γ2 is a power of

the primitive hyperbolic element P0. Since T1, T2 and P0 can be diagonalized
simultaneously, by using (4.3) and (4.4) we see that the eigenvalue of T1 differs
from that of T2 by a power factor of ǫd. Therefore, for fixed integers a, b, d with

ad = n, 0 ✻ b < d, the eigenvalues of elements in Γ∗ of the form 1√
n

(
d −b

0 a

)
γ,

γ ∈ Γ, and of the form (4.6) corresponds to one equivalence class of solutions of
(4.5). It follows from the statement given at the beginning of the second paragraph
in section 2 that Jd ≤ ∑

c|n c. An unique solution (vj , uj) of the equation (4.5)

with vj , uj > 0 exists in each equivalence class such that 2
√
nλj = vj + uj

√
d is the

smallest among all the positive solutions of the equivalence class for j = 1, · · · , Jd.
Then all the solutions of the equation (4.5) with v, u > 0 are given by

{
u
√

d√
n

= λjǫ
q
d − λ−1

j ǫ−q
d

v√
n

= λjǫ
q
d + λ−1

j ǫ−q
d

(4.7)

for all nonnegative integers q and for j = 1, · · · , Jd. It follows from (4.1) that

∑

d∈Ω,u

hd ln ǫd√
du

(1 +
du2

4n
)

1

2
−σ ≪

∑

d∈Ω,u

d
1

2
+ǫ−σu−2σ = S1 + S2

for a small positive number ǫ when σ > 1, where

S1 =
∑

d∈Ω,u<
√

d

(du2)
1

2
+ǫ−σu−1−2ǫ

and
S2 =

∑

d∈Ω,u>
√

d

d
1

2
+ǫ−σu−2σ.
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If two distinct integers d and d′ of Ω are square free, then the equation (4.5) implies
that

min
1≤j≤Jd

vj 6= min
1≤j≤Jd′

v′j

where v′j , j = 1, · · · , Jd′ , correspond the equation v′2 − d′u′2 = 4n similarly as the
above. Then the inequality

S1 ≪
∑

d∈Ω

d square free

( min
1≤j≤Jd

vj)
1+2ǫ−2σ

Jd∑

j=1

∞∑

l=1

(l2uj)
−1−2ǫ ≪

∞∑

v=1

v1+2ǫ−2σ <∞

holds for σ > 1. Since Jd ≤
∑

d|n d, it follows from (4.7) that

S2 ≪
∞∑

d=1

d
1

2
+ǫ−2σ <∞

for σ > 1. Therefore the series on the right side of the stated identity converges
absolutely for Reσ > 1. ✄

Proof of the Main Theorem. An argument similar to the estimation of terms S1 and
S2 in the proof of Lemma 4.2 shows that

∑

d∈Ω,u

hd ln ǫd√
du

(1 +
du2

4n
)

1

2
−σ −

∑

d∈Ω,u

hd ln ǫd
(du2)σ

≪
∑

d∈Ω,u

(du2)
1

2
+ǫ−1−σ

u1+2ǫ
<∞

for σ > 0. It follows from Lemma 4.2 that

lim
σ→τ

(σ− τ)
∑

{P}, ΓP 6={12}
c(P ) =

(4π)
1

2 Γ(iκ)

(4n)−τΓ(τ)
lim
σ→τ

(σ− τ)
∑

d∈Ω

hd ln ǫd
dσ

∑

u

u−2σ. (4.8)

Lemma 3.5 shows that the function on the right side of (4.8) represents an analytic
function of σ in the half-plane Reσ > 0 except for possible simple poles at σ =
1, 1

2 ,
1
2 ± iκ with 1

4 + κ2 being taken over all the positive discrete eigenvalues of ∆.
Then the stated identity follows from Lemma 4.1.

This completes the proof of the theorem.

Remark. It is conjectured that |trT (p)| ✻ 2 for every prime number p.
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