ON THE TRACE OF HECKE OPERATORS FOR MAASS FORMS

XIAN-JIN LI

Abstract

The trace of the Hecke operator $T(n)$ acting on a Hilbert space of functions spanned by the eigenfunctions of the Laplace-Beltrami operator with a positive eigenvalue is computed, which can be considered as the analogue of Eichler-Selberg's trace formula for non-holomorphic cusp forms of weight zero.

1. Introduction

Denote by Γ the group $P S L_{2}(\mathbb{Z})$. The Laplace-Beltrami operator Δ on the upper half-plane \mathcal{H} is given by

$$
\Delta=-y^{2}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) .
$$

Define D to be a fundamental domain of Γ, which contains the points $z=x+i y$ with $0<x<1$ and $\left|z-\frac{1}{2}\right|>1$. Eigenfunctions of the discrete spectrum of Δ are nonzero real-analytic solutions of the equation

$$
\Delta \psi=\lambda \psi
$$

such that $\psi(\gamma z)=\psi(z)$ for all γ in Γ and such that

$$
\int_{D}|\psi(z)|^{2} d z<\infty
$$

where $d z$ represents the Poincaré measure of the upper half-plane.
The Hecke operators $T(n), n=1,2, \cdots$, which act in the space of automorphic functions with respect to Γ, are defined by

$$
(T(n) f)(z)=\frac{1}{\sqrt{n}} \sum_{a d=n, 0 \leq b<d} f\left(\frac{a z+b}{d}\right) .
$$

An orthogonal system of eigenfunctions of Δ exists [6] such that each of them is an eigenfunction of all the Hecke operators. Let λ be a positive discrete eigenvalue of
Δ. Then $\lambda>\frac{1}{4}$. If $\psi(z)$ is such an eigenfunction of Δ with a positive eigenvalue λ, then

$$
\psi(z)=\sqrt{y} \sum_{m \neq 0} \rho(m) K_{i \kappa}(2 \pi|m| y) e(m x)
$$

where $\kappa=\sqrt{\lambda-\frac{1}{4}}$ and where $K_{\nu}(y)$ is given by the formula $\S 6.32,[13]$

$$
\begin{equation*}
K_{\nu}(y)=\frac{2^{\nu} \Gamma\left(\nu+\frac{1}{2}\right)}{y^{\nu} \sqrt{\pi}} \int_{0}^{\infty} \frac{\cos (y t)}{\left(1+t^{2}\right)^{\nu+\frac{1}{2}}} d t . \tag{1.1}
\end{equation*}
$$

If $\psi(z)$ is normalized so that $\rho(1)=1$, then the identity [6]

$$
(T(n) \psi)(z)=\rho(n) \psi(z)
$$

holds for all positive integers n. The Petersson-Ramanujan conjecture for nonholomorphic cusp forms of weight zero says that the inequality

$$
|\rho(n)| \leq d(n)
$$

holds for all positive integers n, where $d(n)$ denotes the number of divisors of n. Let \mathcal{E}_{λ} be a Hilbert space of functions spanned by the eigenfunctions of Δ with a positive eigenvalue λ. The inner product of the space is given by

$$
\begin{equation*}
\langle F(z), G(z)\rangle=\int_{D} F(z) \bar{G}(z) d z \tag{1.2}
\end{equation*}
$$

The Eichler-Selberg trace formula [8], p. 85 is a useful formula for studying holomorphic modular forms of integral weights (cf. Deligne [1] and Ihara [4]). The analogue of Eichler-Selberg's trace formula for non-holomorphic cusp forms of weight zero is obtained in the Main Theorem, whose proof is given in section 4. In particular, the trace $\operatorname{tr} T(n)$ of Hecke operators acting on the space \mathcal{E}_{λ} is computed, and the computation is already implicit in Hejhal [2].

Write $\tau=\frac{1}{2}+i \kappa$. Denote by h_{d} the class number of indefinite rational quadratic forms with discriminant d. Define

$$
\begin{equation*}
\epsilon_{d}=\frac{v_{0}+u_{0} \sqrt{d}}{2} \tag{1.3}
\end{equation*}
$$

where the pair $\left(v_{0}, u_{0}\right)$ is the fundamental solution [11] of Pell's equation $v^{2}-d u^{2}=$ 4. Denote by Ω the set of all the positive integers d such that $d \equiv 0$ or $1(\bmod 4)$ and such that d is not a square of an integer.

Main Theorem. Define

$$
L_{n}(\sigma)=\sum_{d \in \Omega, u} \frac{h_{d} \ln \epsilon_{d}}{\left(d u^{2}\right)^{\sigma}}
$$

for $\operatorname{Re} \sigma>1$, where the summation on u is taken over all the positive integers u which together with t are the integral solutions of the equation $t^{2}-d u^{2}=4 n$. Then

$$
\operatorname{tr} T(n)=2 n^{i \kappa} \operatorname{Res}_{\sigma=\tau} L_{n}(\sigma)
$$

for every positive integer n, where $L_{n}(\sigma)$ is an analytic function of σ for $\operatorname{Re} \sigma>1$ and can be extended by analytic continuation to the half-plane Re $\sigma>0$ except for possible simple poles at $\sigma=1, \frac{1}{2}, \frac{1}{2} \pm i \kappa$ with $\frac{1}{4}+\kappa^{2}$ being taken over all the positive discrete eigenvalues of the Laplace-Beltrami operator for the modular group.

2. Trace formula

Let σ be a complex number with $\operatorname{Re} \sigma>1$. Define

$$
k(t)=\left(1+\frac{t}{4}\right)^{-\sigma}
$$

and

$$
k\left(z, z^{\prime}\right)=k\left(\frac{\left|z-z^{\prime}\right|^{2}}{y y^{\prime}}\right)
$$

for $z=x+i y$ and $z^{\prime}=x^{\prime}+i y^{\prime}$ in the upper half-plane. Then $k\left(m z, m z^{\prime}\right)=k\left(z, z^{\prime}\right)$ for every 2×2 matrix m of determinant one with real entries. The kernel $k\left(z, z^{\prime}\right)$ is of (a)-(b) type in the sense of Selberg [8], p.60. Let

$$
g(u)=\int_{w}^{\infty} k(t) \frac{d t}{\sqrt{t-w}}
$$

with $w=e^{u}+e^{-u}-2$. Write

$$
h(r)=\int_{-\infty}^{\infty} g(u) e^{i r u} d u
$$

Then

$$
\begin{equation*}
g(u)=\sqrt{w} \int_{0}^{1}\left(t+\frac{w}{4}\right)^{-\sigma} t^{\sigma-\frac{3}{2}} \frac{d t}{\sqrt{1-t}}=c\left(1+\frac{w}{4}\right)^{\frac{1}{2}-\sigma} \tag{2.1}
\end{equation*}
$$

where $c=2 \sqrt{\pi} \Gamma\left(\sigma-\frac{1}{2}\right) \Gamma^{-1}(\sigma)$. Since

$$
h(r)=c 4^{\sigma-\frac{1}{2}} \int_{0}^{\infty}\left(u+\frac{1}{u}+2\right)^{\frac{1}{2}-\sigma} u^{i r-1} d u
$$

for $\operatorname{Re} \sigma>\frac{1}{2}$, by computation we find that

$$
\lim _{\sigma \rightarrow \tau}(\sigma-\tau) h(r)= \begin{cases}4^{\tau} \sqrt{\pi} \frac{\Gamma(i \kappa)}{\Gamma(\tau)}, & \text { for } r= \pm \kappa \tag{2.2}\\ 0, & \text { for } r \neq \pm \kappa\end{cases}
$$

Define

$$
\Gamma^{*}=\cup_{\substack{a d=n \\
0 \leq b<d}} \frac{1}{\sqrt{n}}\left(\begin{array}{cc}
d & -b \\
0 & a
\end{array}\right) \Gamma .
$$

Then γT belongs to Γ^{*} whenever $\gamma \in \Gamma$ and $T \in \Gamma^{*}$. Every element of Γ^{*} is represented uniquely in the form

$$
\frac{1}{\sqrt{n}}\left(\begin{array}{cc}
d & -b \\
0 & a
\end{array}\right) \gamma
$$

with $a d=n, 0 \leq b<d$ and $\gamma \in \Gamma$. It follows that Γ^{*} satisfies all the requirements given in [8], p.69. The Eisenstein series is given by

$$
E(z, s)=\frac{1}{2} \sum_{(c, d)=1} \frac{y^{s}}{|c z+d|^{2 s}}
$$

for z in the upper half-plane when $\operatorname{Re} s>1$. Define

$$
K\left(z, z^{\prime}\right)=\sum_{T \in \Gamma^{*}} k\left(z, T z^{\prime}\right)
$$

and

$$
H\left(z, z^{\prime}\right)=\sum_{a d=n, 0 \leq b<d} \frac{1}{4 \pi} \int_{-\infty}^{\infty} h(r) E\left(\frac{a z+b}{d}, \frac{1}{2}+i r\right) E\left(z^{\prime}, \frac{1}{2}-i r\right) d r
$$

Let ℓ be a positive number such that $\frac{1}{4}+\ell^{2}$ is a discrete eigenvalue of Δ distinct from λ. Denote by t_{ℓ} the trace of the Hecke operator $T(n)$ acting on the space $\mathcal{E}_{\frac{1}{4}+\ell^{2}}$. It follows from (2.14) of [8], the argument of [5], pp.96-98, Theorem 5.3.3 of [5], and the spectral decomposition formula (5.3.12) of [5] that

$$
\begin{equation*}
\sum_{d \mid n} d h\left(-\frac{i}{2}\right)+\sqrt{n} h(\kappa) \operatorname{tr} T(n)+\sqrt{n} \sum_{\ell} h(\ell) t_{\ell}=\int_{D}\{K(z, z)-H(z, z)\} d z \tag{2.3}
\end{equation*}
$$

for $\operatorname{Re} \sigma>1$, where the summation is taken over all distinct positive numbers ℓ not equal to κ such that $\frac{1}{4}+\ell^{2}$ is a discrete eigenvalue of Δ.

3. Evaluation of components of the trace

For every element T of Γ^{*}, denote by Γ_{T} the set of all the elements of Γ which commute with T. Put $D_{T}=\Gamma_{T} \backslash \mathcal{H}$. The elements of Γ^{*} can be divided into four types, of which the first consists of the identity element, while the others are respectively the hyperbolic, the elliptic and the parabolic elements. If T is not a parabolic element, put

$$
c(T)=\int_{D_{T}} k(z, T z) d z
$$

3.1. The identity component.

If Γ^{*} contains the identity element I, then

$$
c(I)=\frac{\pi}{3}
$$

3.2. Elliptic components.

There are only a finite number of elliptic conjugacy classes.
Lemma 3.1. Let R be an elliptic element of Γ^{*}. Then

$$
c(R)=\frac{\pi}{2 m \sin \theta} \int_{0}^{\infty} \frac{k(t)}{\sqrt{t+4 \sin ^{2} \theta}} d t
$$

where m represents the order of a primitive element of Γ_{R} and where θ is defined by the formula trace $(R)=2 \cos \theta$.
Proof. Since R is an elliptic element of Γ^{*}, an element η exists in $S L_{2}(\mathbb{R})$ such that

$$
\eta R \eta^{-1}=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)=\widetilde{R}
$$

for some real number $0<\theta<\pi$. Denote by $\left(\eta \Gamma \eta^{-1}\right)_{\widetilde{R}}$ the set of all the elements of $\eta \Gamma \eta^{-1}$ which commute with \widetilde{R}. We have

$$
c(R)=\int_{D_{\widetilde{R}}} k(z, \widetilde{R} z) d z
$$

where $D_{\widetilde{R}}=\left(\eta \Gamma \eta^{-1}\right)_{\widetilde{R}} \backslash \mathcal{H}$.
Let $\gamma=\left(\begin{array}{cc}\alpha & \beta \\ \gamma & \delta\end{array}\right)$ be an element of Γ which has the same fixed points as $R=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. Then $(\alpha-\delta) c=\gamma(a-d)$ and $\beta c=\gamma b$. It follows that γ commutes with R. By Proposition 1.13 of [9], a primitive elliptic element γ_{0} of Γ exists such that $\left(\eta \Gamma \eta^{-1}\right)_{\widetilde{R}}$ is generated by $\eta \gamma_{0} \eta^{-1}$. Since $\eta \gamma_{0} \eta^{-1}$ commutes with \widetilde{R}, it is of the form

$$
\left(\begin{array}{cc}
\cos \theta_{0} & -\sin \theta_{0} \\
\sin \theta_{0} & \cos \theta_{0}
\end{array}\right)
$$

for some real number θ_{0}. By Proposition 1.16 of [9], $\theta_{0}=\pi / m$ for some positive integer m. In fact, $m=2$ or 3 . It follows from the argument of [5], p. 99 that

$$
c(R)=\frac{1}{m} \int_{0}^{\infty} \int_{-\infty}^{\infty} k\left(\frac{\left|z^{2}+1\right|^{2}}{y^{2}} \sin ^{2} \theta\right) d z
$$

By the argument of [5], p. 100 we have

$$
c(R)=\frac{\pi}{2 m \sin \theta} \int_{0}^{\infty} \frac{k(t)}{\sqrt{t+4 \sin ^{2} \theta}} d t
$$

3.3. Hyperbolic components.

Let P be a hyperbolic element of Γ^{*}. Then an element ρ exists in $S L_{2}(\mathbb{R})$ such that

$$
\rho P \rho^{-1}=\left(\begin{array}{cc}
\lambda_{P} & 0 \\
0 & \lambda_{P}^{-1}
\end{array}\right)=\widetilde{P}
$$

with $\lambda_{P}>1$. The number λ_{P}^{2} is called the norm of P and will be denoted by $N P$. It follows that

$$
c(P)=\int_{D_{\widetilde{P}}} k(z, N P z) d z
$$

where $D_{\widetilde{P}}=\left(\rho \Gamma \rho^{-1}\right)_{\widetilde{P}} \backslash \mathcal{H}$.
Lemma 3.2. Let P be a hyperbolic element of Γ^{*} such that $\Gamma_{P} \neq\left\{1_{2}\right\}$. If P_{0} is a primitive hyperbolic element of Γ which generates the group Γ_{P}, then

$$
c(P)=\frac{\ln N P_{0}}{(N P)^{1 / 2}-(N P)^{-1 / 2}} g(\ln N P)
$$

Proof. An argument similar to that made for the elliptic elements shows that every element of Γ, which has the same fixed points as P, commutes with P. Because $\rho P_{0} \rho^{-1}$ commutes with \widetilde{P}, it is of the form

$$
\left(\begin{array}{cc}
\lambda_{P_{0}} & 0 \\
0 & \lambda_{P_{0}}^{-1}
\end{array}\right)
$$

for some real number $\lambda_{P_{0}}>1$. Then

$$
c(P)=\int_{1}^{N P_{0}} \frac{d y}{y^{2}} \int_{-\infty}^{\infty} k\left(\frac{(N P-1)^{2}}{N P} \frac{|z|^{2}}{y^{2}}\right) d x
$$

The stated identity follows.
Let Y be a large positive number. Define

$$
D_{Y}=\{z \in D: \operatorname{Im} z<Y\}
$$

Denote by $\left(D_{Y}\right)_{P}$ the set

$$
\sum \gamma D_{Y}
$$

where the summation is taken over all elements γ of Γ. Write

$$
c(P)_{Y}=\int_{\left(D_{Y}\right)_{P}} k(z, P z) d z
$$

Lemma 3.3. Let P be a hyperbolic element of Γ^{*} such that $\Gamma_{P}=\left\{1_{2}\right\}$. Then

$$
\begin{aligned}
c(P)_{Y} & =\frac{\ln \frac{Y}{2 \rho}}{(N P)^{1 / 2}-(N P)^{-1 / 2}} g(\ln N P) \\
& +\int_{1}^{\infty} k\left(\left(N P+\frac{1}{N P}-2\right) t\right) \frac{\ln t}{\sqrt{t-1}} d t+o(1)
\end{aligned}
$$

where the term o(1) has a limit zero as $Y \rightarrow \infty$ and where ρ is defined in the proof.
Proof. Since $\Gamma_{P}=\left\{1_{2}\right\}$, the fixed points of P are cusps of Γ by Proposition 1.13 of [9]. Since cusps of Γ are exactly the points in $\mathbb{Q} \cup\{\infty\}$, an element γ of Γ exists such that $\gamma(\infty)$ is one of the fixed points of P. Since $c(P)$ depends only on the conjugacy class $\{P\}$ represented by P, the element P can be replaced by $\gamma^{-1} P \gamma$ without changing the value of $c(P)$. Thus, P can be chosen in its conjugacy class to be of the form

$$
\frac{1}{\sqrt{n}}\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right)
$$

with $1 \leq b \leq|a-d|$. Let a, b and d be positive integers. Define

$$
\alpha=\frac{b}{(b,|a-d|)}
$$

and

$$
\gamma=\frac{d-a}{(b,|a-d|)}
$$

Then integers β and δ exist such that

$$
\alpha \delta-\beta \gamma=1
$$

Let $b_{1}=\delta(b,|a-d|)$. Write

$$
A=\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)
$$

We have

$$
A^{-1}\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right) A=\left(\begin{array}{cc}
d & b_{1} \\
0 & a
\end{array}\right)
$$

It follows that elements of the form

$$
\frac{1}{\sqrt{n}}\left(\begin{array}{ll}
a & b \tag{3.1}\\
0 & d
\end{array}\right): a d=n, 0<d<a, 1 \leq b \leq a-d
$$

constitute a complete set of representatives for the conjugacy classes of hyperbolic elements of Γ^{*} whose fixed points are cusps of Γ.

Let

$$
\gamma=\left(\begin{array}{ll}
p & r \\
q & s
\end{array}\right)
$$

be an element of Γ. The linear fractional transformation, which takes every complex z in the upper half-plane into $\gamma(z)$, maps the horizontal line $\operatorname{Im} z=Y$ into a circle of radius $\frac{1}{2 q^{2} Y}$ with center at $\frac{p}{q}+\frac{i}{2 q^{2} Y}$. Let

$$
\mu=\left(\begin{array}{cc}
1 & \frac{b}{a-d} \\
0 & 1
\end{array}\right)
$$

Then

$$
c(P)_{Y}=\int_{\mu\left\{\left(D_{Y}\right)_{P}\right\}} k\left(z, \frac{a}{d} z\right) d z
$$

Let γ is an element of Γ such that $(\mu \gamma)(\infty)=0$. Then the linear fractional transformation, which takes every complex z in the upper half-plane into $(\mu \gamma)(z)$, maps the horizontal line $\operatorname{Im} z=Y$ into a circle of radius ρ with center at ρi, where

$$
\rho=\frac{(b, a-d)^{2}}{2 Y(a-d)^{2}}
$$

It follows that

$$
\begin{aligned}
c(P)_{Y} & =\int_{0}^{\pi} d \theta \int_{2 \rho \sin \theta}^{Y / \sin \theta} k\left(\frac{(a-d)^{2}}{n \sin ^{2} \theta}\right) \frac{d r}{r \sin ^{2} \theta}+o(1) \\
& =\int_{1}^{\infty} k\left(\frac{(a-d)^{2}}{n} t\right) \frac{\ln \left(\frac{Y}{2 \rho} t\right)}{\sqrt{t-1}} d t+o(1)
\end{aligned}
$$

where $o(1)$ has a limit zero when $Y \rightarrow \infty$. The identity

$$
c(P)_{Y}=\frac{\sqrt{n} \ln \frac{Y}{2 \rho}}{a-d} g\left(\ln \frac{a}{d}\right)+\int_{1}^{\infty} k\left(\frac{(a-d)^{2}}{n} t\right) \frac{\ln t}{\sqrt{t-1}} d t+o(1)
$$

holds when $a d=n, 0<d<a$ and $1 \leq b \leq a-d$.

3.4. Parabolic components.

Let S be a parabolic element of Γ^{*}. An argument similar to that made for the elliptic elements shows that every element of Γ which has the same fixed point as S commutes with S. Since the cusps of Γ are exactly the points in $\mathbb{Q} \cup\{\infty\}$, it follows from Proposition 1.17 of [9] that an element ν of Γ exists such that

$$
\nu \Gamma_{S} \nu^{-1}=\left\{\left(\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right): b \in \mathbb{Z}\right\} .
$$

Since $\nu S \nu^{-1}$ commutes with every element of $\nu \Gamma_{S} \nu^{-1}$, it is of the form

$$
\frac{1}{\sqrt{n}}\left(\begin{array}{ll}
a & b \\
0 & a
\end{array}\right)
$$

for some integers a and b. It follows that Γ^{*} has parabolic elements only if n is the square of an integer. Furthermore, elements of the form

$$
\left(\begin{array}{cc}
1 & b / \sqrt{n} \\
0 & 1
\end{array}\right), \quad 0 \neq b \in \mathbb{Z}
$$

constitute a complete set of representatives for the conjugacy classes of parabolic elements of Γ^{*}. If n is the square of an integer, then ∞ is the only cusp of Γ^{*} up to Γ-equivalence. Define δ_{n} to be one if n is the square of an integer and to be zero otherwise.

Lemma 3.4. Put

$$
c(\infty)_{Y}=\delta_{n} \int_{0}^{Y} \int_{0}^{1} \sum_{0 \neq b \in \mathbb{Z}} k\left(z, z+\frac{b}{\sqrt{n}}\right) d z-\int_{D_{Y}} H(z, z) d z
$$

Then

$$
\begin{aligned}
\frac{c(\infty)_{Y}}{\sqrt{n}}= & g(0) \delta_{n} \ln \frac{\sqrt{n}}{2}+\frac{\delta_{n}+d(n)}{4} h(0) \\
& -\ln Y \sum_{a d=n, a \neq d>0} g\left(\ln \frac{a}{d}\right)-\frac{\delta_{n}}{2 \pi} \int_{-\infty}^{\infty} h(r) \frac{\Gamma^{\prime}}{\Gamma}(1+i r) d r \\
& +\frac{1}{4 \pi} \int_{-\infty}^{\infty} h(r) \frac{\varphi^{\prime}}{\varphi}\left(\frac{1}{2}+i r\right) \sum_{a d=n, d>0} a^{i r} d^{-i r} d r+o(1) .
\end{aligned}
$$

Proof. By the argument of [5], pp.102-106 we have

$$
\begin{aligned}
& \frac{1}{\sqrt{n}} \int_{0}^{Y} \int_{0}^{1} \sum_{0 \neq b \in \mathbb{Z}} k\left(z, z+\frac{b}{\sqrt{n}}\right) d z \\
& =g(0) \ln (\sqrt{n} Y)-\frac{1}{2 \pi} \int_{-\infty}^{\infty} h(r) \frac{\Gamma^{\prime}}{\Gamma}(1+i r) d r-g(0) \ln 2+\frac{1}{4} h(0)+o(1)
\end{aligned}
$$

If

$$
\varphi(s)=\sqrt{\pi} \frac{\Gamma\left(s-\frac{1}{2}\right) \zeta(2 s-1)}{\Gamma(s) \zeta(2 s)}
$$

then

$$
E(z, s)=y^{s}+\varphi(s) y^{1-s}+r(z, s)
$$

for $z=x+i y$ with $y>0$, where

$$
r(z, s)=2 \sqrt{y} \pi^{s} \Gamma(s)^{-1} \sum_{m \neq 0}|m|^{s-\frac{1}{2}} \varphi_{m}(s) K_{s-\frac{1}{2}}(2|m| \pi y) e(m x)
$$

and

$$
\varphi_{m}(s)=\sum_{d \mid m} \frac{d^{1-2 s}}{\zeta(2 s)}
$$

By the functional identity of the Riemann zeta function $\zeta(s)$, we have $|\varphi(s)|=1$ for Res=1/2. It follows from Theorem 2.3.3 of [5] that

$$
\begin{aligned}
& \int_{D_{Y}}\left(\sum_{a d=n, 0 \leq b<d} E\left(\frac{a z+b}{d}, s\right)\right) E(z, \bar{s}) d z \\
= & \sum_{a d=n, d>0} a^{s} d^{1-s}\left(\frac{Y^{s+\bar{s}-1}-|\varphi(s)|^{2} Y^{1-s-\bar{s}}}{s+\bar{s}-1}+\frac{\varphi(\bar{s}) Y^{s-\bar{s}}-\varphi(s) Y^{\bar{s}-s}}{s-\bar{s}}\right)+\omega_{Y}(s)
\end{aligned}
$$

for Res> $\frac{1}{2}$ with s not equal to one, where

$$
\omega_{Y}(s)=-\sum_{\substack{a d=n \\ 0 \leq b<d}} \int_{0}^{1} \int_{Y}^{\infty}\left[\varphi(\bar{s}) y^{1-\bar{s}}+r(z, \bar{s})\right] r\left(\frac{a z+b}{d}, s\right) \frac{d x d y}{y^{2}}
$$

The argument of [5], p. 107 shows that

$$
\begin{aligned}
& \frac{1}{\sqrt{n}} \int_{D_{Y}} H(z, z) d z \\
& =\frac{\ln Y}{2 \pi} \int_{-\infty}^{\infty} h(r) \sum_{\substack{a d=n \\
d>0}} a^{i r} d^{-i r} d r-\frac{1}{4 \pi} \int_{-\infty}^{\infty} h(r) \frac{\varphi^{\prime}}{\varphi}\left(\frac{1}{2}+i r\right) \sum_{\substack{a d=n \\
d>0}} a^{i r} d^{-i r} d r \\
& +\frac{1}{4 \sqrt{n} \pi} \int_{-\infty}^{\infty} h(r) \omega_{Y}\left(\frac{1}{2}+i r\right) d r-\frac{d(n)}{4} h(0)+o(1)
\end{aligned}
$$

By partial integration, we obtain

$$
\begin{equation*}
h(r)=\frac{1}{r^{4}} \int_{0}^{\infty} g^{(4)}(\ln u) u^{i r-1} d u \tag{3.2}
\end{equation*}
$$

for nonzero r. It follows from (3.2) and partial integration of (1.1) that

$$
\frac{1}{4 \sqrt{n} \pi} \int_{-\infty}^{\infty} h(r) \omega_{Y}\left(\frac{1}{2}+i r\right) d r=o(1)
$$

as $Y \rightarrow \infty$. Then the stated identity holds.

It follows from Lemma 3.3, Lemma 3.4 and the statement concerning (3.1) that

$$
\begin{align*}
& \lim _{Y \rightarrow \infty}\left(c(\infty)_{Y}+\sum_{\{P\}, \Gamma_{P}=\left\{1_{2}\right\}} c(P)_{Y}\right) \\
& =\frac{1}{2} \sum_{\substack{a d=n, d>0 \\
1 \leq b \leq|a-d|}}\left(\frac{\ln \frac{(a-d)^{2}}{(b, a-d)^{2}}}{|a-d|} \sqrt{n} g\left(\ln \frac{a}{d}\right)+\int_{1}^{\infty} k\left(\frac{(a-d)^{2}}{n} t\right) \frac{\ln t}{\sqrt{t-1}} d t\right) \tag{3.3}\\
& +\delta_{n} g(0) \sqrt{n} \ln \frac{\sqrt{n}}{2}+\frac{\sqrt{n}}{4}\left\{\delta_{n}+d(n)\right\} h(0)-\delta_{n} \frac{\sqrt{n}}{2 \pi} \int_{-\infty}^{\infty} h(r) \frac{\Gamma^{\prime}}{\Gamma}(1+i r) d r \\
& +\frac{\sqrt{n}}{4 \pi} \int_{-\infty}^{\infty} h(r) \frac{\varphi^{\prime}}{\varphi}\left(\frac{1}{2}+i r\right) \sum_{a d=n, d>0} a^{i r} d^{-i r} d r .
\end{align*}
$$

Denote by $c(\infty)$ the right side of the identity (3.3). We conclude that the formula (2.3) can be written as

$$
\begin{align*}
& \sum_{d \mid n} d h\left(-\frac{i}{2}\right)+\sqrt{n} h(\kappa) \operatorname{tr} T(n)+\sqrt{n} \sum_{\ell} h(\ell) t_{\ell} \tag{3.4}\\
& =c(I)+\sum_{\{R\}} c(R)+\sum_{\{P\}, \Gamma_{P} \neq\left\{1_{2}\right\}} c(P)+c(\infty)
\end{align*}
$$

for $\operatorname{Re} \sigma>1$, where the summations on the right side of the identity are taken over the conjugacy classes.

Lemma 3.5. The series

$$
\sum_{\{P\}, \Gamma_{P} \neq\left\{1_{2}\right\}} c(P)
$$

represents an analytic function in the half-plane Re $\sigma>0$ except for possible simple poles at $\sigma=1, \frac{1}{2}, \frac{1}{2} \pm i \kappa$ with $\frac{1}{4}+\kappa^{2}$ being taken over all the positive discrete eigenvalues of Δ.

Proof. Write

$$
g^{(4)}(\log u)=A(\sigma) u^{\frac{1}{2}-\sigma}+O_{\sigma}\left(u^{-\frac{1}{2}}\right),
$$

where $A(\sigma)$ is an analytic function of σ for $\operatorname{Re} \sigma>0$ and where $O_{\sigma}\left(u^{-\frac{1}{2}}\right)$ means that, for every complex number σ with $\operatorname{Re} \sigma>0$, there exists a finite constant $B(\sigma)$ depending only on σ such that

$$
\left|O_{\sigma}\left(u^{-\frac{1}{2}}\right)\right| \leqslant B(\sigma) u^{-\frac{1}{2}}
$$

Moreover, for every fixed value of u, the term $O_{\sigma}\left(u^{-\frac{1}{2}}\right)$ also represents an analytic function of σ for $R e \sigma>0$. By (3.2), we have

$$
\begin{aligned}
h(r) & =\frac{1}{r^{4}} \int_{1}^{\infty} g^{(4)}(\ln u)\left(u^{i r}+u^{-i r}\right) \frac{d u}{u} \\
& =\frac{A(\sigma)}{r^{4}} \int_{1}^{\infty} u^{-\frac{1}{2}-\sigma}\left(u^{i r}+u^{-i r}\right) d u+O_{\sigma}\left(\frac{1}{r^{4}} \int_{1}^{\infty} u^{-\frac{3}{2}} d u\right) \\
& =\frac{A(\sigma)}{r^{4}}\left(\frac{1}{\sigma-\frac{1}{2}-i r}+\frac{1}{\sigma-\frac{1}{2}+i r}\right)+O_{\sigma}\left(r^{-4}\right)
\end{aligned}
$$

for $\operatorname{Re} \sigma>\frac{1}{2}$. By analytic continuation, we obtain that

$$
\begin{equation*}
h(r)=\frac{2 A(\sigma)\left(\sigma-\frac{1}{2}\right)}{r^{4}\left[\left(\sigma-\frac{1}{2}\right)^{2}+r^{2}\right]}+O_{\sigma}\left(r^{-4}\right) \tag{3.5}
\end{equation*}
$$

for $\operatorname{Re} \sigma>0$. It follows from (2.1) and the results of [12] that the left side of (3.4) is an analytic function of σ for $\operatorname{Re} \sigma>0$ except for simple poles at $\sigma=1, \frac{1}{2}, \frac{1}{2} \pm i \kappa$ with $\frac{1}{4}+\kappa^{2}$ being taken over all the positive discrete eigenvalues of Δ. Then the right side of (3.4) can be interpreted as an analytic function of σ in the same region by analytic continuation.

It follows from the definition of $k(t)$ and Lemma 3.1 that $c(R)$ is analytic for Re $\sigma>0$ except for simple poles at $\sigma=\frac{1}{2}$. There are only a finite number of elliptic conjugacy classes. The term $c(I)$ is a constant. We have

$$
\begin{equation*}
\frac{\varphi^{\prime}}{\varphi}(s)=2 \ln \pi-\frac{\Gamma^{\prime}}{\Gamma}(s)-\frac{\Gamma^{\prime}}{\Gamma}(1-s)-2 \frac{\zeta^{\prime}}{\zeta}(2 s)-2 \frac{\zeta^{\prime}}{\zeta}(2-2 s) \tag{3.6}
\end{equation*}
$$

when Res $=\frac{1}{2}$. By Stirling's formula the identity

$$
\begin{equation*}
\frac{\Gamma^{\prime}}{\Gamma}(z)=\ln z+O(1) \tag{3.7}
\end{equation*}
$$

holds uniformly when $|\arg z| \leq \pi-\delta$ for a small positive number δ. The expression (3.3) together with (2.1), (3.5), (3.6) and (3.7) implies that $c(\infty)$ is an analytic function of σ in the half-plane $\operatorname{Re} \sigma>0$ except for possible simple poles at $\sigma=$ $1, \frac{1}{2}, \frac{1}{2} \pm i \kappa$ with $\frac{1}{4}+\kappa^{2}$ being taken over all the positive discrete eigenvalues of Δ. Therefore the series

$$
\sum_{\{P\}, \Gamma_{P} \neq\left\{1_{2}\right\}} c(P)
$$

represents an analytic function of σ in the half-plane $\operatorname{Re} \sigma>0$ except for possible simple poles at $\sigma=1, \frac{1}{2}, \frac{1}{2} \pm i \kappa$ with $\frac{1}{4}+\kappa^{2}$ being taken over all the positive discrete eigenvalues of Δ.

4. Proof of the Main Theorem

Lemma 4.1. We have

$$
4^{\tau} \sqrt{\pi n} \frac{\Gamma(i \kappa)}{\Gamma(\tau)} \operatorname{tr} T(n)=\lim _{\sigma \rightarrow \tau}(\sigma-\tau) \sum_{\{P\}, \Gamma_{P} \neq\left\{1_{2}\right\}} c(P)
$$

where the right side is defined as in Lemma 3.5.
Proof. It follows from (3.5) and the results of [12] that

$$
\lim _{\sigma \rightarrow \tau}(\sigma-\tau) \sum_{\ell} h(\ell) t_{\ell}=0
$$

By (3.5), (3.6) and (3.7), we have

$$
\lim _{\sigma \rightarrow \tau}(\sigma-\tau) \int_{-\infty}^{\infty} h(r) \frac{\Gamma^{\prime}}{\Gamma}(1+i r) d r=0
$$

and

$$
\lim _{\sigma \rightarrow \tau}(\sigma-\tau) \int_{-\infty}^{\infty} h(r) \frac{\varphi^{\prime}}{\varphi}\left(\frac{1}{2}+i r\right) a^{i r} d^{-i r} d r=0
$$

where $a d=n$ with $d>0$. The stated identity then follows from (2.2), (3.3), (3.4) and Lemma 3.1.

A quadratic form $a x^{2}+b x y+c y^{2}$, which is denoted by $[a, b, c]$, is said to be primitive if $(a, b, c)=1$ and $b^{2}-4 a c=d \in \Omega$. Two quadratic forms $[a, b, c]$ and [$\left.a^{\prime}, b^{\prime}, c^{\prime}\right]$ are equivalent if an element γ of Γ exists such that

$$
\left(\begin{array}{cc}
a^{\prime} & b^{\prime} / 2 \\
b^{\prime} / 2 & c^{\prime}
\end{array}\right)=\gamma^{t}\left(\begin{array}{cc}
a & b / 2 \\
b / 2 & c
\end{array}\right) \gamma
$$

where γ^{t} is the transpose of γ. This relation partitions the quadratic forms into equivalence classes, and two such forms from the same class have the same discriminant. The number of classes h_{d} of a given discriminant d is finite, and is called the class number of indefinite quadratic forms.

Remark. Siegel [10] proved that

$$
\begin{equation*}
\lim _{d \rightarrow \infty} \frac{\ln \left(h_{d} \ln \epsilon_{d}\right)}{\ln d}=\frac{1}{2} \tag{4.1}
\end{equation*}
$$

Lemma 4.2. We have

$$
\sum_{\{P\}, \Gamma_{P} \neq\left\{1_{2}\right\}} c(P)=c \sqrt{n} \sum_{d \in \Omega, u} \frac{2 h_{d} \ln \epsilon_{d}}{\sqrt{d} u}\left(1+\frac{d u^{2}}{4 n}\right)^{\frac{1}{2}-\sigma}
$$

for Re $\sigma>1$, where the summation on u is taken over all the positive integers u which together with t are integral solutions of the equation $t^{2}-d u^{2}=4 n$. The series on the right side of the identity converges absolutely for $\operatorname{Re} \sigma>1$.

Proof. Let

$$
P=\frac{1}{\sqrt{n}}\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)
$$

be a hyperbolic element of Γ^{*} such that $\Gamma_{P} \neq\left\{1_{2}\right\}$. Then fixed points r_{1}, r_{2} of P are not cusps of Γ. This implies that Γ_{P} is the subgroup of Γ consisting of hyperbolic transformations with r_{1}, r_{2} as fixed points. Define $[a, b, c]$ to be the primitive quadratic form such that r_{1}, r_{2} are the roots of the equation $a r^{2}+b r+c=0$. By Sarnak [7], the subgroup Γ_{P} consists of matrices of the form

$$
\left(\begin{array}{cc}
\frac{v-b u}{2} & -c u \\
a u & \frac{v+b u}{2}
\end{array}\right)
$$

with $v^{2}-d u^{2}=4$ and is generated by the primitive hyperbolic element

$$
P_{0}=\left(\begin{array}{cc}
\frac{v_{0}-b u_{0}}{2} & -c u_{0} \\
a u_{0} & \frac{v_{0}+b u_{0}}{2}
\end{array}\right)
$$

where the pair $\left(v_{0}, u_{0}\right)$ is the fundamental solution of Pell's equation $v^{2}-d u^{2}=4$. Since P and P_{0} have the same fixed points, we have $A=D-b C / a$ and $B=-c C / a$. Since P belongs to Γ^{*} and $A D-B C=n, C$ satisfies the equation

$$
\left\{\begin{array}{l}
a D^{2}-b D C+c C^{2}=n a \tag{4.2}\\
a \mid C
\end{array}\right.
$$

Let λ_{P} be an eigenvalue of P. Then

$$
\begin{equation*}
\lambda_{P}-\frac{1}{\lambda_{P}}= \pm \frac{C \sqrt{d}}{a \sqrt{n}} \tag{4.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda_{P}+\frac{1}{\lambda_{P}}=\frac{1}{\sqrt{n}}\left(2 D-\frac{b}{a} C\right) . \tag{4.4}
\end{equation*}
$$

Conversely, let a pair (C, D) be a solution of the equation (4.2). Define

$$
A=D-\frac{b}{a} C
$$

and

$$
B=-\frac{c}{a} C
$$

Then the matrix

$$
P=\frac{1}{\sqrt{n}}\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)
$$

has the same fixed points as P_{0}, and eigenvalues of P satisfies the identity (4.3). We have the decomposition

$$
P=\frac{1}{\sqrt{n}}\left(\begin{array}{cc}
\frac{n}{(D, C)} & -\frac{c}{a} \alpha C-\left(D-\frac{b}{a} C\right) \beta \\
0 & (D, C)
\end{array}\right) \sigma \cdot \sigma^{-1}\left(\begin{array}{cc}
\alpha & \beta \\
C /(D, C) & D /(D, C)
\end{array}\right)
$$

where α and β are integers such that

$$
\alpha D-\beta C=(D, C)
$$

and where $\sigma=\left(\begin{array}{cc}1 & * \\ 0 & 1\end{array}\right) \in \Gamma$ is chosen so that

$$
\left(\begin{array}{cc}
n /(D, C) & * \\
0 & (D, C)
\end{array}\right) \sigma=\left(\begin{array}{cc}
n /(D, C) & -s \\
0 & (D, C)
\end{array}\right)
$$

with $0 \leq s<n /(D, C)$. Therefore, P belongs to Γ^{*}.
Let P_{0}^{\prime} be the primitive hyperbolic element of Γ corresponding to $\left[a^{\prime}, b^{\prime}, c^{\prime}\right]$. Since the identity

$$
\left(\begin{array}{cc}
v_{0} / 2 & 0 \\
0 & v_{0} / 2
\end{array}\right)+u_{0}\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \gamma^{t}\left(\begin{array}{cc}
a & b / 2 \\
b / 2 & c
\end{array}\right) \gamma=\gamma^{-1} P_{0} \gamma
$$

holds for every element γ of Γ, two forms $[a, b, c]$ and $\left[a^{\prime}, b^{\prime}, c^{\prime}\right]$ of the same discriminant are equivalent if, and only if, an element γ of Γ exists such that $\gamma^{-1} P_{0} \gamma=P_{0}^{\prime}$. For a given discriminant d, let C be a solution of the equation (4.2). Then the quotient $C /|a|$ depends only on the equivalence classes $\{[a, b, c]\}$ by the identity (4.3). Let \mathcal{F} be the set of all the pairs $\left(\left\{P_{0}\right\}, C\right)$, where d belongs to Ω and where C satisfies the equation (4.2) with $[a, b, c]$ being a representative of its equivalence class. Then an one-to-one correspondence exists between \mathcal{F} and the set of all conjugacy classes of hyperbolic elements of Γ^{*} whose fixed points are not cusps of Γ.

It follows from (2.1) and Lemma 3.2 that

$$
\sum_{\{P\}, \Gamma_{P} \neq\left\{1_{2}\right\}} c(P)=c \sqrt{n} \sum \frac{2 \ln \epsilon_{d}}{\sqrt{d} \frac{|C|}{|a|}}\left(1+\frac{d C^{2}}{4 n a^{2}}\right)^{\frac{1}{2}-\sigma}
$$

where the summation is taken over the set of all the pairs $\left(\left\{P_{0}\right\}, C\right)$ in \mathcal{F}. Define $v=2 D-b \frac{C}{a}$ and $u=\frac{C}{a}$. Then the equation (4.2) becomes

$$
\begin{equation*}
v^{2}-d u^{2}=4 n \tag{4.5}
\end{equation*}
$$

Moreover, we have

$$
\frac{1}{\sqrt{n}}\left(\begin{array}{ll}
A & B \tag{4.6}\\
C & D
\end{array}\right)=\frac{1}{\sqrt{n}}\left(\begin{array}{cc}
\frac{v-b u}{2} & -c u \\
a u & \frac{v+b u}{2}
\end{array}\right) .
$$

It follows that the stated identity holds.
Two solutions (v, u) and $\left(v^{\prime}, u^{\prime}\right)$ of the equation (4.5) are said to be equivalent if

$$
v^{\prime}+u^{\prime} \sqrt{d}=(v+u \sqrt{d}) \epsilon_{d}^{q}
$$

for some integer q. This relation partitions all the solutions of (4.5) into equivalence classes. Denote by J_{d} the number of such equivalence classes. Assume that $T_{1}=$ $\frac{1}{\sqrt{n}}\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right) \gamma_{1}$ and $T_{2}=\frac{1}{\sqrt{n}}\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right) \gamma_{2}$ with γ_{i} in Γ are of the form (4.6). Since T_{1} and T_{2} have the same two distinct fixed points, they commute with each other. This implies that $\gamma_{1}^{-1} \gamma_{2}$ commutes with T_{1}. It follows that $\gamma_{1}^{-1} \gamma_{2}$ is a power of the primitive hyperbolic element P_{0}. Since T_{1}, T_{2} and P_{0} can be diagonalized simultaneously, by using (4.3) and (4.4) we see that the eigenvalue of T_{1} differs from that of T_{2} by a power factor of ϵ_{d}. Therefore, for fixed integers a, b, d with $a d=n, 0 \leqslant b<d$, the eigenvalues of elements in Γ^{*} of the form $\frac{1}{\sqrt{n}}\left(\begin{array}{cc}d & -b \\ 0 & a\end{array}\right) \gamma$, $\gamma \in \Gamma$, and of the form (4.6) corresponds to one equivalence class of solutions of (4.5). It follows from the statement given at the beginning of the second paragraph in section 2 that $J_{d} \leq \sum_{c \mid n} c$. An unique solution $\left(v_{j}, u_{j}\right)$ of the equation (4.5) with $v_{j}, u_{j}>0$ exists in each equivalence class such that $2 \sqrt{n} \lambda_{j}=v_{j}+u_{j} \sqrt{d}$ is the smallest among all the positive solutions of the equivalence class for $j=1, \cdots, J_{d}$. Then all the solutions of the equation (4.5) with $v, u>0$ are given by

$$
\left\{\begin{array}{l}
\frac{u \sqrt{d}}{\sqrt{n}}=\lambda_{j} \epsilon_{d}^{q}-\lambda_{j}^{-1} \epsilon_{d}^{-q} \tag{4.7}\\
\frac{v}{\sqrt{n}}=\lambda_{j} \epsilon_{d}^{q}+\lambda_{j}^{-1} \epsilon_{d}^{-q}
\end{array}\right.
$$

for all nonnegative integers q and for $j=1, \cdots, J_{d}$. It follows from (4.1) that

$$
\sum_{d \in \Omega, u} \frac{h_{d} \ln \epsilon_{d}}{\sqrt{d} u}\left(1+\frac{d u^{2}}{4 n}\right)^{\frac{1}{2}-\sigma} \ll \sum_{d \in \Omega, u} d^{\frac{1}{2}+\epsilon-\sigma} u^{-2 \sigma}=S_{1}+S_{2}
$$

for a small positive number ϵ when $\sigma>1$, where

$$
S_{1}=\sum_{d \in \Omega, u<\sqrt{d}}\left(d u^{2}\right)^{\frac{1}{2}+\epsilon-\sigma} u^{-1-2 \epsilon}
$$

and

$$
S_{2}=\sum_{d \in \Omega, u>\sqrt{d}} d^{\frac{1}{2}+\epsilon-\sigma} u^{-2 \sigma} .
$$

If two distinct integers d and d^{\prime} of Ω are square free, then the equation (4.5) implies that

$$
\min _{1 \leq j \leq J_{d}} v_{j} \neq \min _{1 \leq j \leq J_{d^{\prime}}} v_{j}^{\prime}
$$

where $v_{j}^{\prime}, j=1, \cdots, J_{d^{\prime}}$, correspond the equation ${v^{\prime}}^{2}-d^{\prime} u^{\prime 2}=4 n$ similarly as the above. Then the inequality

$$
S_{1} \ll \sum_{\substack{d \in \Omega \\ d \text { square free }}}\left(\min _{1 \leq j \leq J_{d}} v_{j}\right)^{1+2 \epsilon-2 \sigma} \sum_{j=1}^{J_{d}} \sum_{l=1}^{\infty}\left(l^{2} u_{j}\right)^{-1-2 \epsilon} \ll \sum_{v=1}^{\infty} v^{1+2 \epsilon-2 \sigma}<\infty
$$

holds for $\sigma>1$. Since $J_{d} \leq \sum_{d \mid n} d$, it follows from (4.7) that

$$
S_{2} \ll \sum_{d=1}^{\infty} d^{\frac{1}{2}+\epsilon-2 \sigma}<\infty
$$

for $\sigma>1$. Therefore the series on the right side of the stated identity converges absolutely for $\operatorname{Re} \sigma>1$.

Proof of the Main Theorem. An argument similar to the estimation of terms S_{1} and S_{2} in the proof of Lemma 4.2 shows that

$$
\sum_{d \in \Omega, u} \frac{h_{d} \ln \epsilon_{d}}{\sqrt{d} u}\left(1+\frac{d u^{2}}{4 n}\right)^{\frac{1}{2}-\sigma}-\sum_{d \in \Omega, u} \frac{h_{d} \ln \epsilon_{d}}{\left(d u^{2}\right)^{\sigma}} \ll \sum_{d \in \Omega, u} \frac{\left(d u^{2}\right)^{\frac{1}{2}+\epsilon-1-\sigma}}{u^{1+2 \epsilon}}<\infty
$$

for $\sigma>0$. It follows from Lemma 4.2 that

$$
\begin{equation*}
\lim _{\sigma \rightarrow \tau}(\sigma-\tau) \sum_{\{P\}, \Gamma_{P} \neq\left\{1_{2}\right\}} c(P)=\frac{(4 \pi)^{\frac{1}{2}} \Gamma(i \kappa)}{(4 n)^{-\tau} \Gamma(\tau)} \lim _{\sigma \rightarrow \tau}(\sigma-\tau) \sum_{d \in \Omega} \frac{h_{d} \ln \epsilon_{d}}{d^{\sigma}} \sum_{u} u^{-2 \sigma} \tag{4.8}
\end{equation*}
$$

Lemma 3.5 shows that the function on the right side of (4.8) represents an analytic function of σ in the half-plane $\operatorname{Re} \sigma>0$ except for possible simple poles at $\sigma=$ $1, \frac{1}{2}, \frac{1}{2} \pm i \kappa$ with $\frac{1}{4}+\kappa^{2}$ being taken over all the positive discrete eigenvalues of Δ. Then the stated identity follows from Lemma 4.1.

This completes the proof of the theorem.
Remark. It is conjectured that $|\operatorname{tr} T(p)| \leqslant 2$ for every prime number p.

References

1. P. Deligne, Formes modulaires et représentations ℓ-adiques, Lecture Notes in Math. no. 179, Springer-Verlag, New York, 139-172 (1971).
2. D. A. Hejhal, The Selberg trace formula and the Riemann zeta function, Duke Math. J. 43 (1976), 441-482.
3. D. A. Hejhal, The Selberg Trace Formula for $\operatorname{PSL}(2, \mathbb{R})$, Volume 2, Lecture Notes in Math. no. 1001, Springer-Verlag, New York, 1983.
4. Y. Ihara, Hecke polynomials as congruence ζ functions in elliptic modular case, Ann. of Math. 85 (1967), 267-295.
5. T. Kubota, Elementary theory of Eisenstein series, Halsted Press, New York, 1973.
6. N. V. Kuznecov, Petersson's conjecture for cusp forms of weight zero and Linnik's conjecture, Math. USSR Sbornik 39 (1981), 299-342.
7. P. Sarnak, Class numbers of indefinite binary quadratic forms, J. Number Theory 15 (1982), 229-247.
8. A. Selberg, Harmonic analysis and discontinuous groups on weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc. 20 (1956), 47-87.
9. G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Princeton Univ. Press, 1971.
10. C. L. Siegel, Über die Classenzahl quadratischer Zahlkörper, Acta Arith. 1 (1935), 83-86.
11. C. L. Siegel, Lectures on Advanced Analytic Number Theory, Tata Institute of Fundamental Research, Bombay, 1961.
12. A. B. Venkov, Remainder term in the Weyl-Selberg asymptotic formula, J. Soviet Math. 17 (1981), 2083-2097.
13. G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge Univ. Press, 1952.

Department of Mathematics, The University of Texas at Austin, Austin, Texas 78712 USA

E-mail address: xianjin@math.utexas.edu

