ON THE TRACE OF HECKE OPERATORS FOR MAASS FORMS

XTAN-JIN LI

ABSTRACT. The trace of the Hecke operator T'(n) acting on a Hilbert space of func-
tions spanned by the eigenfunctions of the Laplace-Beltrami operator with a positive
eigenvalue is computed, which can be considered as the analogue of Eichler-Selberg’s
trace formula for non-holomorphic cusp forms of weight zero.

1. INTRODUCTION

Denote by I' the group PSLs(Z). The Laplace-Beltrami operator A on the upper

half-plane H is given by
5 [ O 0?
A=— — + = .
v <8x2 i ay?)

Define D to be a fundamental domain of I', which contains the points z = x + iy
with 0 < z < 1 and |z — 3| > 1. Eigenfunctions of the discrete spectrum of A are
nonzero real-analytic solutions of the equation

A =\

such that 1 (yz) = 1 (z) for all v in " and such that

[ )Pz < oc

where dz represents the Poincaré measure of the upper half-plane.
The Hecke operators T'(n), n = 1,2,---, which act in the space of automorphic
functions with respect to I', are defined by

TNE=o= 2 f(“z;b).

ad=n,0<b<d

An orthogonal system of eigenfunctions of A exists [6] such that each of them is an
eigenfunction of all the Hecke operators. Let A be a positive discrete eigenvalue of
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A. Then A > ;. If ¢(z) is such an eigenfunction of A with a positive eigenvalue A,
then

V() =y Y p(m) K (2m|mly)e(ma)

m#Q0

where £ = y/A — 1 and where K, (y) is given by the formula §6.32, [13]

_2T(w+3) [ cos(yt)
Ky(y) - yyﬁ /(; (1+t2)y+%

If ¢(z) is normalized so that p(1) = 1, then the identity [6]

(T(n)y) (2) = p(n)3(2)

holds for all positive integers n. The Petersson-Ramanujan conjecture for non-
holomorphic cusp forms of weight zero says that the inequality

lp(n)| < d(n)

holds for all positive integers n, where d(n) denotes the number of divisors of n.
Let &£\ be a Hilbert space of functions spanned by the eigenfunctions of A with a
positive eigenvalue A\. The inner product of the space is given by

(F(z),G(z))z/DF(z)C_?(z)dz. (1.2)

The Eichler-Selberg trace formula [8], p.85 is a useful formula for studying holomor-
phic modular forms of integral weights (cf. Deligne [1] and Thara [4]). The analogue
of Eichler-Selberg’s trace formula for non-holomorphic cusp forms of weight zero is
obtained in the Main Theorem, whose proof is given in section 4. In particular,
the trace trT(n) of Hecke operators acting on the space £, is computed, and the
computation is already implicit in Hejhal [2].

Write 7 = % +1k. Denote by hg the class number of indefinite rational quadratic
forms with discriminant d. Define

Vg + Uo\/a
2

€d (1.3)

where the pair (vg, ug) is the fundamental solution [11] of Pell’s equation v? — du? =
4. Denote by €2 the set of all the positive integers d such that d =0 or 1 (mod 4)
and such that d is not a square of an integer.
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Main Theorem. Define

for Reo > 1, where the summation on wu is taken over all the positive integers u
which together with t are the integral solutions of the equation t*> — du® = 4n. Then

trT(n) = 2n"* Resy—r Ly, (0)

for every positive integer n, where L, (o) is an analytic function of o for Reo > 1
and can be extended by analytic continuation to the half-plane Reo > 0 except for
possible simple poles at o =1, %, % + ik with % + K2 being taken over all the positive
discrete eigenvalues of the Laplace-Beltrami operator for the modular group.

2. TRACE FORMULA

Let o be a complex number with Reo > 1. Define

and

/|12
k(z, 2 :k(u),
(2,2") o

for z = x +iy and 2’ = 2’ + 4y’ in the upper half-plane. Then k(mz, mz’') = k(z,2’)
for every 2 x 2 matrix m of determinant one with real entries. The kernel k(z, 2’)
is of (a)-(b) type in the sense of Selberg [8], p.60. Let

o) = [ k)2

Then

o) = Vi [ (e o — e (2.1)

where ¢ = 2y/7'(c — $)I'"!(0). Since

1 o0 1 1 .
h(r) = c4°"2 / (u+ —+2)27 %" du
0 U
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for Reo > %, by computation we find that

lim (o — 7)h(r) =

o—T

47\/?%, for r = +k;
0, for r # +k.

Define
. 1 (d —b
I =Vsgon 72 (0 a )F'

Then T belongs to I'* whenever v € I' and T" € T'*. Every element of I'* is
represented uniquely in the form
1 (fd —-b
= Y
Vvn\0 a

with ad =n, 0 < b < d and v € I". It follows that I'* satisfies all the requirements
given in [8], p.69. The Eisenstein series is given by

S

E(z,s):% Z Y

(D lcz + d|?s

for z in the upper half-plane when Re s > 1. Define

K(z,7') = Z k(z,Tz"

Tel™

and

1 [ 1 1
H(z,2') = Z yym / h(r)E(aZ; b, 5 +ir)E (2, 5~ ir)dr.
ad=n,0<b<d —0°

Let ¢ be a positive number such that % + (2 is a discrete eigenvalue of A distinct
from A. Denote by t;, the trace of the Hecke operator T'(n) acting on the space
€11 It follows from (2.14) of [8], the argument of [5], pp.96-98, Theorem 5.3.3

of [5], and the spectral decomposition formula (5.3.12) of [5] that

> dh(—%) + Vnh(R)trT(n) +v/n > h(0)t, = /D {K(z,2) — H(z,2)}dz (2.3)
V4

d|n

for Reo > 1, where the summation is taken over all distinct positive numbers ¢ not
equal to k such that % + ¢2 is a discrete eigenvalue of A.
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3. EVALUATION OF COMPONENTS OF THE TRACE

For every element T of I'*, denote by I'7 the set of all the elements of I' which
commute with 7. Put Dy = TI'p\'H. The elements of I'* can be divided into
four types, of which the first consists of the identity element, while the others are
respectively the hyperbolic, the elliptic and the parabolic elements. If T is not a
parabolic element, put

o(T) = /D ke T2

3.1. The identity component.
If I'* contains the identity element I, then

™
I)=—-.

(n=1

3.2. Elliptic components.
There are only a finite number of elliptic conjugacy classes.

Lemma 3.1. Let R be an elliptic element of I'*. Then

c(R

o /°° LON
2msinG Jo /i1 asin20

where m represents the order of a primitive element of I'r and where 0 is defined
by the formula trace(R) = 2 cos 6.

Proof. Since R is an elliptic element of I'*, an element 7 exists in SLy(R) such that

nRy~! = (cos& —sm@) _B

sinf cos@

for some real number 0 < § < m. Denote by (nI'n~!) 5 the set of all the elements of
nI'n~! which commute with R. We have

where Dy = (nI'n™) 5\ H.

Let v = (: ?) be an element of I' which has the same fixed points as R = (Z Z).
Then (o — §)c = v(a — d) and Bc = ~b. It follows that v commutes with R. By
Proposition 1.13 of [9], a primitive elliptic element o of I exists such that (nI'n~1) 5

1

is generated by nyon~!. Since nyyn~! commutes with }N%, it is of the form

cosbfy —sinf
sinfyg  cosfty
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for some real number 6. By Proposition 1.16 of [9], 6y = 7/m for some positive
integer m. In fact, m = 2 or 3. It follows from the argument of [5], p.99 that

m// <|Z+ 81n2€>dz.

By the argument of [5], p.100 we have

c¢(R) = 7T, ——dt
2msing Jo  \/t + 4sin%0

3.3. Hyperbolic components.
Let P be a hyperbolic element of I'*. Then an element p exists in SLy(R) such
that

O

- Ap O =~
0 Ap'

with Ap > 1. The number A% is called the norm of P and will be denoted by N P.
It follows that

c(P) :/~k(z,NPz)dz

5
where Dy = (pI'p~ 1) 5\ H.

Lemma 3.2. Let P be a hyperbolic element of T'* such that T'p # {12}. If Py is a
primitive hyperbolic element of I' which generates the group I'p, then

In N By
(NP)1/2 — (NP)-1/27

o(P) = (InNP).

Proof. An argument similar to that made for the elliptic elements shows that every
element of I', which has the same fixed points as P, commutes with P. Because
pPop~! commutes with P, it is of the form

Ap, 0
0 Ap

for some real number Ap, > 1. Then

NP, 2 2
0 d —
/ 3// ( - 1) |2’2 )dx_
Y

The stated identity follows.

Let Y be a large positive number. Define
Dy ={zeD:Imz<Y}.

Z’YDY

where the summation is taken over all elements v of I'. Write

c(P)y = / k(z, Pz)dz.
(Dy)p

Denote by (Dy)p the set
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Lemma 3.3. Let P be a hyperbolic element of I'* such that T'p = {15}. Then

In QY—p
APy = rypyr ypad(n NP

> 1 Int
+ E{(NP+ — —2)t | —=dt +o(1
[ r( 0P g =2t e o)
where the term o(1) has a limit zero as Y — oo and where p is defined in the proof.

Proof. Since I'p = {15}, the fixed points of P are cusps of I" by Proposition 1.13
of [9]. Since cusps of I" are exactly the points in QU {oo}, an element « of I" exists
such that (co0) is one of the fixed points of P. Since ¢(P) depends only on the
conjugacy class {P} represented by P, the element P can be replaced by vy~ 1P~y
without changing the value of ¢(P). Thus, P can be chosen in its conjugacy class

to be of the form
1 ofah
vn\0 d

with 1 <b < |a —d|. Let a, b and d be positive integers. Define

b
o= -—-"
(b7 |CL - d|)
and
Y= d—a
(b, la—d])
Then integers § and § exist such that
ad — [y =1.

Let by = 6(b, |a — d|). Write

(%)
o3 Dam (i)

It follows that elements of the form

We have

1
%(g Z):ad:n,0<d<a,1§b§a—d (3.1)

constitute a complete set of representatives for the conjugacy classes of hyperbolic
elements of I'* whose fixed points are cusps of T'.

Let
_(p T
7_(q 8)
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be an element of I'. The linear fractional transformation, which takes every complex
z in the upper half-plane into v(z), maps the horizontal line I 2z =Y into a circle

. 1 . P i
of radius T2V with center at g T v Let

1
— a—d
(s )

c¢(P)y = / k(z, gz)dz.
n{(Dy)r}

Let v is an element of I" such that (uy)(o0) = 0. Then the linear fractional trans-
formation, which takes every complex z in the upper half-plane into (uv)(z), maps
the horizontal line I'm z =Y into a circle of radius p with center at pi, where

Then

B (b,a — d)?
P= 2Y (a — d)?’

It follows that

c<P>y=/Oﬁde Y/Sinek(<“‘d>2) I o)

2psin 0 nsin?6 ) rsin?6
¢

_ /1001<; ((“ ;d)2t> l\r;iz_Ll)dHou)

where o(1) has a limit zero when Y — oo. The identity

nin 3 a o0 a—d)? n
C(P)y:%g(lna)-l-/l k(( nd) t) \/%dt-l-o(l)

holds when ad =n,0<d<aand 1 <b<a—-d. O

3.4. Parabolic components.

Let S be a parabolic element of I'*. An argument similar to that made for the
elliptic elements shows that every element of I' which has the same fixed point as .S
commutes with S. Since the cusps of I" are exactly the points in QU {oc}, it follows
from Proposition 1.17 of [9] that an element v of I' exists such that

_ 1 b
vIlgr 1:{(0 1):b€Z}.

Since vSv~! commutes with every element of vT'gv !, it is of the form

7ilh o)
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for some integers a and b. It follows that I'* has parabolic elements only if n is the
square of an integer. Furthermore, elements of the form

((1) Wﬁ), 0#£beZ

constitute a complete set of representatives for the conjugacy classes of parabolic
elements of I'*. If n is the square of an integer, then co is the only cusp of I'* up
to I'-equivalence. Define §,, to be one if n is the square of an integer and to be zero
otherwise.

Lemma 3.4. Put

c(c0)y = o, /OY /01 Z k(z,z + %)dz - H(z, z)dz.

0#£bETZ Dy
Then
c(oo)y \/ﬁ (5n—|—d(n)
= pln—+ ———"h
S =06 G 4+ R0
a 677, oo F/

| HoIn il ;

nY E g(lnd) 5 /_OO h(r)r(l—l—zr)dr
ad=n,a#d>0

L T Ed N @ dr + o(1)

) r 52 i a r+o(l).

ad=n,d>0

Proof. By the argument of [5], pp.102-106 we have
1 /Y ! b
- k(z,z + —=)dz
vn o Jo O;‘;ez Vn

= g(0)In(v/nY) — L /00 h(r)FF/(l +ir)dr — ¢(0)In2 + %h(()) +o(1).

2m J_

If

then
E(z,8) =y* 4+ o(s)y"° +7(z,5)

for z = x 4+ iy with y > 0, where

r(2,5) = 2/ T(s) " > "2 o (s) K1 (2|mlmy)e(ma)
m#Q0
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and
dl 2s

=2

By the functional identity of the Riemann zeta function ((s), we have |¢(s)| =1
for Re s = 1/2. It follows from Theorem 2.3.3 of [5] that

/D Z E(azg_b,s) E(z,5)dz

ad=n,0<b<d

Ys+§fl . 2ylfsf§ s stg o Ygfs
— Z asdl—s ( - _J_i(s_)’l + 90(8) — f(s) ) + wy(s)

ad=n,d>0

for Res > % with s not equal to one, where

Z // r(z,g)]r(a'z;—b,s)dzgy.

ad=n
0<b<d

The argument of [5], p.107 shows that

% . H(z, z)dz
_ Y N a;na“”d dr — ﬁ h h( )%(% + o adzjna”d dr
=0 >0
- 4\/157r /_O; h(r)wy(% +ir)dr — @h(O) + o(1).
By partial integration, we obtain
h(r) = r%/ooo g (Inw)u " du (3.2)

for nonzero r. It follows from (3.2) and partial integration of (1.1) that

1
4/nm

/_00 h(r)wy(% +ir)dr = o(1)

as Y — oco. Then the stated identity holds. [
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It follows from Lemma 3.3, Lemma 3.4 and the statement concerning (3.1) that

lim | c(o0)y + Z c(P)y

Y —oo
{P}I'p={12}
(a—d)*
1 In 1 ba—d)? /°° ((a—d)2> Int
= — 1 k t dt
5 Dl w Vng(In - ) 1 - —
ad=n,d>0 (33)
1<b<|a_d|

+ ,9(0 )\/_ln\/7_+£{5 +d(n)}th \/—/ 1+zr)d

()0 . o
—(= —l—zr a"d="dr.
L2 [CunEgan ¥

ad=n,d>0

Denote by ¢(oco) the right side of the identity (3.3). We conclude that the formula
(2.3) can be written as

Zdh — +\/_h( )trT'(n +\/_Zh

d|n

D+Y e+ D eP)+c(0)

{R} {P},Tp#{l2}

(3.4)

for Re o > 1, where the summations on the right side of the identity are taken over
the conjugacy classes.

Lemma 3.5. The series

Y, P

{P}, Tp#{12}

represents an analytic function in the half-plane Re o > 0 except for possible simple
poles at o = 1, é,é + ik with 1 + k2 being taken over all the positive discrete
eigenvalues of A.

Proof. Write
g (logu) = A(o)u* 7 + Oq (u™%),
where A(0) is an analytic function of o for Reo > 0 and where O, (u™%) means

that, for every complex number o with Re o > 0, there exists a finite constant B(o)
depending only on o such that
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Moreover, for every fixed value of u, the term O, (u_%) also represents an analytic
function of o for Reo > 0. By (3.2), we have

1 du

h(r) = r_4/1 g (Inw)(u'" + u_ir);

_ A(U) > R —ir 1 OO f%
= —1 /1 u (u'" +u"")du + O, (7“_4/1 u du)
_ Al) ( L] ) + 0, (r%)

4 _1_ _1 ;
r o 5 T o 2+zr

for Re o > L. By analytic continuation, we obtain that
2

Tf[é(‘i) (;2_522] +0,(r%) (3.5)

h(r) =

for Reo > 0. It follows from (2.1) and the results of [12] that the left side of (3.4)
is an analytic function of o for Re o > 0 except for simple poles at o = 1, %, % + ik
with i + k2 being taken over all the positive discrete eigenvalues of A. Then the
right side of (3.4) can be interpreted as an analytic function of o in the same region
by analytic continuation.

It follows from the definition of k(¢) and Lemma 3.1 that ¢(R) is analytic for
Reo > 0 except for simple poles at o = % There are only a finite number of

elliptic conjugacy classes. The term c¢(I) is a constant. We have

(’0/ F/ F/ CI C/
—(s)=2Inm— —=(s) — =(1—s) —2=>-(25) —2=>-(2 — 25 3.6
~ ) SO - F-9 -2t 25e-2) (39
when Res = % By Stirling’s formula the identity
F/
F(z) =Inz+0O(1) (3.7)

holds uniformly when |arg z| < 7 —§ for a small positive number 6. The expression
(3.3) together with (2.1), (3.5), (3.6) and (3.7) implies that c¢(co) is an analytic
function of ¢ in the half-plane Reo > 0 except for possible simple poles at o =
1, %, % + ik with % + k2 being taken over all the positive discrete eigenvalues of A.
Therefore the series

Z c(P)

{P},Tp#{12}

represents an analytic function of ¢ in the half-plane Reo > 0 except for possible
simple poles at 0 =1, %, % + 1k with i + k2 being taken over all the positive discrete
eigenvalues of A.
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4. PROOF OF THE MAIN THEOREM

Lemma 4.1. We have

47\/7%?((13) trT'(n) = lim (o0 — 1) Z c(P)

o (P}, Tr#{ls}

where the right side is defined as in Lemma 3.5.

Proof. 1t follows from (3.5) and the results of [12] that
lim (o — ) Z h(€)t, = 0.
¢
By (3.5), (3.6) and (3.7), we have

oo 1’1/
lim (o — 7) / h(r)F(l +ir)dr =0

and

: OO gpl 1 . wr g—1ir
lim (o — 1) h(r);(i +ir)a*"d="dr = 0,

— 00

where ad = n with d > 0. The stated identity then follows from (2.2), (3.3), (3.4)
and Lemma 3.1. O

A quadratic form az? + bxy + cy?, which is denoted by [a, b, c], is said to be
primitive if (a,b,c¢) = 1 and b* — dac = d € Q. Two quadratic forms [a, b, c] and
[a', b, '] are equivalent if an element v of T" exists such that

(b’a//Q b/c/'2> =7 (b72 bf) o

where ~¢ is the transpose of 4. This relation partitions the quadratic forms into
equivalence classes, and two such forms from the same class have the same discrim-
inant. The number of classes hy of a given discriminant d is finite, and is called the
class number of indefinite quadratic forms.

Remark. Siegel [10] proved that

lim In(hglneqs) 1

= —. 4.1
d—oo Ind 2 ( )
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Lemma 4.2. We have

2hdlned du2 1_
S dpimevi Y el A
(P}, rp¢{12} deQu Vo in

for Reo > 1, where the summation on u s taken over all the positive integers u
which together with t are integral solutions of the equation t*> —du? = 4n. The series
on the right side of the identity converges absolutely for Reo > 1.

Proof. Let
1 (A B
P_W<C D)

be a hyperbolic element of I'* such that I'p # {15}. Then fixed points r1, r5 of P are
not cusps of I'. This implies that I'p is the subgroup of I' consisting of hyperbolic
transformations with ry, 7o as fixed points. Define [a,b,c| to be the primitive
quadratic form such that ri, 7o are the roots of the equation ar? + br + ¢ = 0. By
Sarnak [7], the subgroup I'p consists of matrices of the form

v—bu
v+bu
au 2

with v? — du? = 4 and is generated by the primitive hyperbolic element
’Uo*b’do
2M0 —cuy
Py = ( CHQL vo+bug )
0 2

where the pair (vg,ug) is the fundamental solution of Pell’s equation v? — du? = 4.
Since P and Py have the same fixed points, we have A = D—bC'/a and B = —cC'/a.
Since P belongs to I'* and AD — BC' = n, C satisfies the equation

{ aD? —bDC + c¢C? = na (4.9)
alC.
Let Ap be an eigenvalue of P. Then
1 cvd
Ap—— ==+ 4.
P \p a\/ﬁ ( 3)
and . . )
Ap+ — = (2D — =0). (4.4)

)\p % a

Conversely, let a pair (C, D) be a solution of the equation (4.2). Define

a=p-Lc
a
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and c
B=—-C.
a

vl n)

has the same fixed points as Py, and eigenvalues of P satisfies the identity (4.3).
We have the decomposition

r= G (T T ) (b pibe)

where o and [ are integers such that

Then the matrix

aD — pC = (D,C)

and where o = <(1) ’1‘) € I' is chosen so that
n/(D,C) * _ (n/(D,C) —5
0o (D,0))7 " 0 (D.C)

with 0 < s <n/(D,C). Therefore, P belongs to I'*.
Let P} be the primitive hyperbolic element of I" corresponding to [a’, ¥, ¢/]. Since
the identity

vo/2 0 0 =1\ ;( a b/2 o
( 0 v0/2> +“0<1 0 )7 (b/2 c )7_7 Foy
holds for every element v of I', two forms [a, b, c| and [a, b, ¢] of the same discrimi-
nant are equivalent if, and only if, an element v of I" exists such that y =1 Pyy = P,
For a given discriminant d, let C be a solution of the equation (4.2). Then the quo-
tient C'/|a| depends only on the equivalence classes {[a, b, ]} by the identity (4.3).
Let F be the set of all the pairs ({ Py}, C), where d belongs to € and where C sat-
isfies the equation (4.2) with [a, b, ¢] being a representative of its equivalence class.
Then an one-to-one correspondence exists between F and the set of all conjugacy
classes of hyperbolic elements of I'* whose fixed points are not cusps of IT'.
It follows from (2.1) and Lemma 3.2 that

1
21I16d d02 E
S ey E =
{P},Tp#{12}

where the summation is taken over the set of all the pairs ({FP},C) in F. Define
v=2D —b< and u = <. Then the equation (4.2) becomes

v? — du® = 4n. (4.5)
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Moreover, we have

1 1 [ uzbe
(4 By L (=T ey (4.6)
It follows that the stated identity holds.
Two solutions (v,u) and (v’,u’) of the equation (4.5) are said to be equivalent if

v+ u'Vd = (v +uVd)el

for some integer ¢. This relation partitions all the solutions of (4.5) into equivalence
classes. Denote by J; the number of such equivalence classes. Assume that T7 =

# (g Z) ~v1 and Ty = ﬁ <g 2) ~vo with 7; in ' are of the form (4.6). Since T}

and T, have the same two distinct fixed points, they commute with each other.
This implies that ~; 1vo commutes with Ty. It follows that Y1 1y, is a power of
the primitive hyperbolic element F,. Since 77, 75 and P, can be diagonalized
simultaneously, by using (4.3) and (4.4) we see that the eigenvalue of T differs

from that of Ty by a power factor of ¢;. Therefore, for fixed integers a, b, d with

ad = n, 0 < b < d, the eigenvalues of elements in I'* of the form ﬁ <g _ab) v,

v € I', and of the form (4.6) corresponds to one equivalence class of solutions of
(4.5). It follows from the statement given at the beginning of the second paragraph
in section 2 that Jg < 3., c¢. An unique solution (v;,u;) of the equation (4.5)

with v;,u; > 0 exists in each equivalence class such that 2y/n\; = v; + uj\/g is the
smallest among all the positive solutions of the equivalence class for j =1,--- , Jy.
Then all the solutions of the equation (4.5) with v,u > 0 are given by

ux/E V.04 _\—1l —q
for all nonnegative integers ¢ and for j =1,---,Jy. It follows from (4.1) that
hql
Z d Ilﬁd U ——a<< Z d2+€ Tu :Sl+52
deQu \/E“ deQ,u

for a small positive number € when o > 1, where

Sl _ Z (du2)%—|—e—au—l—2e

deQ,u<d

and .
So = g d2Teoy =29,
deQ,u>Vd
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If two distinct integers d and d’ of 2 are square free, then the equation (4.5) implies
that

min v; # min v;-
1<5<Jyg 1<5<Jy

where v}, j =1,--+, Ja, correspond the equation v’ 2 gt =an similarly as the
above. Then the inequality

S, < Z (lglgljdv JL+2e— 2022 w;) 2€<<Z 142620

deq j=11=1
dsquare free

holds for o > 1. Since Jg <}, d, it follows from (4.7) that

o0
S K Zd%_‘_e_QU < 00
d=1

for o > 1. Therefore the series on the right side of the stated identity converges
absolutely for Reo > 1. O

Proof of the Main Theorem. An argument similar to the estimation of terms S; and
Ss in the proof of Lemma 4.2 shows that

ha lned hy lned (dUZ)%+6—1—U
> \/Eu Z < > uirze =%

deQ,u deQ,u deQ,u

for o > 0. It follows from Lemma 4.2 that

im(o—7) Y. P)= m lim (o — 7) hdcllfj N (4.8)

- {P},Tp#{12} deQ u

Lemma 3.5 shows that the function on the right side of (4.8) represents an analytic
function of o in the half-plane Reo > 0 except for possible simple poles at ¢ =
1, %, ; + ik with & 7+ k2 being taken over all the positive discrete eigenvalues of A.
Then the stated 1dent1ty follows from Lemma 4.1.

This completes the proof of the theorem.

Remark. It is conjectured that |tr7T'(p)| < 2 for every prime number p.
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