Computer Lab Report Form #5: Waves Investigations

Student's Name:	
BU ID	
Lab Section Day/Time/TF	

Investigation 1: Waves on a Cable

1.1 Harmonics

1. Find the wavelength for each of the following harmonics (page 4):

Harmonic number	Wavelength (m)
1	
2	1.0
3	
5	

2. Please, complete the following table (page 5):

harmonic number	n (number of loops)
1	
3	
6	

- 3. Please, write a formula that relates the wavelength of a harmonic mode to its number of loops. Your formula (page 6):
- 4. Check your formula by completing the following table (page 6):

n (number of loops)	λ (m)
2	
3	0.6667
4	0.50
6	
7	

1.2 Definition of the Amplitude of a Wave

Complete the following table for the displayed amplitudes for the indicated normal modes (page 7):

N	A (m)
1	
2	0.10
3	
6	

1.3 Definition of Period of a Wave

Please answer the following question (page 7	ion (page /)	/):
--	---------------	-----

For the fundamental mode the period is T = s.

1.4 Relationship Between Period and Frequency

1. Find the period and frequency for the following harmonics (page 8):

N	T (s)	ν (Hz)
1		
2		
3		
4		

2. What numerical pattern do you detect in the frequencies as a function of the (harmonic) loop number (page 8):

1.5 Dispersion Relationship for Waves on a Cable

1. What properties of a cable determine the speed of a wave on it? (page 9)

2. What is the speed c of a wave on the cable? c = (page 10)

Investigation 2: Energy of Waves on a Cable

1. On the graph space provided below, draw the appearance of the whole length of the cable when it has maximum potential energy (page 14):

2. Please answer whether the velocities of the points of the cable, at the instance of maximum potential energy, are at a minimum or maximum (page 14)? Circle the correct answer below:

at minimum

at maximum

3. On the graph space provided below draw the appearance of the whole length of the cable when it has maximum kinetic energy (page 15):

4. Please answer whether the velocities of the points of the cable, at the instance of maximum kinetic energy, at a minimum or maximum (page 15))? Circle the correct answer below:

at minimum

at maximum

5. Whether or not the energy of the harmonic motion is uniformly distributed over the length of the cable (page 16))?)? Circle the correct answer below:

uniformly

non uniformly

6. Circle the right answer below (page 16):

a) For the n = 1 harmonic, the region with maximum energy density is centered about x = ?

 $0 \, \mathrm{m}$

1/2 m

1/4 m

b) For the n = 4 harmonic, a region with minimum energy density is centered about x = ?

1/8 m

2/3 m

1/4 m

7. Which harmonics are represented on page 18?

$$(left top) n= \quad ; \quad (right top) n= \quad ; \quad left bottom) n= \quad ; \quad (right bottom) n=$$

•

Investigation 3: Harmonics of a Square Membrane

1. Enter the number of loops that you observe for each harmonic in the table. Count the loops in the x and y directions separately (page 22):

Harmonic (x, y)	n _x	n _v
(1, 1)		
(2, 1)		
(4, 1)		
(3, 1)		

2. Enter the number of loops that you observe for each harmonic in the table. Count the loops in the x and y directions separately(page 23):

Harmonic (x, y)	n_x	$\mathbf{n}_{\mathbf{y}}$
(1, 2)		
(1, 4)		
(1, 3)		
(1, 5)		

3. Enter the number of loops that you observe for each harmonic in the table. Count the loops in the x and y directions separately(page 23):

Harmonic (x, y)	n_{x}	n _y
(2,2)		
(3, 4)		
(2,3)		
(5, 2)		

4. How does the frequency of oscillation depend on the number of loops n_x and n_y (page 25)?

5. Write the measured frequency v of oscillation for the following modes (page 25):

$(\mathbf{n}_{\mathbf{x}}, \mathbf{n}_{\mathbf{y}})$	ν (Hz)
(1,1)	
(2,1)	2.24
(2,2)	
(3,4)	
(6,8)	10
(5,12)	

6. Write a formula for the frequency of a harmonic as a function of n_x and n_y ? (page 25)

7. Complete the following table (page 28).

7. Complete the	jouowing tubie (pu	gc 20).		
$(\mathbf{n}_{\mathbf{x}},\mathbf{n}_{\mathbf{y}})$	Δx (m)	Δy (m)	$E(x_0,y_0) \Delta x \Delta y$	E _{Mode} (j)
			(j)	
(1,1)	$x_0 = 0.5, \Delta x =$	$y_0 = 0.5, \Delta y =$		
	0.05	0.05		
(3,1)	$x_0 = 0.3, \Delta x =$	$y_0 = 0.5, \Delta y =$		
	0.05	0.05		
(2,4)	$x_0 = 0.25, \Delta x =$	$y_0 = 0.375, \Delta y$ = 0.05		
	0.05	= 0.05		

8. Complete the following table (page 29).

Mode 1 (n _{x1} , n _{y1})	Frequency 1 ν_1 (Hz)	Mode 2 (n _{x2} , n _{y2})	Frequency 2 v ₂ (Hz)	Frequency of Superposed Modes V _{super} (Hz)
(1, 6)		(1, 9)		
(1, 8)		(1, 10)		
(1, 9)		(1, 10)		

9. Write an expression for v_{super} in terms of v_1 and v_2 . (page 29):