Computer Lab Report Form \#5: Waves Investigations

Student's Name: \qquad
BU ID \qquad
Lab Section Day/Time/TF \qquad

Investigation 1: Waves on a Cable

1.1 Harmonics

1. Find the wavelength for each of the following harmonics (page 4):

Harmonic number	Wavelength (m)
1	1.0
2	
3	
5	

2. Please, complete the following table (page 5):

harmonic number	n (number of loops)
1	
3	
6	

3. Please, write a formula that relates the wavelength of a harmonic mode to its number of loops. Your formula (page 6):
4. Check your formula by completing the following table (page 6):

n (number of loops)	$\lambda(\mathbf{m})$
2	0.6667
3	0.50
4	
6	
7	

1.2 Definition of the Amplitude of a Wave

Complete the following table for the displayed amplitudes for the indicated normal modes (page 7):

\mathbf{N}	$\mathbf{A}(\mathbf{m})$
1	0.10
2	
3	
6	

1.3 Definition of Period of a Wave

Please answer the following question (page 7):
For the fundamental mode the period is $\mathrm{T}=$ \qquad s.

1.4 Relationship Between Period and Frequency

1. Find the period and frequency for the following harmonics (page 8):

\mathbf{N}	$\mathbf{T}(\mathbf{s})$	$\boldsymbol{v}(\mathbf{H z})$
1		
2		
3		
4		

2. What numerical pattern do you detect in the frequencies as a function of the (harmonic) loop number (page 8):

1.5 Dispersion Relationship for Waves on a Cable

1. What properties of a cable determine the speed of a wave on it? (page 9)
2. What is the speed c of a wave on the cable? $c=$ \qquad (page 10)

Investigation 2: Energy of Waves on a Cable

1. On the graph space provided below, draw the appearance of the whole length of the cable when it has maximum potential energy (page 14):

2. Please answer whether the velocities of the points of the cable, at the instance of maximum potential energy, are at a minimum or maximum (page 14)? Circle the correct answer below:

at minimum

at maximum
3. On the graph space provided below draw the appearance of the whole length of the cable when it has maximum kinetic energy (page 15):

4. Please answer whether the velocities of the points of the cable, at the instance of maximum kinetic energy, at a minimum or maximum (page 15))? Circle the correct answer below:
at maximum
5. Whether or not the energy of the harmonic motion is uniformly distributed over the length of the cable (page 16))?)? Circle the correct answer below:
uniformly non uniformly
6. Circle the right answer below (page 16):
a) For the $n=1$ harmonic, the region with maximum energy density is centered about $x=$?
0 m
$1 / 2 \mathrm{~m}$
$1 / 4 \mathrm{~m}$
b) For the $n=4$ harmonic, a region with minimum energy density is centered about $x=$?
$1 / 8 \mathrm{~m}$
$2 / 3 \mathrm{~m}$
$1 / 4 \mathrm{~m}$
7. Which harmonics are represented on page 18?
(left top) $\mathrm{n}=$; (right top) $\mathrm{n}=$; left bottom) $\mathrm{n}=$; (right bottom) $\mathrm{n}=$

Investigation 3: Harmonics of a Square Membrane

1. Enter the number of loops that you observe for each harmonic in the table. Count the loops in the x and y directions separately (page 22):

Harmonic (x, y)	$\mathbf{n}_{\mathbf{x}}$	$\mathbf{n}_{\mathbf{y}}$
$(1,1)$		
$(2,1)$		
$(4,1)$		
$(3,1)$		

2. Enter the number of loops that you observe for each harmonic in the table. Count the loops in the x and y directions separately(page 23):

Harmonic (x, y)	$\mathbf{n}_{\mathbf{x}}$	$\mathbf{n}_{\mathbf{y}}$
$(1,2)$		
$(1,4)$		
$(1,3)$		
$(1,5)$		

3. Enter the number of loops that you observe for each harmonic in the table. Count the loops in the x and y directions separately(page 23):

Harmonic (x, y)	$\mathbf{n}_{\mathbf{x}}$	$\mathbf{n}_{\mathbf{y}}$
$(2,2)$		
$(3,4)$		
$(2,3)$		
$(5,2)$		

4. How does the frequency of oscillation depend on the number of loops n_{x} and n_{y} (page 25)?
5. Write the measured frequency v of oscillation for the following modes (page 25):

$\left(\mathbf{n}_{\mathbf{x}}, \mathbf{n}_{\mathbf{y}}\right)$	$\boldsymbol{v}(\mathbf{H z})$
$(1,1)$	2.24
$(2,1)$	
$(2,2)$	
$(3,4)$	10
$(6,8)$	
$(5,12)$	

6. Write a formula for the frequency of a harmonic as a function of n_{x} and n_{y} ? (page 25)
7. Complete the following table (page 28).

($\mathbf{n}_{\mathrm{x}}, \mathbf{n}_{\mathbf{y}}$)	$\Delta \mathbf{x}$ (m)	$\Delta \mathrm{y}$ (m)	$\begin{gathered} \mathbf{E}\left(\mathbf{x}_{0}, \mathbf{y}_{\mathbf{0}}\right) \Delta \mathbf{x} \Delta \mathbf{y} \\ (\mathrm{j}) \end{gathered}$	$\mathbf{E}_{\text {Mode }}(\mathbf{j})$
$(1,1)$	$\begin{aligned} \mathrm{x}_{0}= & 0.5, \Delta \mathrm{x}= \\ & 0.05 \end{aligned}$	$\begin{gathered} \mathrm{y}_{0}= \\ 0.5, \Delta \mathrm{y}= \\ 0.05 \end{gathered}$		
$(3,1)$	$\begin{aligned} \mathrm{x}_{0}= & 0.3, \Delta \mathrm{x}= \\ & 0.05 \end{aligned}$	$\begin{aligned} \mathrm{y}_{0}= & 0.5, \Delta \mathrm{y}= \\ & 0.05 \end{aligned}$		
$(2,4)$	$\begin{gathered} \mathrm{x}_{0}= \\ =0.25, \Delta \mathrm{x}= \\ 0.05 \end{gathered}$	$\begin{aligned} \mathrm{y}_{0} & =0.375, \Delta \mathrm{y} \\ & =0.05 \end{aligned}$		

8. Complete the following table (page 29).

Mode 1 $\left(\mathbf{n}_{\mathbf{x} 1}, \mathbf{n}_{\mathbf{y} 1}\right)$	Frequency 1 $\mathbf{v}_{1}(\mathbf{H z})$	Mode 2 $\left(\mathbf{n}_{\mathbf{x} 2}, \mathbf{n}_{\mathbf{y} 2}\right)$	Frequency 2 $\mathbf{v}_{2}(\mathbf{H z})$	Frequency of Superposed Modes $\mathbf{v}_{\text {super }}(\mathbf{H z})$
$(1,6)$		$(1,9)$		
$(1,8)$		$(1,10)$		
$(1,9)$		$(1,10)$		

9. Write an expression for $v_{\text {super }}$ in terms of v_{1} and v_{2}.(page 29):
