
EXPENSE TRACKER MOBILE APPLICATION

A Thesis

Presented to the

Faculty of

San Diego State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

in

Computer Science

by

Angad Manchanda

Fall 2012

iii

Copyright © 2012

by

Angad Manchanda

All Rights Reserved

iv

DEDICATION

 I would like to dedicate this thesis to my dearest parents and my brother who believed

and kept full faith in me and provided me the zeal that was required for the accomplishment

of the thesis project.

v

ABSTRACT OF THE THESIS

Expense Tracker Mobile Application
by

Angad Manchanda
Master of Science in Computer Science

San Diego State University, 2012

 Modern life offers a plethora of options of services and goods for consumers. As a
result, people’s expenses have gone up dramatically, e.g., compared to a decade ago, and the
cost of living has been increasing day by day. Thus it becomes essential to keep a check on
expenses in order to live a good life with a proper budget set up.
 The iPhone device, designed and marketed by Apple Inc., is one of the top-selling
smartphones in the USA, and with the launch of the new iPhone5 on September 21, 2012,
whose sales have already surpassed the previous iPhone handsets (iPhone 4S, iPhone4) sales,
it is apparent that people have been using smartphones as an organizational tool.
 XpensTrak, the Expense Tracker Mobile Application was developed for iPhone users
to keep track of their expenses and determine whether they are spending as per their set
budget. Potential users need to input the required data such as the expense amount, merchant,
category, and date when the expense was made. Optional data such as sub-category and extra
notes about the expense can be entered as well. The application allows users to track their
expenses daily, weekly, monthly, and yearly in terms of summary, bar graphs, and pie-charts.
 This mobile application is a full detailed expense tracker tool that will not only help
users keep a check on their expenses, but also cut down the unrequired expenses, and thus
will help provide a responsible lifestyle.
 An analysis comparing existing expense tracking software with the one being
introduced is provided.

vi

TABLE OF CONTENTS

PAGE

ABSTRACT ...v

LIST OF FIGURES ... viii

LIST OF ABBREVIATIONS ..x

ACKNOWLEDGEMENTS ... xi

CHAPTER

1 INTRODUCTION ...1

1.1 Need for an Expense Tracker Application on an iPhone (Smartphone)1

1.2 iPhone Operating System Technologies ..3

1.3 Core Application Objects ...5

1.4 Application States ..7

1.5 Application Launch Cycle ...7

2 IMPLEMENTATION OF THE MOBILE APPLICATION11

2.1 Design and Development ...11

2.2 Tab Bar View ...12

2.3 Core Data Framework ..13

2.4 Expense/Income View ...17

2.4.1 Block Action Sheet ...17

2.4.2 Calendar View ..19

2.4.3 Expense/Income Detail View ...21

2.4.4 Category/Sub-Category View ...26

2.4.5 Date Picker View ..29

2.4.6 Payment Source View ...33

2.5 Dashboard View...33

2.6 Reports View ...33

2.7 Settings View ...33

3 RESULTS ..40

3.1 Expense/Income Demo ..40

vii

3.2 Dashboard Demo ...40

3.3 Reports Demo ..44

3.3.1 Summary ...44

3.3.2 Bar Graphs ..45

3.3.3 Pie-Charts ..46

4 COMPARISON WITH OTHER MOBILE PLATFORMS ...50

5 CONCLUSION ..52

5.1 Current Limitations ..52

5.2 Future Work ...53

REFERENCES ..55

APPENDIX

COMPARISON OF MINT V/S XPENSTRAK ..57

viii

LIST OF FIGURES

 PAGE

Figure 1.1. Share of worldwide 2012 Q2 smartphone sales by OS, according to IDC..2

Figure 1.2. Layers of iOS.. ...4

Figure 1.3. Key objects in iOS app.. ..6

Figure 1.4. State changes in iOS app. ..8

Figure 1.5. The app launch cycle. ..9

Figure 2.1. XpenseTrak iOS app on Xcode IDE. ..12

Figure 2.2. Tab bar controllers. ..13

Figure 2.3. Core data model. ..14

Figure 2.4. Block action sheet. ...18

Figure 2.5. PMCalendar view. ...20

Figure 2.6. Expense detail view. ..22

Figure 2.7. Photo button action. ...23

Figure 2.8. Income detail view. ...25

Figure 2.9. Category view. ...27

Figure 2.10. Sub category view. ..30

Figure 2.11. Block alert view. ..31

Figure 2.12. Date picker view. ...32

Figure 2.13. Payment source view. ..34

Figure 2.14. Dashboard view. ..35

Figure 2.15. Reports view. ...36

Figure 2.16. Root plist view. ..37

Figure 2.17. Settings view. ..38

Figure 3.1. Expense/income demo with expense summary. ..41

Figure 3.2. Expense/income demo with cashflow. ..42

Figure 3.3. Dashboard demo 1. ..43

Figure 3.4. Dashboard demo 2. ..43

Figure 3.5. Summary demo 1. ..44

ix

Figure 3.6. Summary demo 2. ..45

Figure 3.7. Bar graph expense demo. ..46

Figure 3.8. Bar graph income demo. ..47

Figure 3.9. Pie chart expense demo. ..48

Figure 3.10. Pie chart income demo. ...49

Figure A.1. Mint iPhone app launch screen. ..58

Figure A.2. Mint iPhone app details. ...59

x

LIST OF ABBREVIATIONS

iOS iPhone Operating System

IDE Integrated Development Environment

SDK Software Development Kit

Nib Next Interface Builder

UI User Interface

PDF Portable Document Format

OS Operating System

HTML HyperText MarkUp Language

CSS Cascading Style Sheets

SSL Secure Socket Layer

WP7 Windows Phone 7

plist Property List

PC Personal Computer

xi

ACKNOWLEDGEMENTS

 I thank all the committee members for reading and evaluating my work.

 I gladly take the opportunity to thank my thesis advisor, Prof. J. Carmelo Interlando,

for the guidance, support, encouragement, and the motivation behind the success of my

thesis. It would have been hard to accomplish this without his help.

 I thank Dr. Joseph Lewis for providing me with invaluable suggestions and guidance

on how to implement the functionality regarding the flow of the application and

documentation of the thesis.

 I thank Dr. Kris Stewart for her observations and invaluable comments.

1

CHAPTER 1

INTRODUCTION

 With the launch and increase in sales of smartphones over the last few years, people

are using mobile applications to get their work done, which makes their lives easier. Mobile

applications comprise various different categories such as Entertainment, Sports, Lifestyle,

Education, Games, Food and Drink, Health and Fitness, Finance, etc.

 This Expense Tracker application falls in the Finance Category and serves the

important purpose of managing finances which is a very important part of one’s life.

 The software product went through the design, development, and the testing phase as

a part of the Software Development Lifecycle.

 The application’s interface is designed using custom art elements, the functionality is

implemented using iOS SDK, and the phase of testing the product was accomplished

successfully. The application is not much user intensive but just comprises of having them

enter the expense amount, date, category, merchant and other optional attributes (taking

picture of the receipts, entering notes about the expense, adding subcategories to the

categories). With this entered information, the user is able to see the expense details daily,

weekly, monthly, and yearly in figures, graphs, PDF format, and can print them as well if a

printer is detected or scanned nearby. All these topics have been explained in detail in their

respective chapters.

 The aim of this thesis is to provide a solution for iPhone users on how to manage

finances in any circumstance by keeping track of their expenses everyday. Ultimately, this

contributes to societal well-being.

1.1 NEED FOR AN EXPENSE TRACKER APPLICATION ON

AN IPHONE (SMARTPHONE)

 A smartphone is built on a mobile operating system with advanced technology and

computing capabilities. It all started with Symbian in 2000, which was the first modern

mobile OS on a smartphone followed by Blackberry in 2002, Apple iPhone in 2007, Android

2

in 2008 etc. Global smartphone sales increased 47.3 % to 149 million units in the fourth

quarter of 2011, according to market research firm Gartner [1].

 According to the smartphone recent sales stats globally, IDC says that over 153

million smartphones sold worldwide in Q2 2012 [2].

 Smartphone shipments based on Mobile OS as per Q2 2012 by IDC in Figure 1.1 [2].

Figure 1.1. Share of worldwide 2012 Q2 smartphone sales by OS, according to IDC.

Source: M. BROWNLOW. Smartphone statistics and market share. Email-Marketing-

Reports, http://www.email-marketing-reports.com/wireless-mobile/smartphone-

statistics.htm, accessed October 2012, October 2012.

 The above pictorial representation shows that a lot of people are using Apple’s

iPhone device which works on iOS. With the launch of the new iPhone5 recently whose sales

hit 5 million units in first weekend [3] clearly indicates that many people are using it now

and thus arises a need for an application that serves to manage their lifestyle by managing

their finances accordingly. The sole reason behind the need for this application is that when

you start finding out where you are spending your money, it becomes easy to figure out how

you can save money by cutting back or even eliminating spending in some areas. You can

concentrate on saving even a little bit on your biggest expense categories, compared to

3

cutting back a lot on smaller expenses. As this tracking expense becomes a habit, you can get

a good picture of how much money you need to maintain your lifestyle.

 Budget Setting and expense tracking both alter consumer choice. Mental Budgeting

leads people to overconsume some goods and underconsume others. Because budgets are set

before consumption opportunities arise, they sometimes overestimate or underestimate the

money required for a particular amount. On the other hand, expense tracking shows that

some expenses are more likely to produce over-or-underconsumption. As people track their

expenses, expenses that are relatively easy to categorize – those that are more typical

examples of their categories –will be the most subject to the rigors of budgeting [4, 5].

 A number of students at SDSU were asked how much they spend per month on their

needs and requirements, and nobody was able to provide an exact answer. Thus, they do not

know where their money is going. They liked the idea of such an expense tracking tool where

with just a few inputs everyday, you can make yourself organized and make your life a bit

easier in the long run.

 There is a web application and an iPhone app such as “Mint” [6], which handles

finances, but users need to input the bank information or the credit card information that they

will use to make expenses so that Mint can function. Although the system is SSL encrypted,

entering the credit card information is somewhat that any user will hesitate to do at first. If an

user possesses many credit and debit cards from which s/he can make expenses, then s/he has

to enter them all in Mint in order for it to function and manage the finances. There is no

provision to manage cash track activity in Mint. In XpensTrak, I made it pretty clear for the

user to choose his payment source either by cash, credit card, debit card, check or a gift card.

Please refer to the Appendix for the comparison between Mint and XpensTrak.

1.2 IPHONE OPERATING SYSTEM TECHNOLOGIES

 Apple’s iPhone, iPod Touches and iPad devices run on iOS which is the operating

system. The iOS SDK comprises of the interfaces, tools and components required to develop

and deploy native applications. Web applications are created by the use of HTML, CSS and

javascript code. The development environment to build the iOS applications is Xcode where

we can create, test, debug our apps. The apps are written in Objective C Programming

language. We can run the apps on iOS Simulator or on an attached iOS Device. For that, we

4

need to get an Apple Developer account if we want to test the app on a real device.

Everything works in terms of packages called Frameworks in iOS. Basically, a framework is

a directory containing the libraries and the necessary resources like images, header files that

we need to import into the project. The higher-level frameworks should be preferred over

lower-level frameworks as they provide much more functionality and features like sockets

and threading with a good reduction in the length of the code.

 The implementation of iOS technologies presented as set of layers as shown in Figure

1.2 [7].

Figure 1.2. Layers of iOS. Source: APPLE, iOS technology overview. Apple,

http://developer.apple.com/library/ios/#documentation/Miscellaneous/Conceptual/iPho

neOSTechOverview/Introduction/Introduction.html, accessed October 2012, n.d.

 The Cocoa Touch layer contains the most important frameworks required to develop

an application. With the launch of iOS6 this fall 2012, features such as Auto Layout, UI State

Preservation have been added. Auto layout allows the user to define set of rules to lay out the

elements in user interface design. It’s a very intuitive approach than “Springs and struts”

used in earlier iOS versions ad it provides more flexibility and better layering between view

objects. Another feature called StoryBoards was added in iOS 5 which shows the application

flow in one interface file itself rather than making different user interface files for each view.

5

The frameworks used in Cocoa Touch layer comprises of Address Book, Event Kit UI, Game

Kit, MapKit, iAD, Twitter, UIKit frameworks. UIKit framework is a key framework used by

iOS to implement all the core basic features in an app such as Application Management, User

Interface Management, Graphics, Multitasking and a lot more related to device specific

features too.

 The Media layer is very important in order to incorporate graphics, audio and video

technologies in an iOS application. The Media layer comprises of Assets Library,

AVFoundation, Core Audio, Core Graphics, Core Text, Core Video, Media Player,

QuartzCore and many other frameworks.

 The Core Services Layer provides the high level features such as iCloud Storage

which allows the application to write the data to a central location in a cloud and access them

from a computer or any iOS device. The biggest advantage is even if the user loses the

device, the information on that device is never lost if it’s on iCloud. Another features

includes SQLite, XML Support, Automatic Reference counting that eliminates the need for

manual memory management and Block supports. It consists of Ad Support, CFNetwork,

Core Data, Accounts, Address Book, Core Foundation, Core Media, Foundation, Mobile

Core Service and other frameworks.

 The Core OS Layer comprises of the low level features mostly implemented in C and

provide support for Threading, Networking, File System access, memory allocations and

math computations. These are basically used by other frameworks or technologies they are

built upon.

1.3 CORE APPLICATION OBJECTS

 The UIKit Framework provides the components and functionality from the time the

app starts and till it exits. The core application objects used in iOS [8] are:

1. UIApplication object : This object manages the application event loop, receives
events from the system and works in sync with the code in app delegate object.

2. App Delegate object : This object is responsible for app launch time and manage
transitions to and from the background.

3. Documents and data model objects : Data model objects store specific information to
the app and document objects which is a subclass of UIDocument performs the same
function of storing info but is flexible and convenient to group bunch of data that
belongs to a single file.

6

4. View Controller objects : This object is responsible for presenting the application on
the screen and manages the views and subviews within it.

5. UIWindow object: Every app has one window which is responsible for showing the
views in it. This object serves to host views.

6. View, Control and layer objects: These objects primarily represent the visuals on the
application. The controls are objects such as buttons, switches, labels, text fields etc.
and views are objects that’s shows the content on the screen in a rectangular area.
Core Animation layers are data objects that provide more custom drawings and
content on the screen.

 The key objects in an iOS Application are shown in Figure 1.3.

Figure 1.3. Key objects in iOS app. Source: APPLE, Key objects of an iOS app. Apple,

http://developer.apple.com/library/IOs/#documentation/iPhone/Conceptual/iPhoneOSP

rogrammingGuide/AppArchitecture/AppArchitecture.html#//apple_ref/doc/uid/TP4000

7072-CH3-SW2, accessed October 2012, n.d.

7

1.4 APPLICATION STATES

 An iOS application can be running in the background or foreground and it becomes

very important to know when there is a transition in the state. The behavior of an app

changes when it is in background state as the operating system puts limitations to what the

app can perform in order to improve the battery life of the phone as well as manage it

properly with the foreground app. The system uses notifications while making the transitions

like when changing the state from background to foreground or foreground to background.

While in the suspended state, no notifications are sent by the operating system.

 An iOS application is usually in one of the following states:

1. Not Running: The application has not been launched in this state or being terminated
by the system while running.

2. Inactive: The application is not receiving any events but still running in foreground.

3. Active: The application is running in foreground and receiving events as well.

4. Background: The application in this state is in background and still working as in the
code is executing behind the scenes and the app is not killed. This state usually comes
when the application is on it’s way to being suspended or when the application needs
some extra execution time.

5. Suspended: The application in this state is in background but not executing any code
meaning the application still remains in memory but it’s not working in terms of
executing the code. The operating system does not notify the app when it moves it to
thes suspended state.

 Figure 1.4 [9] shows the various state changes in an iOS application.

1.5 APPLICATION LAUNCH CYCLE

 Figure 1.5 [9] shows the flow when the application is launched in the foreground.

When the user taps the app icon, it calls the main method which in turn calls the

UIApplicationMain() method. The main UI file is loaded and the application is first

initialized by the app delegate applicationWillFinishLaunchingWithOptions:method and

applicationDidFinishLaunchingWithOptions: method at final initialization. When the

application is running and active, applicationDidBecomeActive: method is called from the

app delegate. A series of events are executed which are handled by the code itself. When the

8

Figure 1.4. State changes in iOS app. Source: APPLE, App states and

multitasking. Apple, http://developer.apple.com/library/IOs/

#documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/

ManagingYourApplicationsFlow/ManagingYourApplicationsFlow.

html#//apple_ref/doc/uid/TP40007072-CH4-SW1, accessed October

2012, n.d.

9

Figure 1.5. The app launch cycle. Source: APPLE, App states and multitasking.

Apple, http://developer.apple.com/library/IOs/#documentation/iPhone/

Conceptual/iPhoneOSProgrammingGuide/ManagingYourApplicationsFlow/Mana

gingYourApplicationsFlow.html#//apple_ref/doc/uid/TP40007072-CH4-SW1,

accessed October 2012, n.d.

10

app quits foreground, applicatonDidResignActive: method is called and when app enters the

background, applicationDidEnterBackground: method is called.

 When alert-based interruptions occur such as an incoming phone call while the app is

running, then the app moves to inactive state for that moment calling the

applicationWillResignActive: method and moves back to the active or the background state

when the user dismisses the alert calling the applicationDidBecomeActive: method.

11

CHAPTER 2

IMPLEMENTATION OF THE MOBILE

APPLICATION

2.1 DESIGN AND DEVELOPMENT

 Prior to building any application from scratch, it is important to plan the design flow

of the application. The user interface design is pretty essential to know how the application is

intended to work. Planning an application definitely involves some specific strategies.

 Many strategic questions come to the mind while designing and planning an

application like there might be apps in the app store similar to your idea, what the need of

such an application in the market is, what features make your app unique, what will make the

people use your app and not the ones designed by others, how much time the application will

take to develop, what user requirements either small or big should be considered, what

category should the app fall into, etc.

 After planning the application, next comes the sketching or wire-framing it.

Wireframing is simply designing the flow of the application, describing how the navigation

of the views will work. OmniGraffle [10] is a very flexible tool for wire-framing an

application. If the app is designed involving a team, it becomes very essential to use such

kind of tool to help design the app and distribute the idea among the team. After the proper

flow of the app, next comes the development phase.

 Apple provides a number of tools to help developers build applications for iOS and

Mac.

 Xcode is an IDE that is available from the Mac App Store and the developers can sign

in and download it to start building applications. Xcode comes with the Simulators on which

we can run and test the app, Interface builders to build the interfaces visually inside the app,

command line tools required to develop, cocoa frameworks and various testing tools such as

Instruments to detect allocations and memory leaks in the application. The programming

language used to write the application in Xcode is Objective-C which is a superset of C.

12

 Xcode 4.5 is used to develop this mobile application. Figure 2.1 shows the Xcode

IDE.

Figure 2.1. XpenseTrak iOS app on Xcode IDE.

2.2 TAB BAR VIEW

 When the application is first launched, the applicationDidFinishLaunching: method is

called which resides in the AppDelegate class. The AppDelegate class consists of the

methods that are responsible for the launching, active, inactive, suspended, termination states

of an application.

 I designed a Tab Bar programmatically inside the app delegate which holds mainly

the four Tab Bar items in this case (Dashboard, Money, Reports, Settings). Each Tab Bar

Item has it’s image to represent the items. The Tab Bar Controller acts as the Root View

Controller and the tab bar items are presented with their respective navigation controllers

[11]. The Tab Bar Controller has it’s own delegate methods which recognizes which tab bar

item is pressed and then it behaves accordingly. For example, Tab Bar Item 1 is touched, the

tab bar controller delegate method will be called and will perform the required

responsibilities. Figure 2.2 [12] shows the anatomy of a UITabBarController.

13

Figure 2.2. Tab bar controllers. Source: APPLE, Tab bar controllers. Apple,

http://developer.apple.com/library/ios/#documentation/WindowsViews/Conceptual/Vie

wControllerCatalog/Chapters/TabBarControllers.html, accessed October 2012, n.d.

2.3 CORE DATA FRAMEWORK

 Core Data framework provides an object graph management of the data model

including persistence of the data [13]. Although Core Data is not a relational database, it uses

SQLite as one of it’s persistent stores. It provides the management of saving objects to and

retrieving them from the storage. There is an object, known as managed object context which

provides the functionality to Core Data framework. There is the Persistent Store Coordinator

that acts as intermediary between the managed object contexts and the external data stores

[14].

 We create a schema in Core data with application entities, it’s properties and

relationships. The schema is represented by a managed object model, instance of

NSManagedObjectModel.

 The managed object model comprises of various entities and attributes and

relationship among the different entities. Each entity has a name and is represented in the

14

code by an NSManagedObject subclass. Entity inheritance is a concept that is used in this

application design. The entities that have common attributes in them can subclass from a

parent entity. To retrieve the data using managed object context, a fetch request is created.

It’s basically selecting what data the user wants. A Predicate can be specified that the object

should match some particular condition and an array of sort descriptors in which the objects

should appear whether ascending or descending.

 In this application design, various entities have been modeled and are related to each

other through one to many or one to one relationships. The entities can have a to-many

relationship or one-one relationship where each entity has a unique relationship name to the

other entity.

 Figure 2.3 shows the core data model used in the application.

Figure 2.3. Core data model.

 As Figure 2.3 shows, there are 5 entities designed named Money, Expense, Income,

Category and SubCategory. Money is the parent entity with the attributes such as amount,

category, date, notes, payment source method, photo, subcategory, total amount and the

merchant. The reason the other two entities Income and Expense inherit from the parent

15

entity Money is that they are suppose to have the same attributes in them, so the common

attributes are listed in Money entity. Then there is an entity called category with attributes

such as categoryName, isChecked (to determine which is the selected category),

selectedSubCategory (sub category selected for the particular category). Category has a to-

many relationship with Expense and Income entities as there can be many expenses or

incomes for a particular category. Then the category has to-many relationship with entity

SubCategory as a category can have many sub-categories.

 The results that are returned from the Core Data fetch request are managed by a

fetched result controller that provide the data for the tableview used in the views. An instance

of NSFetchedResultsController is created which acts as an instance variable of a table view

controller.

- (NSFetchedResultsController *)fetchedResultsController
{
 if(_fetchedResultsController != nil)
 {
 return _fetchedResultsController;
 }

 AppDelegate * applicationDelegate = (AppDelegate *) [[UIApplication sharedApplication]
delegate];
 NSManagedObjectContext * context = [applicationDelegate managedObjectContext];

 NSFetchRequest * request = [[NSFetchRequest alloc]init];

 [request setEntity:[NSEntityDescription entityForName:@"Money"
inManagedObjectContext:context]];

 NSSortDescriptor *sortDescriptor1 =
 [[NSSortDescriptor alloc] initWithKey:@"date"
 ascending:YES];

 NSArray * descriptors = [NSArray arrayWithObjects:sortDescriptor1, nil];

 [request setSortDescriptors: descriptors];
 [request setResultType: NSManagedObjectResultType];
 [request setIncludesSubentities:YES];

 [sortDescriptor1 release];

 self.fetchedResultsController = [[NSFetchedResultsController alloc]
initWithFetchRequest:request
 managedObjectContext:context
 sectionNameKeyPath:nil

16

 cacheName:nil];
 self.fetchedResultsController.delegate = self;

 [request release];

 NSError *anyError = nil;

 if(![_fetchedResultsController performFetch:&anyError])
 {
 NSLog(@"error fetching:%@", anyError);
 }

 return _fetchedResultsController;

}

 When a fetched result controller is initialized, we provide four parameters:

1. Fetch request that contains at least one sort descriptor for the resulting order of the
objects.

2. Managed object context which the fetched results controller uses to execute the fetch
request.

3. Section name key path that is optional which would order the results by section.
Making it nil would just make one section and the results would show in that section
itself.

4. Cache name used, which is optional. Making it nil would prevent caching.

To execute the fetch request, performfetch: method is called on the controller. The class that

uses the fetched results controller implements the NSFetchedResultsController delegate. The

controller basically notifies the delegate when the objects changes locations or when there is

a modification of the sections.

 The setIncludesSubEntities will produce the results for both the entities Expense and

Income as the request is made on the parent entity Money.

 The NSFetchedResultsController delegate methods are:

- (void)controllerWillChangeContent:(NSFetchedResultsController *)controller

- (void)controller:(NSFetchedResultsController *)controller didChangeSection:(id
<NSFetchedResultsSectionInfo>)sectionInfo atIndex:(NSUInteger)sectionIndex
forChangeType:(NSFetchedResultsChangeType)type

- (void)controller:(NSFetchedResultsController *)controller didChangeObject:(id)anObject
atIndexPath:(NSIndexPath *)indexPath
forChangeType:(NSFetchedResultsChangeType)type newIndexPath:(NSIndexPath
*)newIndexPath

17

- (void)controllerDidChangeContent:(NSFetchedResultsController *)controller

2.4 EXPENSE/INCOME VIEW

 The expense/income view will contain the list of expenses/incomes made for a

particular date. The user can either enter an expense or an income depending on what he

chooses from the Block Action Sheet which is explained below.

2.4.1 Block Action Sheet

 After the Tab Bar is set up, the views for the Expenses and Incomes are set up. The

“Money” tab bar item is pressed and it sets up a custom BLOCK ACTION SHEET [15] that

allows the user to either enter the expenses or income or press cancel and make the alert go

away. iOS SDK provides a built-in UIActionSheet component which is an action sheet view

with buttons that performs the required actions. In this case, custom block action sheet is

used because it has certain animation effects, the buttons are designed very well and gives the

user interface a better look than the built in Alert View. Also, Blocks is a feature of Objective

C 2.0 which allows us to write blocks of code and pass them along as objects. The custom

Block Alert view uses Blocks in it’s implementation and thus makes it very flexible,

organized and readable in terms of the code. In case of the iOS built in action sheet, the code

to initialize action sheet is written somewhere and it’s button press actions occur somewhere

else in the code, making it quite unreadable whereas the block action sheet is instantiated in

the code and it’s button press action occurs in the same block, making it organized and

readable. Figure 2.4 shows the block action sheet view when the “money” tab bar item is

pressed.

- (BOOL)tabBarController:(UITabBarController *)tabBarController
shouldSelectViewController:(UIViewController *)viewController
{
 if([viewController.title isEqualToString:@"Money"])
 {
 BlockActionSheet* sheet = [[[BlockActionSheet alloc]
initWithTitle:NSLocalizedString(@"Enter Expense or Income", nil)] autorelease];

 [sheet setDestructiveButtonWithTitle:NSLocalizedString(@"Expense", nil) block:^{

 moneyDetailController = [[MoneyDetailViewController
alloc]initWithNibName:@"MoneyDetailViewController" bundle:nil];

18

Figure 2.4. Block action sheet.

 moneyDetailController.expense = _expenseObject;
 moneyDetailController.pushedBtnValue = 1;

 UINavigationController *navControl = [[UINavigationController alloc]
initWithRootViewController:moneyDetailController];
 [self presentModalViewController:navControl animated:YES];
 [moneyDetailController release];
 [navControl release];

19

 }];

 [sheet addCustomButtonWithTitle:NSLocalizedString(@"Income", nil) block:^{

 moneyDetailController = [[MoneyDetailViewController
alloc]initWithNibName:@"MoneyDetailViewController" bundle:nil];
 moneyDetailController.income = _incomeObject;
 moneyDetailController.pushedBtnValue = 2;

 UINavigationController *navControl = [[UINavigationController alloc]
initWithRootViewController:moneyDetailController];
 [self presentModalViewController:navControl animated:YES];
 [moneyDetailController release];
 [navControl release];

 }];

 [sheet setCancelButtonWithTitle:NSLocalizedString(@"Cancel", nil) block: ^{}];

 [sheet showInView:[self view]];

 }
 return YES;
}

 The block action sheet is allocated and initialized with a title in the tab bar controller

delegate method. When the Money tab item is pressed on the tab bar controller, it pops up the

action sheet in the view. The buttons (Expense and Income) are set up and their

corresponding actions take place in their respective block itself pushing to the new view

which will allow user to enter expenses or income in detail.

2.4.2 Calendar View

 To track down the expenses /income made, it’s very important to know what day the

expense was made. For that, an existing custom UI Component called PMCalendar [16] is

used. These components are built upon the various built in iOS frameworks such as Core

Graphics, Core Text frameworks. It does not require any third party framework but all these

custom components are available open source so that that they can be included in the project

and then can be customized enough to make it work accordingly in the application. The

calendar shows the current date being selected and will update the date automatically

20

everyday and the user can basically select whatever date and see the expenses made that day

keeping it very flexible and organized.

 On the calendar button pressed shown in Figure 2.5, the calendar view pops up and

the user can see or select the dates on which the expenses were made. All the interface

components (buttons, text fields, labels) are build in the Interface Builder provided by Xcode,

they are referenced by IBOutlets and their corresponding actions are reperesented by

IBActions.

Figure 2.5. PMCalendar view.

21

- (IBAction)showCalendar:(id)sender
{
 self.pmCC = [[PMCalendarController alloc] initWithThemeName:@"default"];
 pmCC.delegate = self;
 pmCC.mondayFirstDayOfWeek = NO;

 [pmCC presentCalendarFromView:_showCalendarBtn.superview
 permittedArrowDirections:PMCalendarArrowDirectionDown
 animated:YES];

 [self calendarController:pmCC didChangePeriod:pmCC.period];

 [pmCC release];

}

 A PMCalendar object is instantiated when the button is presented and the view is

being presented and it’s delegate method didChangePeriod: is called when the user selects

the dates on the calendar view and it updates to that selected date and shows the expense

record.

2.4.3 Expense/Income Detail View

 When the expense or the income button on the Block Action Sheet is pressed, it

navigates to the next view called the MoneyDetailViewController which basically contains

some fields that are supposed to be entered by the user in order to save their daily expenses

or incomes.

 User can take the photo of the receipt (bills), enter the amount, merchant and

category. Date will be automatically set to the current date and user has the option to fill sub-

category, payment source and some notes about the expense/income. The view is presented

in a table view style called UITableView in iOS which presents the data in rows. When

Category row is pressed, it takes the user to another view called CategoryView with some

pre-filled entries in the database. Categories can be added, edited and deleted as well

depending on the user needs and requirements. Sub-Category view is displayed when the

user taps a category and can add a sub-category related to the category being tapped. The

payment source Row presents another screen with a tableview displaying various sources

such as Cash, Credit card, Debit Card, Gift Card and Check. Figure 2.6 shows the expense

detail view.

22

Figure 2.6. Expense detail view.

 Expense detail view consists of the above fields when entered by the user. Figure 2.7

shows the block action sheet when the photo button is clicked by the user in order to take the

picture of the receipt.

 The Take Photo button will open up the camera, Choose from photo library button

will take the user to the iPhone photo gallery and choosing any picture will save it to the

photo placeholder. The cancel action will just hide the action sheet. The

23

Figure 2.7. Photo button action.

UIImagePickerController class is responsible for taking pictures and for choosing saved

images from the photo gallery and use them in the application. A source type is assigned to

UIImagePickerController for different actions. For taking pictures from camera, source type

of UIImagePickerControllerSourceTypeCamera is used and for choosing saved images from

the gallery, UIImagePickerControllerSourceTypePhotoLibrary is used. The class that

implements this controller also conforms to the UIImagePickerControllerDelegate protocol.

24

imagePicker=[[UIImagePickerController alloc] init];
imagePicker.sourceType=UIImagePickerControllerSourceTypeCamera;
imagePicker.delegate=self;
imagePicker.allowsEditing=YES;
[self.navigationController presentModalViewController:imagePicker animated:YES];
[imagePicker release];

 The delegate method used with UIImagePickerController is notified when a new

image is taken or an image is choosen from the photo gallery.

-(void)imagePickerController:(UIImagePickerController *)picker
didFinishPickingMediaWithInfo:(NSDictionary *)info
{

 if(imagePicker.sourceType == UIImagePickerControllerSourceTypeCamera)
 {
 [receiptBtn setTitle:@"" forState:UIControlStateNormal];
 _templateImgView.templateImage.image=[info
objectForKey:@"UIImagePickerControllerEditedImage"];
 UIImageWriteToSavedPhotosAlbum(_templateImgView.templateImage.image, nil,
@selector(image:didFinishSavingWithError:contextInfo:), nil);

 }

 else if(imagePicker.sourceType == UIImagePickerControllerSourceTypePhotoLibrary)
 {
 [receiptBtn setTitle:@"" forState:UIControlStateNormal];

 _templateImgView.templateImage.image=[info
objectForKey:@"UIImagePickerControllerEditedImage"];
 }

 [picker dismissModalViewControllerAnimated:YES];

}

 Figure 2.8 shows the Income Detail view quite similar to the expense detail view.

 Income detail view consists of the same fields as the expense detail view and looks

like above when filled by the user. When the save button is pressed, the income is saved for

that date which is displayed in another view.

 iOS includes a UITableView component in UIKit Framework which consists of

showing the data in a tableview which can be vertically scrolled. The tableview styles can be

plain or grouped and consists of zero or more number of sections and rows that are made of

UITableViewCell objects. UITableView uses the tableview cells objects to draw the rows.

The UITableView has an object that acts as the data source and an object that acts as a a

25

Figure 2.8. Income detail view.

delegate. It can be application delegate or a custom UITableViewController object. It must

correspond to the tableview data source and table view delegate protocols. The data source

and delegate methods for UITableView are:

- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView

- (NSInteger)tableView:(UITableView *)tableView
numberOfRowsInSection:(NSInteger)section

26

- (UITableViewCell *)tableView:(UITableView *)tblView
cellForRowAtIndexPath:(NSIndexPath *)indexPath

- (void)tableView:(UITableView *)tableView didSelectRowAtIndexPath:(NSIndexPath
*)indexPath

2.4.4 Category/Sub-Category View

 When the category row on the Expense/Income Detail view is pressed, it brings to

another tableview with some pre-filled entries in the database. The user can press the edit

button to delete the existing categories or add new categories to the existing list. The

Subcategory view is displayed in a similar fashion when a particular category is being

tapped. The user has the option to add a sub-category to the related category. If all the rows

are entered, the user has the flexibility to see the results (expenses) in the reports tab based on

Category, Sub-Category, vendor, payment source etc. Figure 2.9 shows the category view.

When any of the views is being launched, viewDidload method in iOS is being called which

instantiates the loading of the view. There are methods like viewWillAppear, viewDidAppear

with little differences and are called accordingly depending on the actions the view has to

perform.

 These pre-filled entries are stored in Core Data database model. In order to persist the

category/expense/income data, Core Data has been used as described above in Section 2.2.

- (void)insertCategory:(NSString *)category
{
 AppDelegate * applicationDelegate = (AppDelegate *) [[UIApplication sharedApplication]
delegate];

 NSManagedObjectContext * context = [applicationDelegate managedObjectContext];

 _category = [NSEntityDescription insertNewObjectForEntityForName:@"Category"
 inManagedObjectContext:context];

 _category.categoryName = category;

 NSError * error = nil;
 [context save:&error];
}

- (void)importCoreDataDefaultCategories
{
 [self insertCategory:@"Auto"];
 [self insertCategory:@"Income"];
 [self insertCategory:@"Entertainment"];

27

Figure 2.9. Category view.

 [self insertCategory:@"Food"];
 [self insertCategory:@"Home"];
 [self insertCategory:@"HouseHold"];
 [self insertCategory:@"Personal"];
 [self insertCategory:@"Electronics"];
 [self insertCategory:@"Transportation"];
 [self insertCategory:@"Travel"];
 [self insertCategory:@"Utilities"];
 [self insertCategory:@"Holidays"];

28

}

 When the view is launched viewDidLoad: method is called and it checks in there if

there are no fetched objects, it imports the above existing categories.

- (void)viewDidLoad
{
 if (![[self.fetchedResultsController fetchedObjects] count] > 0) {
 [self importCoreDataDefaultCategories];
 }
 else {
 }

 self.navigationItem.rightBarButtonItem=self.editButtonItem;

 [super viewDidLoad];
}

 When a new category is added to the list, it is saved by the following save: method.

- (void)saveItem:(id)sender // adding a new category to the list.
{

 if([[_addTxtField text] length] == 0)
 {
 NSString* title = NSLocalizedString(@"Category Missing", nil);
 NSString* message = NSLocalizedString(@"Add a new Category", nil);

 BlockAlertView* alert = [BlockAlertView alertWithTitle:title message:message];
 [alert addButtonWithTitle:NSLocalizedString(@"OK", nil) block:^{ }];
 [alert show];
 return;
 }

 AppDelegate * applicationDelegate = (AppDelegate *) [[UIApplication sharedApplication]
delegate];

 NSManagedObjectContext * context = [applicationDelegate managedObjectContext];

 _addCategory = (Category*) [NSEntityDescription
insertNewObjectForEntityForName:@"Category" inManagedObjectContext:context];

 _addCategory.categoryName = _addTxtField.text;

 NSError * error = nil;
 [context save:&error];

 [self.navigationControlle dismissModalViewControllerAnimated:YES];

}

29

 The new objects are added by referencing to the entity Category and then it’s saved to

the managed object context and can be retrieved from it later on by a fetch request if needed.

New entries are added by using insertNewObjectForEntityForName: method on

NSEntityDescription which is provided by NSManagedObjectModel class.

 Block Alert view is used in order to pop up an alert when the user tries to save a new

category/subcategory without adding a name to it. iOS provides UIAlertView component just

like UIActionSheet described above, but Block Alert view is more flexible and got many

advantages over the built in component in iOS as mentioned in 2.4.1.

 Figure 2.10 and 2.11 shows the view for adding sub-category and the block alert

while trying to add a subcategory without a name.

 The sub-categories can be deleted or added by pressing the plus button on the left and

that will pop up a view to add a new sub-category. The user can create and add as many

categories/subcategories he wants to related to the expenses/incomes.

 The custom built Block Alert view is popped up when the user tries to save the new

sub-category without a name for it.

2.4.5 Date Picker View

 When the date row on the Expense/Income Detail View (Figure 2.6 and 2.7) is

tapped, it moves to a date picker view so that the user can select any date in the picker to see

the expense/income made or probably add an expense/income for a particular date if he

forgot to add it on that date itself (see Figure 2.12).

(void)addDatePicker
{
 _datePicker.datePickerMode = UIDatePickerModeDate;
 [_datePicker addTarget:self action:@selector(datePickerValueChanged:)
forControlEvents:UIControlEventValueChanged];

 NSDate *presentDate=[NSDate date];

 _datePicker.date = presentDate;
 [_datePicker setDate:presentDate animated:YES];

 _dateLbl.text = [NSString stringWithFormat:@"%@",[dateFormatter
stringFromDate:presentDate]];

 NSDate *d =[_datePicker date];

30

Figure 2.10. Sub category view.

 unsigned units = NSYearCalendarUnit | NSMonthCalendarUnit | NSDayCalendarUnit;
 NSCalendar *calendar = [[NSCalendar alloc]
 initWithCalendarIdentifier:NSGregorianCalendar];

 NSDateComponents *components = [calendar components:units fromDate:d];

 NSInteger year = [components year];
 NSInteger month = [components month];
 NSInteger day=[components day];

31

Figure 2.11. Block alert view.

 [calendar release];

 dateDayIndex=day;
 dateMonthIndex=month;
 dateYearIndex=year;

}

32

Figure 2.12. Date picker view.

 The current date is set up on the date picker. It’s a UIDatePicker component available

in iOS built in interface. The UIDatePicker provides the date and date picker modes which is

set up to show the month, date and year. When the date picker is rotated to change the date,

datePickerValueChanged: method is called to set the date set up by the user.

33

2.4.6 Payment Source View

 Whenever the expense is made, it’s pretty important to know the payment source

method being used. Expenses/Incomes are being tracked by the payment source method so

that the user can know by what source he is spending or making money. The source can be

cash, credit card, debit card etc. Figure 2.13 shows the payment sources used in the

application.

2.5 DASHBOARD VIEW

 The Dashboard View (see Figure 2.14) basically shows the summary of

expenses/incomes based on Category, vendor and the payment source. The summary is

shown weekly, monthly and yearly in a table view listing the category and total

expense/income amount related to it so that the user can keep a detailed track where he’s

spending and where he needs to cut down the maximum in order to ensure a good living

which is the sole purpose of this software tool.

2.6 REPORTS VIEW

 The Reports View (see Figure 2.15), as the name says shows the reports or the results

from the feed of an user’s inputs for an expense/income generated. The user has the

flexibility to see the total expense/income amount made from a certain period of time. The

time duration can be chosen by the user and the reports can be based on a variety of choices

such as category, vendor, subcategory, payment source etc.

2.7 SETTINGS VIEW

 The application has a settings view which allow the users to choose whatever setting

options they want to use in the application. The settings view has been implemented by using

a third party open source library called InAppSettingsKit [17] for iOS. This library is an open

source solution that provides in-app settings inside an iPhone application. A settings bundle

is incorporated with a Root plist file that specify the UI elements with the NSUserDefault

keys. The elements such as text fields, buttons, labels, toggle switches etc can be included in

the pList with the key values that will be appear in the form of a tableview in settings

application of iPhone as well as in the in-app settings of the application.

34

Figure 2.13. Payment source view.

 Figure 2.16 shows the Root pList file in the settings bundle which forms the elements

in the settings view.

 The settings view sublasses IASKAppSettingsViewController which is a table view

controller with the connection of the UI elements and the NSUserDefault keys.

NSUserDefaults is a way to persist the data in iOS. The value of the keys are preserved.

 Figure 2.17 shows the settings view in this application.

35

Figure 2.14. Dashboard view.

- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView {
 return [self.settingsReader numberOfSections];
}
- (NSInteger)tableView:(UITableView *)tableView
numberOfRowsInSection:(NSInteger)section {
 return [self.settingsReader numberOfRowsForSection:section];
}

36

Figure 2.15. Reports view.

- (UITableViewCell *)tableView:(UITableView *)tableView
cellForRowAtIndexPath:(NSIndexPath *)indexPath {
 IASKSpecifier *specifier = [self.settingsReader specifierForIndexPath:indexPath];
 if ([specifier.type isEqualToString:kIASKCustomViewSpecifier] && [self.delegate
respondsToSelector:@selector(tableView:cellForSpecifier:)]) {
 UITableViewCell* cell = [self.delegate tableView:tableView cellForSpecifier:specifier];
 assert(nil != cell && "delegate must return a UITableViewCell for custom cell types");
 return cell;

37

Figure 2.16. Root plist view.

 }

UITableViewCell* cell = [tableView dequeueReusableCellWithIdentifier:specifier.type];
 if(nil == cell) {
 cell = [[self newCellForIdentifier:specifier.type] autorelease];
 }

if ([specifier.type isEqualToString:kIASKPSToggleSwitchSpecifier]) {
 cell.textLabel.text = specifier.title;

 id currentValue = [self.settingsStore objectForKey:specifier.key];
 BOOL toggleState;
 if (currentValue) {
 if ([currentValue isEqual:specifier.trueValue]) {
 toggleState = YES;
 } else if ([currentValue isEqual:specifier.falseValue]) {
 toggleState = NO;
 } else {
 toggleState = [currentValue boolValue];
 }
 } else {
 toggleState = specifier.defaultBoolValue;
 }
 IASKSwitch *toggle = (IASKSwitch*)cell.accessoryView;
 toggle.on = toggleState;
 toggle.key = specifier.key;
 }
 else if ([specifier.type isEqualToString:kIASKPSMultiValueSpecifier]) {
 cell.textLabel.text = specifier.title;
 cell.detailTextLabel.text = [[specifier titleForCurrentValue:[self.settingsStore
objectForKey:specifier.key] != nil ?
 [self.settingsStore objectForKey:specifier.key] : specifier.defaultValue] description];
 }

38

Figure 2.17. Settings view.

 The view consists of two sections. The save Receipt toggle switch allows the user to

save the photo of the receipt to the photo gallery or not. Toggling cashflow switch to ON

state will enable the user to see the cashflow information on the saved expense/income view

otherwise it won’t show up the cashflow summary. By default, these switches are turned ON.

 The Budget Set up is a multivalue specifier which enables the user to enter the budget

information. It is a custom budget whose cycle can be set to every day, every week, every

39

two weeks, every 4 weeks, every month, every three months, every year. By default, the

budget set up is set to OFF and the user can edit it to custom budget and enter the required

budget based on the income or the user’s needs and requirements. The budget set up in this

application is very efficient in order to see how much is the user spending and if it would

meet the budget set up or go a level down.

40

CHAPTER 3

RESULTS

3.1 EXPENSE/INCOME DEMO

 When the user feeds the inputs for an expense/income made, a table view is displayed

showing the list of expenses/incomes for the particular day and date. Figure 3.1. shows the

results for the Expense/Income table view where the red color row clearly displays an

expense and a green row specifies an income. The topmost view shows the number of

expenses made, the total expense amount and the daily average spending for that particular

month. Figure 3.2 shows the income amount, expense amount and the cash flow along with

the list of the expenses/income made.

 These visual displays are important as the potential user can see what he is spending

on, how much he is spending, what he is earning and a cash flow to see the overall progress.

All the mathematic calculations are done by the application itself and the user doesn’t have to

worry about anything.

3.2 DASHBOARD DEMO

 Sometimes, the user wants to know how much is he spending weekly, monthly or

yearly and the dashboard provides the user with this flexible feature where he can see his

expenses and expense amount based on Category, Vendor and payment source. With this

feature, the user can definitely look over and cut down on the expenses based on some

specific category or vendor. Figure 3.3 and 3.4 shows the dashboard results based on week,

month or year along with categories, vendor or payment source. Again, the red color section

headers shows expenses and green color section headers represent income made during that

time.

 Figure 3.3 show the list of expenses, the expense amount and the total expense

amount for the month and year as selected by the user based on the vendor and category

respectively.

41

Figure 3.1. Expense/income demo with expense summary.

42

Figure 3.2. Expense/income demo with cashflow.

43

Figure 3.3. Dashboard demo 1.

Figure 3.4. Dashboard demo 2.

44

 Figure 3.4 show the list of expenses and incomes, the expense/income amount and the

total expense/income amount for the week and month as selected by the user based on the

category and payment source respectively. The advantage of such approach is the user can

keep the expense track activity by cash, credit card or various other payment source methods.

3.3 REPORTS DEMO

 The reports section displays the results from the user feeds in three forms- Summary,

Bar Graphs and Pie charts. The reports summarizes the total expenses/incomes made based

on the user selection from a specific period of time to another period of time.

3.3.1 Summary

 The summary, Figure 3.5 shows the total cash flow progress based on the user

selected dates and display choice (payment source and vendors).

Figure 3.5. Summary demo 1.

45

 Figure 3.6 shows the total cash flow progress based on the user selected dates and

display choice (subcategories and categories).

Figure 3.6. Summary demo 2.

3.3.2 Bar Graphs

 The total expense/income amount and it’s summary is seen better if shown

graphically. A visual representation is beneficial for the user to get the clear estimate where

he needs to cut down his expenses. The user selects a time period and display choice in order

to see the total expense amount graphically. When the user selects the bar graph button, a pop

up gets displayed allowing the user to choose “Expenses” or “Income” in order to see the

required results.

 Figure 3.7 shows the bar graphs for expenses made during a certain period of time

selected by the user based on categories and payment source.

46

Figure 3.7. Bar graph expense demo.

 Each item is represented by it’s own individual bar and with it’s own specific amount.

 Figure 3.8 shows the bar graphs for income made during a certain period of time

selected by the user based on subcategories and payment source.

3.3.3 Pie-Charts

 Another way of viewing data graphically is by the use of Pie charts that is a very

powerful and efficient way to see the data in terms of percentage. Figure 3.9 shows Pie charts

for expenses based on payment source and vendor.

 For the first part of Figure 3.9, the total expense amount is shown in red color and the

specific percentage values represent how much is being spend by cash, check or credit card.

 For the second part of Figure 3.9, the percentage values represent how much is spent

on which vendor during that particular period of time.

47

Figure 3.8. Bar graph income demo.

 Figure 3.10 shows Pie charts for incomes based on payment source and vendor.

 For the first part of Figure 3.10, the total income amount is shown in green color and

the specific percentage values represent how much is credited by the vendors such as iTunes

etc.

 For the second part of Figure 3.10, the percentage values represent the payment

source by which the amount is credited during that particular period of time.

48

Figure 3.9. Pie chart expense demo.

49

Figure 3.10. Pie chart income demo.

50

CHAPTER 4

COMPARISON WITH OTHER MOBILE

PLATFORMS

 The most common mobile operating systems currently used are iOS, Android,

Blackberry OS, Symbian OS and Windows Mobile. Each operating system has it’s own

unique features and performance areas [18, 19] as discussed in this section.

 In terms of User Interface Design, Android’s UI is not as smooth or fluid as iOS or

WP7 because it runs on bytecode whereas iOS runs on native code. All the UI rendering on

the iOS is done on the UI Thread in real time priority whereas android follows PC rendering

on the main thread with normal priority. iOS interface design is very intuitive and has got

great shiny look with bright colored icons and menus. Apple really focuses on the fine user

experience while using the iPhone device. Android has a pull down menu with color schemes

whereas blackberry has a swipe up application menu mechanism on the bottom of the screen.

 In terms of development environment, every operating system has an IDE, a

simulator and some debugging tools. Blackberry and Android requires the use of Java,

android developed on Eclipse IDE whereas iOS is done on a Mac with Objective C as the

programming language and Xcode as the IDE. WP7 is done using C# language. Objective

C++ can be used as well in Xcode in order to develop the applications. Applications that are

submitted to Apple takes almost two weeks to be approved and then they become available

on the store whereas on Google play, it’s just a matter of couple of hours.

 In terms of development ease, many devices such as nexus, Samsung, Motorola work

on Android OS which have different screen sizes, so the developer has to tweak around and

find ways at the run time of the app so that the application user interface looks good on all

the different devices that are different in sizes whereas with iPhone having one fixed size, it

makes easy for the developers to adjust the frames and sizes. But with the launch of iPhone5,

which is taller than the other iPhone devices, developers have to work little more on it so that

the graphics elements fix properly.

51

 In terms of performance, Android supports NVIDIA Tegra 2 dual core processor,

whereas Blackberry, Symbian and Apple supports dual core processor. However, the new

iPhone5 supports Apple A6 processor which is basically a 1.3 Ghz custom apple designed

ARMv7 based dual core CPU whereas the previous devices were using Apple A5 processor.

 In terms of memory management, iOS 5 provides ARC which means that Objective C

takes care of the memory management itself and freeds the developer from the pain of

manual memory management by retaining and releasing objects. Android and Blackberry use

garbage collection to avoid the memory leaks. The memory leaks in iOS can be detected by

various tools such as NSZombies and Instruments provided with the Xcode IDE. The user

cannot expand the memory of an iPhone device whereas Android OS can have external

memory cards.

 In terms of stability, iOS is more stable and less error prone whereas Android is

unstable and because of the multitasking nature, the processes can conflict with each other

causing crashes.

 Every operating system has it's own advantages and disadvantages over the other

varying with their hardware, software features, user interface designs, performance issues,

memory issues etc.

52

CHAPTER 5

CONCLUSION

 We now present and discuss the limitations of the new product, issues faced, and the

remedies to those limitations. While building this expense tracking software tool, the major

focus was to make this tool less user intensive and more user productive. The first version of

this application is only applicable to the USA. It could have been used in other countries if I

would have used currency converters in the application, which I will improvise in the later

version. Certain issues were faced while implementing this tool and various important things

were kept in mind. For example, the user interface is designed simple yet creative so that the

user doesn’t face any difficulty in using the software tool and the expense data is persisted on

the device even if the user deletes the application from the memory background. Core Data

was chosen over SQLite to persist the data which is very beneficial even though the data

would reside on the device locally.

 iCloud functionality is missing. This would allow data to be saved to a Cloud and

shared between various devices. The application lacks the feature of PDF by which the list of

expenses and amount could have been displayed in one file in PDF format making it easily

readable for the users.

 Despite of the mentioned flaws, the application would work as a charm for tracking

expenses and provides the user, the flexibility to see the reports in any format (PDF, Bar

Graphs, Pie-charts, summary etc.).

 Section 5.1 discusses the various limitations in the application and Section 5.2

discusses the future work in order to fix the current problems.

5.1 CURRENT LIMITATIONS

 The application is designed in such a simple and straight forward manner that the user

faces no problems or difficulties in using this software tool to track the expenses. Still the

application suffers from various limitations which doesn’t create any obstacle in the current

53

version as such but these limitations need to be addressed in the next version of the

application.

 The user can only enter the expense/income amount in USD Currency. So, this

application would primarily be used in USA only and cannot be used all over the world

because other currencies are not being addressed in this version. The expenses/income can

only be tracked in US currency thereby.

 The application could have been more user friendly. For example – if the user keeps

track of the daily expenses and spends money at Starbucks everyday, he has to enter all the

information (merchant, date, amount etc.) himself all over again.

 Searching functionality is missing in the current version of the application. Suppose

the user wants to search and see the expenses made for a particular category say “Food -

Starbucks” for the past 3 months, the user has to scroll through the calendar provided and see

it.

 The reports in terms of graphs show a comparison of the expenses/incomes separately

made on different categories/subcategories. But the graph report doesn’t show or evaluate

income made v/s expense.

5.2 FUTURE WORK

 All the limitations discussed in Chapter 5 should be addressed in the next version of

the application so that it can be more enhanced and user friendly.

 Provision to add different currencies will be added so that this application is not just

limited to USA but also can be used worldwide and the currency converters will be designed

and added in order to convert the different currency rates.

 In order to make it more user friendly and less user intensive, when the user tries to

add the same category or vendor to an expense/income record, a duplicate alert will be

presented showing the same category/vendor which the user entered previously for some

expense/income and then he can tap on it and the entries will be automatically filled for the

current record. For example: the user spends US$ 10 at Starbucks (vendor) on drinks

(category) on a particular date and the next day he spends some money at the same place on

the same category, then when he tries to write that on the expense details view, a duplicate

pop up will be presented showing Starbucks as the vendor and drinks as the category. The

54

user taps it and it automatically fills up the detail view making the application less user

intensive.

 A new tab named “Search” will be implemented so that if the user searches for any

vendor, category or subcategory by name, he can see the expenses made on that particular

search in a table view list with the total number of transactions made and the total expense

amount for that search. This would provide a lot more flexibility for the users to track the

particular expenses on particular items.

 Also, the graph reports show the expenses and income graphs separately in the

current version. In the future, a comparison between the income made and expense will be

shown graphically providing the user more options to see what they are making and what

they are spending accordingly. A PDF feature would be implemented so that the user can see

the total expenses/incomes in a much simpler PDF format in one file.

55

REFERENCES

[1] D. GRAZIANO, Gartner: Apple leads smartphone sales to new heights. BGR Media,
http://bgr.com/2012/02/15/gartner-apple-leads-smartphone-sales-to-new-heights/,
accessed October 2012, February 2012.

[2] M. BROWNLOW, Smartphone statistics and market share. Email-Marketing-Reports,
http://www.email-marketing-reports.com/wireless-mobile/smartphone-statistics.htm,
accessed October 2012, October 2012.

[3] THE WASHINGTON POST, iPhone 5 sales above 5 million, Apple says, surpassing

iPhone 4S. The Washington Post,
http://www.washingtonpost.com/business/technology/iphone-5-sales-above-5-
million-apple-says-surpassing-iphone-4s/2012/09/24/8b23322e-0648-11e2-afff-
d6c7f20a83bf_story.html, accessed September 2012, September 2012.

[4] C. HEATH AND J. B. SOLL, Mental budgeting and consumer decisions, J. Consumer
Res., 23 (1996), pp. 40-52.

[5] J. HASTINGS AND J. M. SHAPIRO, Mental accounting and consumer choice: Evidence

from commodity price shocks. Unpublished report, 2012.

[6] MINT, Homepage. Mint, https://www.mint.com, accessed October 2012, n.d.

[7] APPLE, iOS technology overview. Apple, http://developer.apple.com/library/ios/
#documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/Introduction/Int
roduction.html, accessed October 2012, n.d.

[8] APPLE, Key objects of an iOS app. Apple, http://developer.apple.com/library/IOs/#
documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/AppArchitecture/A
ppArchitecture.html#//apple_ref/doc/uid/TP40007072-CH3-SW2, accessed October
2012, n.d.

[9] APPLE, App states and multitasking. Apple, http://developer.apple.com/library/IOs/
#documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/ManagingYourAp
plicationsFlow/ManagingYourApplicationsFlow.html#//apple_ref/doc/uid/TP400070
72-CH4-SW1, accessed October 2012, n.d.

[10] THE OMNI GROUP, OmniGraffle for Mac. The Omni Group,
http://www.omnigroup.com/products/omnigraffle/, accessed November 2012, n.d.

[11] D. MARK, J. NUTTING AND J. LAMARCHE, Beginning iPhone 4 Development:

Exploring the iOS SDK, Apress, New York, New York, 2011.

[12] APPLE, Tab bar controllers. Apple, http://developer.apple.com/library/ios/
#documentation/WindowsViews/Conceptual/ViewControllerCatalog/Chapters/TabBa
rControllers.html, accessed October 2012, n.d.

[13] APPLE, Introduction to core data programming guide. Apple,
http://developer.apple.com/library/mac/#documentation/cocoa/conceptual/coredata/cd

56

ProgrammingGuide.html#//apple_ref/doc/uid/TP30001200-SW1, accessed October
2012, n.d.

[14] P. ALESSI, Professional iPhone and iPad Database Application Programming, Wiley
Publishing, Indianapolis, Indiana, 2011.

[15] G. AMBROZIO, Block-based action sheet. Cocoanetics, http://www.cocoanetics.com/
2012/06/block-based-action-sheet/, accessed October 2012, n.d.

[16] PAVEL, PMCalendar for iOS. Cocoa Controls, http://www.cocoacontrols.com/
platforms/ios/controls/pmcalendar, accessed October 2012, n.d.

[17] L. VANDAL AND O. GENTZ, Homepage. InAppSettingsKit,
http://www.inappsettingskit.com/home, accessed October 2012, n.d.

[18] MOBILE INNOVATION, Smartphones operating systems war. The Mobile Innovation,
http://www.themobileinnovation.net/smartphones-operating-systems-war-android-vs-
blackberry-vs-ios-vs-symbian, accessed October 2012, n.d.

[19] T. WOOLEY, A comparative study of the Android and iPhone operating systems.
University of Central Florida, http://www.cs.ucf.edu/~dcm/Teaching/
COP5611Spring2010/Project/TravisWooley-Presentation.pdf, accessed October
2012, April 2010.

57

APPENDIX

COMPARISON OF MINT V/S XPENSTRAK

58

 Mint works by first creating an user account and then entering your bank and credit

card information. Mint web application is a complete package that offers graphical

representation like graphs and charts to see the expenses but the Mint iPhone app doesn’t

show any visual representation. There is no way to track cash activity on Mint, although you

can just enter any expense if it’s payment source is cash. Also, there is no ability to see

transactions from your checking account.

 Figure A.1 shows the first view when the Mint iPhone app is launched.

Figure A.1. Mint iPhone app launch screen.

 XpensTrak provides the users, the flexibility to enter as well as track the cash activity

from any certain period of time based on user selection and there is a provision to see the

visual representation in terms of Summary, Bar Graphs and Pie charts as seen from Chapter

3. These few things become important for the user to manage and track the expenses

carefully and thus maintain a proper lifestyle based on that.

59

 Figure A.2 shows some screenshots from the Mint iPhone application where I created

an account and entered one bank information to compare my expense tracking tool with it.

Figure A.2. Mint iPhone app details.

