Definition. Any DE of the form

$$
a(t) \frac{d^{2} x}{d t^{2}}+b(t) \frac{d x}{d t}+c(t) x=g(t)
$$

where $a(t), b(t), c(t)$, and $g(t)$ are continuous on some interval $I, a(t) \neq 0$ on I, is a second-order linear DE.

Definition (9.1). Any DE of the form

$$
\text { (*) } \quad a \frac{d^{2} x}{d t^{2}}+b \frac{d x}{d t}+c x=0
$$

where a, b, and c are constants, $a \neq 0$, is a second-order homogeneous linear DE with constant coefficients.

Goal: To solve $(*)$ for all possible values of a, b, and c.
Example.
(1) $x^{\prime \prime}-x^{\prime}=0$.

Let $y=x^{\prime}$. Then the DE becomes

$$
y^{\prime}-y=0,
$$

a first-order linear DE with a specific, not general, solution

$$
y=e^{t}
$$

Then

$$
\begin{gathered}
x^{\prime}=e^{t} \Longrightarrow \\
x=\int e^{t} d t=e^{t}
\end{gathered}
$$

is a solution.

