
 1

Robert Taggart 
rtaggart@cc.usu.edu 
Work:  (801) 621-3535 
 
Brandon Wilson 
blwilson@cc.usu.edu 
Work:  787-0100 
 
Brent Haslem 
brenthas@cc.usu.edu 
Work:  755-9848 
 
Monday Apr. 28th, 2003. 
 
Paul Israelsen

Department of Electrical Engineering 
Utah State University 
 
Dr. Israelsen, 
 
The following document contains Our Final Design Report.  We have truly had an 
educational experience in a variety of ways all of which will all be discussed in 
this paper.  We have been limited in our contact with L3 since the middle of the 
semester, but have continued to program and try to finish the project for the 
original delivery date.  This paper will discuss the overall approach we have 
taken to undertake the project and the process of implementing that approach.  
We will be happy to answer any questions and concerns you may have and are 
even happier to be almost finished with the project.   
 
Thank you, 
 
Brent Haslem 

Robert Taggart 
 
Brandon Wilson 
 

 

 

 

 

 

 

 

 

 



 2

TABLE OF CONTENTS 
 

 

Sec.    Title                   Page # 

 

 

TITLE PAGE           3 

 

1.0. INTRODUCTION        4 

   1.1.  Subject and Purpose        4 

1.2. Brief Problem Statement       4 

1.3. Summary of Design Process       5 

1.4. Summary of Final Results       6 

1.5. Organization and Summary of Report     7 

 

2.0.  PROBLEM ANALASYS       7 

2.1. Review of Problem        7 

2.2. Summary of Specifications       8 

2.3. Discussion of main Feat. and Summary of Eng. Approach  11 

2.4. Decision Analysis       19 

 

3.0.  PERF. OPTIMIZATION AND DESIGN OF SYS. COMP.   20  

  

4.0. DISC. OF TECH. APPROACH USED AND PROJ. IMPL.  21 

   4.1.  VHDL coding.        42 

 

5.0. FINAL SCOPE OF WORK STATEMENT    59 

 

6.0. COST ESTIMATION       62 

 

7.0. PROJECT MANAGEMENT SUMMARY    63 

   7.1.  Tasks         63 

7.2. Facilities        65 

7.3. Personnel        65 

 

8.0. CONCLUSION       69 

 

APPENDIX          71 

 

 

 

 

 

 



 3

 

 

Final Design Report for the VHDL 

 Implementation of a Data Equalizer 

 

 

 
 
 
 
 
 

ECE 4850 
Apr. 28th, 2003 

 
 
 

Brent Haslem 
Robert Taggart 
Brandon Wilson 

 
 

 

  

 

 

 

 

 

Instructor Approval _________________________         Date ________ 

  Dr. Kevin Moore Professor in Electrical and 
  Computer Engineering Dept. at Utah State University 



 4

1.0.  INTRODUCTION:   
 

1.1.  Subject and Purpose. 

   
L3 Communications, based out of Salt Lake City, has finished work on a 

project and are now finishing plans for the upgrade of that product.  They have 

created a wireless telephone/Ethernet system that is in operation in a few 

countries.  Currently the system is unable to effectively transmit signals to 

receivers that are not in a line of sight path with the transmitter.  L3 has almost 

finished the project of upgrading their system to be able to handle non-line of 

sight transmissions.  Our design project has been to assist them in that upgrade, 

which specifically is to program a data equalizer in the VHDL coding language.  

When this is complete and L3 has made the other necessary changes to the 

system it will be capable of communicating with all the receivers in the 

transmission area (both line of sight and non-line of sight).  L3 is marketing to 

countries where a land based cable telephone system does not exist, and will 

eventually expand the market to all nations. 

       1.2.  Brief Problem Statement    
 

      For a transmitter that broadcasts a signal over a 25 miles radius there are 

countless obstacles between the transmitter and receiver that create a multi path 

environment.  The problem with this is that many of the telephone subscribers in 

this affected area will not be able to receive a direct signal and establish a 

reliable connection.  An effective system needs to be able to accommodate for 

those situations.  This final report shows how, through spectral spreading and 

equalization, we were able to help improve the wireless system so that it is 



 5

capable of receiving these reflected and energy damped signals, and make the 

connection more reliable. 

          L3 has built the system using VHDL and has already installed the 

hardware needed for the system upgrade.  Since we were dealing with an 

already functioning system we had the task of trying to integrate our design of the 

data equalizer into an already existing unit.  As a result all of our coding was 

done in VHDL and needed to be written to meet all the required timing 

specifications, as well as accommodate the hardware that had been installed.  

Writing the code was not nearly as difficult as trying to ensure that the coding for 

the data equalizer met the hardware and timing specifications of the system.  

Most of our time was spent, once our code was written, trying to integrate our 

project with L3’s existing design and has proven to be an unbelievably difficult 

task, much more difficult than we had previously anticipated. 

       1.3.  Summary of Design Process Executed. 

The body of the report will cover the solution in more detail, but the 

following is a brief summary.  Each subscriber signal being broadcast from the 

base station transmitter is multiplied by a unique pseudo noise code (these PN 

codes will be explained in more detail later).  The resulting signals are then 

mixed together and broadcast in regular radio communication fashion.  The 

transmitted signal then suffers various distortions due to the effects of the 

environment through which it is traveling.  When the signals reach the receivers 

they are equalized to accommodate for timing offsets.  Each receiver then 

multiplies the received signal by an assigned PN code.  If the PN code at a given 



 6

receiver is identical to the PN code that the signal was multiplied by at the 

transmitter, the subscriber unit is able to decode the transmitted information.   

If the PN codes are not identical at the transmitter and receiver than the 

receiver will only acknowledge the signal as noise.  If the received signal does 

not have a direct line of sight with the transmitting base station the equalizer will 

begin to adapt its parameters to combine the time delayed signals and suppress 

the noise.  Once the receiver has learned the channel properties it is able to 

adjust a pre-equalizer for transmission back to the base station.  The resulting 

communication is not as fast as a line of sight connection, but is stable and can 

adapt to future changes in the channel. 

1.4. Summary of Final Results. 

The first part of this paper will show how we approached this design 

project using Matlab.  We were able to affectively set up a simplified stand-alone 

transmitter and receiver system to mimic the properties of spread spectrum and 

equalization.  By doing this we were able to see and understand the benefits of 

equalization and the problems that might occur later in the project with L3’s 

existing system.  This proved to be very beneficial when it came to actually 

writing the code in VHDL for the design blocks.  

By gaining an overall understanding of a simplified system it helped us in 

integrating our design with L3’s.  We were able to write effective and working 

code that gave us positive results when testing the blocks functions.  We 

accomplished this by using L3’s test bench in VHDL and applying the same 

principles we did in our Matlab simulations.  Once again this was a simplified 



 7

version of what the final result will be once our code is integrated with L3’s, but it 

did show that our code worked correctly.  

       1.5.  Organization and Summary of Report 

The remainder of the report will show how we analyzed the problem and 

the decisions we made within the specifications given to us.  The report then 

addresses the solution of the design problem using a Matlab simulation to 

demonstrate functionality.  The paper will also include our VHDL code of the 

blocks we were required to program to finish the equalization process.  Figure 1 

of the appendix shows the overall block diagram of the wireless system and the 

work breakdown structure outlines the six blocks we had to program.  Finally the 

paper will address any changes that occurred over the time period the project 

took place, project management aspects, and a conclusion including what we’ve 

accomplished and the educational benefits of undertaking this project. 

 
2.0.  PROBLEM ANALASYS: 

       2.1.  Review of Problem. 

 As mentioned in the introduction our design has been to assist in the 

upgrading of a wireless telephone/Ethernet system.  The problem with the 

current system is that in the real world all receivers for the system do not have a 

direct line of sight to the transmitter.  For L3’s transmitters, which have the ability 

to transmit 25 miles in radius, it is reasonable to say that a large percentage of 

the receivers will not have a direct line of sight with the transmitter.  This would 

eliminate a wide client base that would be unable to establish a communication 

link.  To avoid losing such a large potential for subscriber unit sales the existing 



 8

unit must be modified to extend service to all who want it.  For this reason L3 

opted to upgrade their design and make it possible for non-line of sight receivers 

to detect signals sent by the transmitter through a multi-path environment.  In 

order to make the upgrade a reality L3 must include as part of their design a data 

equalizer.  We were responsible for integrating this equalization block into their 

existing design.  Through this and other changes to the system L3 will be able to 

create a wireless communication system to reach all subscribers in a given 

transmitter area. 

       2.2.  Summary of Specifications. 

The existing software for the current telephone/Ethernet system has been 

coded in VHDL, as a result we are required to use VHDL as our programming 

language and have been given the following hardware specifications.  There are 

currently eight data channels in the existing system, this has been extended to 

twelve data channels.  This provides a higher bandwidth for the system 

operation.  The equalizer/pre-equalizer must be designed to fit in a portion of a 

Xilinx Spartan lle300 FPGA (block diagram for in figure 2.1).  The existing 

channel circuitry will require one thousand Logic Cells of the FPGA leaving 5144 

for this design.  One thousand and fifty of these remaining logic cells (a logic cell 

is a 4 input logic function that can perform any 4 input combinational function) will 

be used for the Microblaze processor (which will be used for the processing of 

values in the LMS engine).  This leaves us with four thousand and ninety four 

logic cells of the Xilinx to work with.  The system also needs to fit the within the 

number of input and output pins available on the Xilinx chip.  While these 



 9

specifications are still a requirement we were unable to test our code to ensure 

that it fit into these specifications.  Once our code is effectively integrated into 

L3’s system whomever implements a hardware test of the project will be able to 

take the code we have written and make any minor necessary changes to ensure 

that it fits into the timing and hardware specifications.  We were not able to test 

the hardware because Primewave is no longer going forward with the project 

because their division has been temporarily put on hold for financial reasons.  As 

a result we did not have access to L3’s labs or hardware.   

Whenever the project is continued and our code implemented timing 

restrictions will need to be taken into account when changing the VHDL code.  

Once the design is placed and routed into the Xlinx Spartan 300, it is timed using 

a maximum 92 Mhz clock.  Our chip rate is 5.44 Mhz making the operating clock 

for the Xilinx 87.04 Mhz, 32 X 5.44 Mhz.  Meeting the clock timing requirement of 

92 Mhz will allow the FPGA to operate within temperature requirements, which 

will save production costs of approximately $5.00 per unit.  So our code for the 

equalizer (specifically comp.-multiply/summer, dispreader, adjusting already 

existing code for equalized dispreader, delay-line multiplex, scalar, equalizer 

sum) must fit into the Xlinx chip and run within the specified 92 Mhz. 

The unit must also accomplish an effective data rate of 384 mega bits per 

second for the equalized system.  This can be accomplished through splitting the 

data transmission over the expanded twelve channels and in the future could 

possibly be expanded to sixteen channels. 



 10

Initially L3 wanted to have the complete, working system by no later than 

April.  However, in the middle of March L3 terminated primewave (the subsidiary 

of L3 that was sponsoring our design) and as a result the marketing of the project 

has been pushed back temporarily and possibly permanently.  Because of this 

our project now must be completed by the end of April before the school 

semester ends.   

 

Figure 2.1 

 

 

 

     



 11

     2.3.  Discussion of main features and Summary of Engineering Approach.  

A Brief History of Spread Spectrum: 
 

While spread spectrum technology may seem a newcomer to the digital 

communication scene, it has actually been around for nearly fifty years.  

However, it has only been within the last ten years that this technology has been 

introduced into the commercial market on a large basis.  The development of 

spread spectrum has occurred primarily in the military, which has made use of 

several valuable characteristics of spread spectrum transmission namely, low 

probability of intercept and strong anti-jamming properties.  Recently, spread 

spectrum techniques have been used in a wide range of commercial applications 

ranging from wireless local area networks (LAN), to digital cellular telephone 

networks.  To better understand how the properties of spread spectrum have 

been used in some of these applications it is useful to see just how spread 

spectrum works. 

An Overview of Spread Spectrum: 

The term spread spectrum has been given to several forms of data 

transmission including frequency hopping, time hopping, and direct sequence 

spreading.  For the purposes of this project spread spectrum will refer to the 

technique of direct sequence spreading. The defining characteristic of spread 

spectrum is that the bandwidth of the transmitted signal is much greater than the 

bandwidth of the information signal.  To achieve this bandwidth expansion the 

information signal is multiplied by a sequence of bits known as pseudo-noise 



 12

code (PNcode).  This stream of seemingly random bits is then modulated to a 

given frequency carrier signal and transmitted.   

The result is a signal whose bandwidth is no longer determined by the 

information that is actually being sent.  It may seem counterproductive to greatly 

increase the bandwidth of a data signal, but it is in the expansion of the signal 

that the benefits of spread spectrum are achieved.  The first of these benefits is 

to make the sent signal look like simple noise in a channel.  Anyone trying to 

identify a normal transmission would be able to tune a receiver to spikes seen in 

normal AM modulation.  However, spreading causes the transmitted signal to 

look like random noise and would not appear as anything noticeable on a 

spectrum analyzer.   

This leads to the property of low probability of intercept, which suggests a 

high level of security to a transmission channel.  This has been of particular 

interest to military applications.  Another result of this noise-like signal is the 

difficulty in jamming or interfering.  To jam a signal another signal of similar 

bandwidth is transmitted to mask or confuse the information within a given 

bandwidth.  Since spread spectrum is difficult to detect and is spread over such a 

wide spectrum it is very resilient to jamming efforts. 

 While these properties have their place in commercial applications, they 

have mainly been exploited by the military.  The greatest attraction of spread 

spectrum is the ability to increase bandwidth utilization.  Traditionally, time and 

frequency division multiplexing have been implemented to allow users to 

simultaneously transmit information.  With spread spectrum a new “dimension” is 



 13

introduced to allow those same benefits.  If each user has a distinct, orthogonal 

PNcode they can transmit information on the same band at the same time.  This 

code division multiple access (CDMA) has become a major component in 

communication systems because it drives down costs while increasing 

performance.  Another benefit is that spread spectrum has little effect on 

narrowband transmissions which share the same bandwidth since they appear 

as simple noise.  The spread signal, however, can be negatively affected by a 

strong superimposed narrowband signal, so they do not usually share the same 

bandwidth. 

 The previously mentioned properties all depend on the processing gain of 

a spread spectrum system.  This processing gain is defined as the ratio of the 

transmission and information width.  Hence, the longer the pseudo noise code 

sequence the greater the processing gain of the system.  This processing gain is 

the main factor that determines the number of users on a CDMA system, the 

difficulty to jam a signal, the difficulty to intercept a signal, and the reduction of 

multi-path effects on a transmission.  Since this gain depends directly on the 

PNcode used it is useful to view several different families of PNcodes. 

 

Pncodes: 

 The PNcodes that we have explored for this project are Walsh-Hadamard, 

Kasami, and Gold codes.  Kasami and Gold codes are both produced by linear 

feedback shift registers.  A register of length ‘n’ is fed by taps at several locations 

in the register creating a PN code of length 2^(n-1).  A length of 2^n is not 



 14

possible because the register state with all cells being zeroes would fail to 

produce anything other than a zero sequence.  Obviously the larger the shift 

registers, the larger the length of the code produced. 

Shift register sequences have the property of producing nearly equal 

numbers of ones and zeroes (the number of ones exceed the number of zeroes 

by one).  This helps to avoid a bias that would show a low frequency component 

spike in the frequency spectrum.  These sequences also have strong auto-

correlation, but are unfortunately not orthogonal.  Gold codes are produced when 

two sequences exhibit only 3 cross correlation values: -1, 2^((n+2)/2), and -

2^((n+2)/2).  The codes are then produced by delaying the possible starting 

values in the register, this yields 2^n+1 different code sequences.  Kasami codes 

are a subset of Gold codes, and are formed by taking spaced samples from a 

Gold code.  This preserves the properties of the Gold codes but allows a much 

larger set of possible codes from which to select.  A sample Kasami code that 

has been used in the design of the equalizer is shown in Figure 2.2. 

 The Walsh-Hadamard codes are not produced from shift registers, but are 

designed specifically to have the property of being orthogonal.  This single 

property greatly simplifies the design process of a CDMA system because there 

will be zero interference between subscribers.  This can be compromised by a 

multi-path environment due to the interference with time delayed signals.   

This interference is the basis for the equalizer that we are beginning to design.  

Accounting for PNcode matching of various delayed signals will make it possible 

to reconstruct the original signal, including the zero cross correlation property of 



 15

orthogonal codes.  In the spreader of our system we have converted the bits to 

±1 to create a zero mean code, eliminating any DC component in the PNcode 

spectrum. 

The following are plots exhibiting the correlation properties of Kasami and 

Hadamard PN codes.  Note that the Kasami codes have a single strong auto-

correlation peak as compared with several shifts in the PN code sequence 

(Figure 2.3).  However they show varying degrees of correlation with other 

Kasami codes (Figure 2.4).  The Hadamard codes exhibit different degrees of 

autocorrelation (Figure 2.5) but very low cross correlation with other Hadamard 

codes (Figure 2.6). 

Figure 2.2 

 



 16

Figure 2.3 

 
 

Figure 2.4 

 



 17

Figure 2.5 

 
 

Figure 2.6 

 



 18

Equalization: 

Figure 2.3.1 is an example of why equalization is important and the role 

that it plays in the real world.  The need for equalization in our project arises from 

implementing wireless receivers that are not in a line of sight with the transmitter, 

and environments that create multiple copies of a signal at the receiver.  Figure 

2.3.1 shows how received signal becomes a collection of time delayed and 

scaled versions of the original signal.  Later in the report we show, through the 

use of matlab simulations, how we implement equalization as a solution for the 

design

  

 



 19

      2.4.  Decision Analysis 

 The opportunities we had to make decisions or go different directions with 

this project were quite limited.  Since the project was a company-sponsored 

project we needed to ensure that our design met the criteria that L3 delivered to 

us.  The main restriction was the fact that our design/code is going to be 

integrated into an already built and functioning system.  Some of the decisions 

regarding how our design can be implemented have already been determined.  

Most of the decisions made came during the coding and Matlab testing process 

of the design. 

 The biggest decision made from our Matlab implementation of the design 

was the choice of the PNcode we used for the spreading of the signal.  We made 

a final decision to use a Hadamard code because of its orthogonal properties, 

which were previously exhibited.  Other decisions during the coding process 

were simply decisions based on how to write the code and more decisions will 

need to be made when completing a successful integration with L3’s overall 

system. 

 A final decision was made to extend the delay block from 12 taps to 16 

taps.  This allows a larger number of delayed signals to correlate, improving the 

quality of the received signal.  Also a final decision was to stick with 12 data 

channels and not reduce them back to eight.  Even though our code has been 

written to accommodate both of these decisions, they could be changed when a 

hardware test is implemented if timing and fitting specifications are not met.  To 

the best of our knowledge, however, there should not be any problems. 



 20

3.0.  Performance Optimization and Design of System Components 

 In discussing the performance of our project there are two key processes 

involved.  The first process involves the application of spread spectrum.  One of 

the most key decisions or changes that can be made to impact the overall 

effectiveness of spread spectrum is what PN code is being used.  Originally we 

were under the impression that we were to choose the PN code used in the 

spread spectrum process.  Later we found that one of the doctorates at L3 was 

“inventing” a new PN code that combined the benefits of orthogonality and shift 

orthogonality to give the system the best results.  Since the breakdown of 

Primewave however, no such PN code has been made available.  To finish our 

design and obtain desired results we needed to implement a PN code and chose 

a Hadamard code because of its orthogonal properties.  This gives us peak 

performance for the spread spectrum and also simplifies, and makes more 

effective, the equalization process.  Equalization is the second key process for 

performance. 

 The next several pages of the report go over first the performance of the 

equalization process in our Matlab simulations.  Second we will transition from 

the Matlab design to our design in VHDL and include simulation and results from 

our testing.  We are including the Matlab simulations because that was the basis 

for our VHDL coding and made the actual implementation of the project much 

easier.   Timing and fit into L3’s design was in the beginning a big performance 

issue.  After Primewave was demolished and the scope of our project changed 

drastically we decided to try and keep timing and fit as part of our performance 



 21

goals so that if L3 decides to continue this project our efforts could be of some 

use to them.  The nest section will show that the performance, to the best of our 

knowledge of the system to this point, went quite well.  

  

4.0.  Discussion of Technical Approach Used and Project Implementation. 

In section 2.0 we discussed the concepts of spectral spreading and 

equalization and the following graphs, schematics, and text give further 

explanation and show our solution to this design problem.   

Figure 4.1 – Source data generator 

 

Source (See Figure 2.1): 
 

The source block effectively converts an input stream of bits into a 

complex number for quaternary phase shift keying (QPSK).  The data source 

here is actually a random integer generator that produces values from 0 to 4 with 

equal probability.  These integers represent a two bit slice of the actual binary 

input.  These integers are then passed into a look up table (LUT) that maps the 



 22

integer to one of four possible complex valued symbols at (±√2, ±√2).  This 

symbol is then split into real and imaginary parts representing the in-phase signal 

and the quadrature signal.  The in-phase signal effectively conveys the data in 

the first bit of the two bit slice and the quadrature signal carries the second bit. 

Figure 4.2 – Signal Spreader 

 
 

Spreader (See Figure 4.2): 

The key component of any spread system communication system is 

obviously the spreading of a signal over a larger bandwidth.  To accomplish this, 

the I and Q signals are up sampled by the length of the pseudo noise code that is 

to be utilized.  This converts the signal into a digital impulse train with a period 

equal to the length of the PNcode.  This impulse train is then fed into a pulse 

shaping filter.  

 At this point the filter implements a non-return to zero (NRZ) pulse train 

but may be adapted in the future for a more realizable filter.  Again the resultant 

pulse train has a period equal to the length of the PNcode.  This pulse train is 



 23

then modulated by the PNcode (whether Gold, Kasami, or Hadamard doesn’t 

matter at this point), which produces a series of chip values of ±1 that uniquely 

represents the I and Q symbol values.  These chip signals are then sent to the 

modulator for transmission over the channel. 

 

Figure 4.3 – Channel Simulator 

 

 

Pre-Equalizer/Channel Simulator (See Figure 4.3): 

A problem arises for orthogonal spread signals in a multi-path 

environment.  Due to the varying time delays inherent in the channel the pseudo 

noise codes begin to lose their orthogonal properties.  This can lead to inter-



 24

symbol interference that can make decoding the signal difficult if not impossible.  

An equalizer may be used to sort out the time delays and adjust itself to 

compensate for the adverse effects of the channel on the signal.  This allows the 

received signal to be processed as if little or no distortion has occurred.  Thus an 

equalizer may be used at the subscriber end to decrease the probability of error 

in decoding sent signals.   

This could also be implemented on the base station downlink but a 

separate equalizer would be required for each subscriber.  To remedy this 

problem a pre-equalizer may be implemented at the subscriber end to pre 

compensate for the expected channel distortions.  As the equalizer learns the 

channel an inverted equalizer can calculate the necessary gains so that the 

signals received at the base station appear to be orthogonal.  In this design we 

have also used a pre-equalizer to simulate a multi-path channel by specifying the 

time delays to be used.   

The pre-equalizer is implemented by passing the I and Q signals into a 

delay line multiplexer.  This delay line may be adjusted to have full or half chip 

delays.  Each tap of the delay line is then multiplied by a weight to determine the 

strength of the signal at that particular time delay.  The weighted, time delayed I 

and Q signals are then summed and are ready for carrier modulation.  Whether 

the design is used for a pre-equalizer or a channel simulator the design and 

implementation are nearly identical.  The only difference being that the pre-

equalizer weight values would update as the equalizer learns the channel 

properties. 



 25

Figure 4.4 – Carrier Modulator 

 

Carrier Modulator (See Figure 4.4): 

The carrier modulator prepares the bipolar chip values for transmission 

over a channel.  It does this by first pulse shaping and then amplitude modulating 

to the desired carrier frequency.  To shape the pulse the I and Q signals are 

again up sampled by a factor equal to an integer multiple length of the desired 

pulse symbol period.  For a square root raised cosine pulse that extends over 

twelve symbol periods we used an upsampling factor of 100.  The signals are 

then passed through the pulse shaping FIR filter.   

The square root pulse is used so that the output of the matched filter in the 

demodulator exhibits zero inter-symbol interference.  The I and the Q pulses are 

then modulated by cosine and sine carrier waves.  The frequency of these 

sinusoidal carriers may be adjusted to comply with regulatory specifications.  The 



 26

sine wave is then subtracted from the cosine wave and the combined signal is 

ready for transmission.  Due to the fact that the sinusoids are orthogonal they 

may occupy the same bandwidth without destructive interference. 

 

Figure 4.5 – Channel Simulation 

 

Channel (See Figure 4.5): 

A channel can be simulated by simply adding white Gaussian noise to the 

transmitted signal.  If a channel simulator is not used as described above another 

FIR filter can be used to simulate a multi-path environment.  The result is a 

varied time delayed, scaled, and noisy signal that simulates a realistic 

transmission channel.  The model shown allows the user to manually toggle 

between a simple AWGN channel and a Reyleigh multi-path interference.  

 



 27

Figure 4.6 – Carrier Demodulation 

 

Carrier Demodulator (See Figure 4.6): 

The carrier demodulator brings the signal back to base band and then 

reproduces the chip values by sampling at the correct times.  To accomplish this, 

the signals are first multiplied by synchronous same frequency sine waves.  The 

phase correction must occur in a synchronization circuit such as a phase lock 

loop.  For the purposes of this simulation the carrier waves were assumed to be 

fully synchronous.  This carrier wave multiplication results in a reconstructed 

base band signal as well as components at double the carrier frequency.  To 

remove these components the signals are passed through a low pass filter, 

preserving only the base band component.   

At this point the signals are ready to be passed through a matched pulse 

shaping filter v (T-t).  Since the root raised cosine pulse is symmetric the identical 

filter that is used in the modulator may be used here.  The signals exhibit zero 

inter-symbol interference and are able to be sampled to restore a chip train.  If 



 28

two samples per chip are required an additional matched filter may be used with 

a half symbol delay.  This would produce a resultant signal with half chip spacing.  

This will reduce the chip span of the equalizer, but is more robust in determining 

the actual chip value sent.  The eye diagrams and scatter plots show that the 

correct chip values were in fact detected with zero inter-symbol interference.  

These chip values are then ready to be passed to the equalizer for correction of 

the distortion caused by the channel.   

Figure 4.7 is the schematic of a signal undergoing the process of spread 

spectrum.  The system starts with the signal as bits, converts the bits to symbols, 

and creates a signal of the desired length by use of upsampling and filtering 

(signal shown in figure 4.8).  At this point the signal is multiplied by our chosen 

PNcode (labeled as code 0), and transmitted.  Once this occurs our signal should 

look exactly like noise, as shown in Figure 4.9.  In order to do this a gain block 

has been inserted.  The purpose of this block is to match the average spectral 

magnitude of the spread signal to that of the noise in the channel.  This is only 

relevant and needed to avoid interference with other narrow band signals and to 

avoid detection.  The gain of this block will be determined by L3 to set the 

appropriate probability of error. The Gaussian Noise is then added to the signal 

for real world purposes before the receiver picks up the signal (figure 4.10).  

 The first step of the receiver is to multiply the signal by the exact PNcode 

used at the transmitter.  Once this operation is complete our signal should then 

look exactly like the transmitted signal, as revealed in figure 4.11.  From there it 

is a simple matter of down sampling the signal and converting it back to bits to 



 29

process the data.  Once to this point it was not too difficult to take these concepts 

implemented in Matlab and transfer them to VHDL code.  This code will be 

available at the end of this section 4. 

Figure 4.7 

 

Figure 4.8 

 



 30

Figure 4.9 

 
 

Figure4.10

 
 



 31

Figure 4.11 

 

 

Equalization Execution: 

Next we will show the implementation of equalizing a signal through the 

use of an LMS engine (least mean squared error).  Figure 4.12 is the top-level 

diagram of our equalization simulation and represents all the blocks and there 

interconnections.  It is a representation of a multi-path environment where 

SRx=∑ai*(STx(t-di)) (For all paths indicated by subscript i).  Here ai represents the 

gain of a given received signal and di represents the corresponding delay factor.  

In this diagram (Blue = symbol rate, Green = chip rate, Red = 2X chip rate), the 

source is producing random data, which is then converted into our transmitted 

signal.  This data is up sampled and multiplied by our PNcode, this block is 



 32

producing spread spectrum.  The spread data is than passed into the next block, 

which is simulating the channel.  This block is a 6 tap FIR filter where the tap 

values represent the delayed versions of the signals.    

 

 

Figure 4.12 

 

We will now explain the contents of the equalizer block, which are 

represented in figure 4.7.  The equalization block is also a fir filter.  Because of 

design constraints we are sampling 2 times per chip (represented in the top level 

diagram).  This will give us are required 12 tap filter.  These taps are fed with the 

values given by the LMS engine into the equalizer block.   



 33

The PNcode input has been delayed by 6 chips in the upper level 

diagram.  This is in order to synchronize the filter, and center where our tap 

values represent the delayed versions of the signal.  Without this we would get 

no correlation values for the output because we would start multiplying our 

PNcode by the delayed versions before the delayed versions have time to fill the 

delay blocks.  There are two outputs from the equalization block, both of which 

represent correlation values. These values are the correlation at each tap (xi) 

and the summed correlation of all the taps (See also Figures 21 to 24). 

Figure 4.13 

 



 34

The outputs of the equalizer are run into the LMS block (figure 4.15) and 

an error block (figure 4.14).  The decision/error block is taking the summed 

correlation given in the Equalizer block and produces two outputs.  The outputs 

are the decided symbol (DD) and the error.  First we will discuss how the error 

block computes the decided symbol, which is simple sign recognition.  If the 

correlation is positive then the received symbol is a 1, if the correlation is 

negative then the symbol is a  -1.  This result is then down sampled at 2X the 

chip rate in order to take it to the symbol rate.   

This simple solution may not produce the best results.  If we happened to 

get a bad correlation value and it is the value that was down sampled then we 

will get an error.  A way to reduce the possibility of an error would be to integrate 

the correlation and dump it every symbol period.  At that point passing the signal 

through a sign block would greatly reduce the probability of error.  We did not 

implement this in our design because up to this point we have not had these 

problems.  We will no doubt have to account for that when transferring the design 

to VHDL. 

As was mention the error blocks second output is the error.  We calculate 

the error by taking the decided signal and multiplying it by a “max correlation” 

gain.  This number can be tricky to figure out, because it depends on the length 

of the PNcode and the samples per chip of the equalizer.  In our case the length 

of the PNcode=128 and we are running at 2 samples/chip.  Because we are 

sampling twice per chip we must extend our number of taps to 12 .  Each pair of 

these taps represents one delay on the channel.  Therefore our maximum 



 35

correlation = length (PNcode)*2(samples/chip)*2(taps/delay).  This maximum 

correlation allows us to subtract our decided signal from our received signal to 

give us an error value. 

Note: This formula only works if the magnitude of the sent signal is normalized to 1.   

 

Figure 4.14 

 

The error output of our error block is fed, along with the equalized data, 

into our LMS block (figure 4.15).  In this block we down sample the signal by 256 

to bring it to the symbol rate.  Once this is done the signal and the error are run 

into the LMS engine block of figure 4.15.  The LMS engine (figure 4.16) is a very 

simple way of updating the tap values.  It relies on 2 inputs and one parameter.  

 The formula for the LMS is wi[k+1]=wi+mu*error*xi.  The new weight 

values at each tap are determined using a feed back loop where the past weight 



 36

value is summed to the product of the error of the system and the correlation 

value at the given tap.  This is then multiplied by a step value mu.  Based on the 

step value of mu we can damp the system as we see fit.  

Figure 4.15 

 
Figure 4.16 

 



 37

 The following graphs show the influence mu has on the effectiveness of 

the LMS engine reducing error.  From figure 4.17 and 4.18 we see that the 

amount of time it takes to reduce the error is dramatically decreased as mu is 

increased.  However, figure 4.19 shows that if mu is increased too much than the 

amplitude of the error shoots up.  This reduces the accuracy of the LMS engine.  

It is important to choose a value for mu that will give us minimum symbol time for 

correction, while at the same time giving us reasonable values for our error 

magnitude.  These factors are why we chose mu to be equal to .01, the reasons 

for which are illustrated in graphs 4.17, 4.18, 4.19.  

Figure 4.17 

 

 

 



 38

Figure 4.18 

 

Figure 4.19 

 



 39

 

 The final graph in this section shows the entire equalization process 

starting with our source and running through the entire design to produce desired 

outputs for our signals.  Figure 4.20 shows a typical weight value progression of 

taps with good correlation.  If the system would not have produced a good 

progression of taps than we would have known that the signal being received 

was not the signal for this given receiver.  Once again going through the entire 

simulation in Matlab made the large task of coding the design in VHDL much 

easier.  This was the case because we had to simply transfer the knowledge and 

process over to VHDL, and this code is included at the end of this section. 

Figure 4.20 

 

 



 40

 To be able to decode the symbols that were transmitted, the decision 

block must compare the additive correlation to an expected correlation value.  

The following plots show the correlation for both in-phase and quadrature 

channels for Kasami and Hadamard PN codes.  Again note the autocorrelation 

properties for each code.  Although the correlation values differ in each delay of 

the equalizer their cumulative effect is obvious in the additive result.  The 

symbols that were sent are clearly detectable and are sufficient to reconstruct the 

bit stream that was transmitted. 

 

Figure 4.21 

 
 

 

 

 

 

 



 41

Figure 4.22 

 
 

Figure 4.23 

 



 42

Figure 4.24 

 

 

 

4.1.  VHDL Coding 

 
 

BINARY MULTIPLIER 

 

-- this is the model for a 8x8 multiplier 

 

library ieee; 

use ieee.std_logic_1164.all; 

 

entity Binary_Multiplier is 

 

port( MPLR :in std_logic_vector (7 downto 0); 

      MPCD :in std_logic_vector (7 downto 0); 

      RESULT :out std_logic_vector (15 downto 0)); 

end Binary_Multiplier; 

 

architecture Compact of Binary_Multiplier is 



 43

 

   signal ACarry :std_logic_vector (7 downto 0); 

 

   type Sum_Type is array (7 downto 0) of  

  std_logic_vector (7 downto 0); 

 

   signal ASum  :Sum_Type; 

   signal OPD1,OPD2 :Sum_type; 

   signal RES  :std_logic_vector (15 downto 0); 

 

 function RESIZE (A :in std_logic; 

   Size :in Natural) 

   return std_logic_vector is 

 

   variable RES: std_logic_vector (Size - 1 downto 0); 

 

 begin 

   RES:=(others=>A); 

   return (RES); 

 end; 

 

 component Generic_Full_Adder 

   port( 

     A  :in std_logic_vector (7 downto 0); 

     B  :in std_logic_vector (7 downto 0); 

     Sum :out std_logic_vector (7 downto 0); 

     Cout :out std_logic); 

 end component; 

    

begin 

 

  G2: for K in 1 to 7 generate 

 

    G3: if K=1 generate 

 Asum(0)<=RESIZE(MPLR(0),8) and MPCD; 

 RESULT(0)<=ASUM(0)(0); 

 ACarry(0)<='0'; 

    end generate; 

 

    OPD2(K)<=ACarry(K-1)&ASum(K-1)(7 downto 1); 

    OPD1(K)<=RESIZE(MPLR(K),8) and MPCD; 

 

    GFA:Generic_Full_Adder 

 port map(A=>OPD1(K),B=>OPD2(K),Sum=>ASum(K),Cout=>ACarry(K)); 

 

    RESULT(K)<=ASum(K)(0); 



 44

    

  end generate; 

   

  RESULT(15 downto 7)<= 

    ACarry(7)&ASum(7)(7 downto 0); 

 

end Compact; 

 
MUX 

 

library ieee; 

use ieee.std_logic_1164.all; 

 

entity mux is 

PORT(I_data_in_mux :in is array (15 downto 0) of std_logic_vector (7 downto 0); 

     Q_data_in_mux :in is array (15 downto 0) of std_logic_vector (7 downto 0); 

 

     I_data_out_mux   :out std_logic_vector (7 downto 0); 

     Q_data_out_mux     :out std_logic_vector (7 downto 0); 

 

     selector  :in std_logic_vector (3 downto 0)); 

end; 

 

architecture behav of mux is 

begin 

  process(selector) 

 

    signal I_temp  :std_logic_vector (7 downto 0); 

    signal Q_temp  :std_logic_vector (7 downto 0); 

 

    begin 

 case selector is 

   

  when "0000" =>  I_temp <=I_data_in_mux(0)(7 downto 0); 

    Q_temp <=Q_data_in_mux(0)(7 downto 0); 

 

  when "0001" =>  I_temp <=I_data_in_mux(1)(7 downto 0); 

    Q_temp <=Q_data_in_mux(1)(7 downto 0); 

 

  when "0010" =>  I_temp <=I_data_in_mux(2)(7 downto 0); 

    Q_temp <=Q_data_in_mux(2)(7 downto 0); 

  

  when "0011" =>  I_temp <=I_data_in_mux(3)(7 downto 0); 

    Q_temp <=Q_data_in_mux(3)(7 downto 0); 

  

  when "0100" =>  I_temp <=I_data_in_mux(4)(7 downto 0); 



 45

    Q_temp <=Q_data_in_mux(4)(7 downto 0); 

  

  when "0101" =>  I_temp <=I_data_in_mux(5)(7 downto 0); 

    Q_temp <=Q_data_in_mux(5)(7 downto 0); 

  

  when "0110" =>  I_temp <=I_data_in_mux(6)(7 downto 0); 

    Q_temp <=Q_data_in_mux(6)(7 downto 0); 

  

  when "0111" =>  I_temp <=I_data_in_mux(7)(7 downto 0); 

    Q_temp <=Q_data_in_mux(7)(7 downto 0); 

  

  when "1000" =>  I_temp <=I_data_in_mux(8)(7 downto 0); 

    Q_temp <=Q_data_in_mux(8)(7 downto 0); 

 

  when "1001" =>  I_temp <=I_data_in_mux(9)(7 downto 0); 

    Q_temp <=Q_data_in_mux(9)(7 downto 0); 

 

  when "1010" =>  I_temp <=I_data_in_mux(10)(7 downto 0); 

    Q_temp <=Q_data_in_mux(10)(7 downto 0); 

  

  when "1011" =>  I_temp <=I_data_in_mux(11)(7 downto 0); 

    Q_temp <=Q_data_in_mux(11)(7 downto 0); 

  

  when "1100" =>  I_temp <=I_data_in_mux(12)(7 downto 0); 

    Q_temp <=Q_data_in_mux(12)(7 downto 0); 

  

  when "1101" =>  I_temp <=I_data_in_mux(13)(7 downto 0); 

    Q_temp <=Q_data_in_mux(13)(7 downto 0); 

  

  when "1110" =>  I_temp <=I_data_in_mux(14)(7 downto 0); 

    Q_temp <=Q_data_in_mux(14)(7 downto 0); 

  

  when "1111" =>  I_temp <=I_data_in_mux(15)(7 downto 0); 

    Q_temp <=Q_data_in_mux(15)(7 downto 0); 

    

     end case; 

  

 I_data_out_mux <= I_temp; 

 Q_data_out_mux <= Q_temp; 

 

   end process; 

end behav; 

 



 46

COMPLEX MULTIPLY 

--Algorithm  

--(I_data+jQ_data)*(I_weight+jQ_weight)= 

--(I_data*I_weight -Q_data*Q_weight)+j(I_data*Q_weight+Q_data*I_weight) 

 

library ieee; 

use ieee.std_logic_1164.all; 

USE IEEE.std_logic_arith.all; 

use IEEE.std_logic_signed.all;   

 

entity complex_mult is 

PORT(r_clk  :IN std_logic; 

     r_Reset_N  :IN std_logic; 

 

     I_Rx_Weight :IN std_logic_vector(7 downto 0); 

     Q_Rx_Weight :IN std_logic_vector(7 downto 0); 

 

     I_data_in_CM  :IN std_logic_vector(7 downto 0); 

     Q_data_in_CM       :IN std_logic_vector(7 downto 0); 

 

     I_data_out_CM :OUT std_logic_vector(14 downto 0); 

     Q_data_out_CM :OUT std_logic_vector(14 downto 0)); 

end; 

 

architecture behav_complex_mult of complex_mult is 

 

  component Binary_Multiplier 

    port( MPLR :in std_logic_vector (7 downto 0); 

       MPCD :in std_logic_vector (7 downto 0); 

        RESULT:out std_logic_vector (15 downto 0)); 

  end component; 

 

signal R1 :std_logic_vector (15 downto 0); 

signal R2 :std_logic_vector (15 downto 0); 

signal I1 :std_logic_vector (15 downto 0); 

signal I2 :std_logic_vector (15 downto 0);  

 

begin 

 

M1: Binary_Multiplier port map 

(MPLR=>I_data_in_CM,MPCD=>I_Rx_Weight,RESULT=>R1);--R1=I_data*I_weight  

M2: Binary_Multiplier port map 

(MPLR=>Q_data_in_CM,MPCD=>Q_Rx_Weight,RESULT=>R2);--

R2=Q_data*Q_weight 



 47

M3: Binary_Multiplier port map 

(MPLR=>I_data_in_CM,MPCD=>Q_Rx_Weight,RESULT=>I1);--I1=jI_data*Q_weight 

M4: Binary_Multiplier port map 

(MPLR=>Q_data_in_CM,MPCD=>I_Rx_Weight,RESULT=>I2);--I2=jQ_data*I_weight 

 

I_data_out_CM<=R1-R2; 

Q_data_out_CM<=I1+I2; 

 

end behav_complex_mult; 

COMPLEX MULTIPLY SUM 

entity complexmultiply_sum IS 

PORT(r_clk  :IN std_logic; 

     r_Reset_N  :IN std_logic;      

 

     I_Rx_Weights :IN std_logic_vector(11 downto 0); 

     Q_Rx_Weights :IN std_logic_vector(11 downto 0);  

 

     I_Delay_bits :IN std_logic_vector(11 downto 0); 

     Q_Delay_bits       :IN std_logic_vector(11 downto 0); 

 

     I_Summed  :OUT std_logic; 

     Q_Summed  :OUT std_logic); 

END complexmultiply_sum; 

 

ARCHITECTURE behav of complexmultiply_sum IS 

 

begin 

 process(r_clk,r_Reset_N) 

 

FULL ADDER 

 

-- This is an entity for a 1-bit full_adder 

 

library ieee; 

use ieee.std_logic_1164.all; 

 

entity Full_Adder is 

Port(X,Y,Cin:in std_logic; S,C:out std_logic); 

end Full_Adder; 

 

architecture DataFlow of Full_Adder is 

begin 

 



 48

S<=(X xor Y) xor Cin; 

C<=(X and Y) or (X and Cin) or (Y and Cin); 

 

end DataFlow; 

 

GENERIC FULL ADDER 

 

--This is a 8 bit full Adder 

 

library ieee; 

use ieee.std_logic_1164.all; 

 

entity Generic_Full_Adder is 

port(A  :in std_logic_vector (7 downto 0); 

     B   :in std_logic_vector (7 downto 0); 

     Sum :out std_logic_vector (7 downto 0); 

     Cout :out std_logic);  

 

end Generic_Full_Adder; 

 

architecture CONC of Generic_Full_Adder is 

 

component Full_Adder 

   Port(X,Y,Cin:in std_logic; S,C:out std_logic); 

end component; 

 

signal CARRY :std_logic_vector(8 downto 0); 

 

begin 

 

CARRY(0)<='0'; 

Cout<=CARRY(8); 

 

G1: for K in 0 to 7 generate 

  FA:Full_Adder port map (X=>A(K),Y=>B(K),Cin=>CARRY(K), 

     S=>Sum(K),C=>CARRY(K+1)); 

   end generate; 

 

end CONC; 

 

DELAY LINE MULTIPLY 

library ieee; 

use ieee.std_logic_1164.all; 

 

entity delayline_multiply_sum is 

port(r_clk  :in std_logic; 



 49

     r_Reset_N  :in std_logic; 

  

     Q_in  :in std_logic_vector(7 downto 0); 

     I_in  :in std_logic_vector(7 downto 0); 

 

     I_Rx_Weight_top :in is array (15 downto 0) of std_logic_vector (7 downto 0); 

     Q_Rx_Weight_top    :in is array (15 downto 0) of std_logic_vector (7 downto 0); 

  

     I_out  :out std_logic_vector(19 downto 0); 

     Q_out  :out std_logic_vector(19 downto 0); 

 

     Sum_rdy_stb :out std_logic); 

      

end delayline_multiply_sum; 

 

architecture behav of delayline_multiply_sum is 

  component complex_mult 

    port(r_clk  :IN std_logic; 

     r_Reset_N  :IN std_logic;      

 

     I_Rx_Weight :IN std_logic_vector(7 downto 0); 

     Q_Rx_Weight :IN std_logic_vector(7 downto 0);  

 

     I_data_in_CM  :IN std_logic_vector(7 downto 0); 

     Q_data_in_CM       :IN std_logic_vector(7 downto 0); 

 

     I_data_out_CM :OUT std_logic_vector(14 downto 0); 

     Q_data_out_CM :OUT std_logic_vector(14 downto 0)); 

  end component; 

 

  component mux 

    port(I_data_in_mux:in is array (15 downto 0) of std_logic_vector (7 downto 0); 

     Q_data_in_mux :in is array (15 downto 0) of std_logic_vector (7 downto 0); 

 

     I_data_out_mux   :out std_logic_vector (7 downto 0); 

     Q_data_out_mux     :out std_logic_vector (7 downto 0); 

 

     selector  :in std_logic_vector (3 downto 0)); 

  end component; 

 

  component delay_line 

    port(r_clk  :IN std_logic; 

     r_Reset_N  :IN std_logic;      

     I_data_in_DL :IN std_logic_vector (7 downto 0); 

     Q_data_in _DL      :IN std_logic_vector (7 downto 0); 

 



 50

     I_data_out_DL :OUT is array (15 downto 0) of std_logic_vector (7 downto 0); 

     Q_data_out_DL :OUT is array (15 downto 0) of std_logic_vector (7 downto 0); 

 

  end component; 

 

begin 

 

  variable select_line :std_logic_vector(3 downto 0) =:"0000"; 

  signal I_weights :std_logic_vector(7 downto 0); 

  signal  Q_weights :std_lgoic_vector(7 downto 0); 

 

  CM1:complex_mult 

    port 

map(r_clk,r_Reset_N,I_weights,Q_weights,I_data_out_mux,Q_data_out_mux,I_out,Q_o

ut); 

 

  MUX1:mux 

    port map(I_data_out_DL,Q_data_out_DL,I_data_in_CM,Q_data_in_CM,select_line); 

 

  MUX2:mux 

    port map(I_Rx_Weight_top,Q_Rx_Weight_top,I_weights,Q_weights,select_line); 

 

  DL1:delay_line 

    port map(r_clk,r_Reset_N,I_in,Q_in,I_data_in_mux,Q_data_in_mux); 

 

 

  variable I_total,Q_total :integer :=0; 

 

initialize:process(r_Reset_N) 

  

 if(r_Reset_N='0') then 

   select_line:="0000" 

   I_total,Q_total:=0; 

  

end process; 

  

Summation:process(r_clk'event and r_clk='1') 

 

 variable k :integer:=15; 

 

 Sum_rdy_stb=>'0';  

  

 SUM_LOOP:while k>0 loop 

     

    I_total:=I_total+integer(I_data_out_CM); 

    Q_total:=Q_total+integer(Q_data_out_CM); 



 51

  

    select_line=>std_logic_vector(3 downto 0)(k+1); 

   

 end loop; 

 

 I_out=>std_logic_vector(19 downto 0)(I_total); 

 Q_out=>std_logic_vector(19 downto 0)(I_total); 

 Sum_rdy_stb=>'1';      

 

end process; 

end behav; 

 

DISPREADER 

 

LIBRARY IEEE; 

USE IEEE.std_logic_1164.all; 

USE IEEE.std_logic_arith.all; 

use IEEE.std_logic_signed.all;   

---------------------------------------------------------------------------- 

--                            ENTITY DECLARATION                          -- 

----------------------------------------------------------------------------  

ENTITY desprd IS 

PORT(r_clk                   : IN  std_logic; 

     r_Reset_N               : IN  std_logic; 

     r_Rx5p44Stb             : IN  std_logic; 

     -------------------------------------------------------------------------- 

     r_IRxDPSScaled_mc8      : IN  std_logic_vector(7 DOWNTO 0); 

     r_QRxDPSScaled_mc8      : IN  std_logic_vector(7 DOWNTO 0); 

     -------------------------------------------------------------------------- 

     r_uP_ForcePNSelNow      : IN  std_logic; 

     r_uP_SelFwdSidePNCode_N : IN  std_logic; 

     r_uP_ChanPNCodeEnable   : IN  std_logic_vector(7 DOWNTO 0); 

     -------------------------------------------------------------------------- 

     r_uP_PNCodeNewWrStb     : IN  std_logic; 

     r_uP_PNCodeWord         : IN  std_logic_vector(15 DOWNTO 0); 

     r_uP_PNCodeAddr         : IN  std_logic_vector(15 DOWNTO 0); 

     -------------------------------------------------------------------------- 

     r_uP_PNCodeRdBank       : IN  std_logic_vector(1 DOWNTO 0); 

     r_uP_PNCodeNewRdStb     : IN  std_logic; 

     r_uP_PNCodeReadValue    : OUT std_logic_vector(15 DOWNTO 0); 

     -------------------------------------------------------------------------- 

     r_ScrmRAMRdAddr         : IN  std_logic_vector(10 DOWNTO 0); 

     r_ScrmRAMData           : OUT std_logic; 

     -------------------------------------------------------------------------- 

     r_Chan4PN               : OUT std_logic; 

     r_IChan_sign_inv        : OUT std_logic; 



 52

     r_QChan_sign_inv        : OUT std_logic; 

     -------------------------------------------------------------------------- 

     r_DesprdSFEpoch         : IN  std_logic; 

     r_DesprdSymbStb         : IN  std_logic; 

     r_SymbExtractStb        : IN  std_logic; 

     r_SymbDataReadyonFall   : OUT std_logic; 

     r_IDesprdData           : OUT std_logic_vector(15 DOWNTO 0); 

     r_QDesprdData           : OUT std_logic_vector(15 DOWNTO 0)); 

END desprd; 

 

--------------------------------------------------------------------------- 

--                            ARCHITECTURE DECLARATION                   -- 

--------------------------------------------------------------------------- 

ARCHITECTURE behav of desprd IS 

 

  CONSTANT PNCodeSideStartAddr : std_logic_vector(15 DOWNTO 0) := X"0640"; 

  CONSTANT PNCodeNormStartAddr : std_logic_vector(15 DOWNTO 0) := X"0660"; 

   

  -- first create a block ram to hold the PN codes 

 

  TYPE PNRAM2048x1Type IS ARRAY (0 TO 2047) OF std_logic; 

  SIGNAL r_PNRAM2048x1 : PNRAM2048x1Type; 

  ATTRIBUTE syn_ramstyle : string; 

  ATTRIBUTE syn_ramstyle OF r_PNRAM2048x1 : SIGNAL IS "no_rw_check"; 

  SIGNAL r_ScrmRAM2048x1 : PNRAM2048x1Type; 

  ATTRIBUTE syn_ramstyle OF r_ScrmRAM2048x1 : SIGNAL IS "no_rw_check"; 

 

  SIGNAL r_uP_PNRAMAddr_r : std_logic_vector(10 DOWNTO 0); 

  SIGNAL r_uP_PNRAMRdData : std_logic; 

  SIGNAL r_PNRAMRdAddr_r  : std_logic_vector(10 DOWNTO 0); 

  SIGNAL r_PNRAMRdData    : std_logic; 

  ----------------------------------------------------------------------------- 

  SIGNAL r_uP_ScrmRAMAddr   : std_logic_vector(10 DOWNTO 0); 

  SIGNAL r_uP_ScrmRAMAddr_r : std_logic_vector(10 DOWNTO 0); 

  SIGNAL r_uP_ScrmRAMRdData : std_logic; 

  SIGNAL r_ScrmRAMRdAddr_r  : std_logic_vector(10 DOWNTO 0); 

   

  -- now create some Shiftreg 

  TYPE ShiftReg7x16Type IS ARRAY (6 DOWNTO 0) OF std_logic_vector(15 

DOWNTO 0); 

  SIGNAL r_IDesprdShftReg7x16 : ShiftReg7x16Type; 

  SIGNAL r_QDesprdShftReg7x16 : ShiftReg7x16Type; 

 

  SIGNAL r_FinalStb  : std_logic; 

  TYPE ShiftReg8x16Type IS ARRAY (7 DOWNTO 0) OF std_logic_vector(15 

DOWNTO 0); 



 53

  SIGNAL r_ISymbolShftReg8x16 : ShiftReg8x16Type; 

  SIGNAL r_QSymbolShftReg8x16 : ShiftReg8x16Type; 

 

  -- despread8chan process signals 

  SIGNAL r_PNRAMRdAddr     : std_logic_vector(10 DOWNTO 0); 

  SIGNAL r_DesprdStb       : std_logic; 

  SIGNAL r_CyCnt           : std_logic_vector(3 DOWNTO 0); 

  SIGNAL r_Rx2p72Period    : std_logic; 

  SIGNAL r_PNCodeDt_R      : std_logic; 

  SIGNAL r_SymbStbPeriod   : std_logic; 

  SIGNAL r_PNCnt           : std_logic_vector(2 DOWNTO 0); 

  SIGNAL r_SymbStbPeriod_r : std_logic; 

  SIGNAL r_IDesprdData_mc2 : std_logic_vector(15 DOWNTO 0); 

  SIGNAL r_QDesprdData_mc2 : std_logic_vector(15 DOWNTO 0); 

  SIGNAL r_IRxDPSScaled_r  : std_logic_vector(7 DOWNTO 0); 

  SIGNAL r_QRxDPSScaled_r  : std_logic_vector(7 DOWNTO 0); 

 

  -- pn ram read write process 

  TYPE RAMWrRdStateType IS 

(WaitForWrRdStb,DoWrite,GoWrite16,DoSecWrite,DoRead, 

                            GoRead16,GetLastBitOfRead); 

  SIGNAL r_RAMWrRdState : RAMWrRdStateType; 

  attribute syn_encoding                   : string; 

  attribute syn_encoding of r_RAMWrRdState : signal is "safe"; 

 

  SIGNAL r_WriteShiftReg        : std_logic_vector(15 DOWNTO 0); 

  SIGNAL r_uP_PNRAMAddr         : std_logic_vector(10 DOWNTO 0); 

  SIGNAL r_NumWrites_ms1        : std_logic; 

  SIGNAL r_uP_RAMWrStb          : std_logic; 

  SIGNAL r_uP_PNCodeReadValue_i : std_logic_vector(15 DOWNTO 0); 

 

BEGIN 

 

  -- PN RAM creation 

  PNRAMP: PROCESS (r_clk) 

  BEGIN 

    IF r_clk'event AND r_clk = '1' THEN 

      IF r_uP_RAMWrStb = '1' THEN 

        r_PNRAM2048x1(conv_integer('0' & r_uP_PNRAMAddr)) <= r_WriteShiftReg(0); 

      END IF; 

      r_uP_PNRAMAddr_r <= r_uP_PNRAMAddr; 

      r_PNRAMRdAddr_r  <= r_PNRAMRdAddr; 

    END IF; 

  END PROCESS PNRAMP; 

 



 54

  r_uP_PNRAMRdData <= r_PNRAM2048x1(conv_integer('0' & 

r_uP_PNRAMAddr_r)); 

  r_PNRAMRdData    <= r_PNRAM2048x1(conv_integer('0' & r_PNRAMRdAddr_r)); 

 

  r_uP_ScrmRAMAddr <= r_uP_PNRAMAddr; 

   

  -- Scrm RAM creation 

  ScrmRAMP: PROCESS (r_clk) 

  BEGIN 

    IF r_clk'event AND r_clk = '1' THEN 

      IF r_uP_RAMWrStb = '1' THEN 

        r_ScrmRAM2048x1(conv_integer('0' & r_uP_ScrmRAMAddr)) <= 

r_WriteShiftReg(0); 

      END IF; 

      r_uP_ScrmRAMAddr_r <= r_uP_ScrmRAMAddr; 

      r_ScrmRAMRdAddr_r  <= r_ScrmRAMRdAddr; 

    END IF; 

  END PROCESS; 

 

  r_uP_ScrmRAMRdData <= r_ScrmRAM2048x1(conv_integer('0' & 

r_uP_ScrmRAMAddr_r)); 

  r_ScrmRAMData      <= r_ScrmRAM2048x1(conv_integer('0' & 

r_ScrmRAMRdAddr_r)); 

 

 

-- SLR creation 

  SLRDesprdP: PROCESS (r_clk) 

  BEGIN 

    IF r_clk'event AND r_clk = '1' THEN 

      IF r_DesprdStb = '1' THEN 

        r_IDesprdShftReg7x16 <= r_IDesprdShftReg7x16(5 DOWNTO 0) & 

                                                                r_IDesprdData_mc2; 

        r_QDesprdShftReg7x16 <= r_QDesprdShftReg7x16(5 DOWNTO 0) & 

                                                                r_QDesprdData_mc2; 

      END IF; 

    END IF; 

  END PROCESS SLRDesprdP; 

 

  r_FinalStb <= (r_SymbStbPeriod_r AND r_DesprdStb) OR r_SymbExtractStb; 

 

  SLRFinalP: PROCESS (r_clk) 

  BEGIN 

    IF r_clk'event AND r_clk = '1' THEN 

      IF r_FinalStb = '1' THEN 

        r_ISymbolShftReg8x16 <= r_ISymbolShftReg8x16(6 DOWNTO 0) & 

                                                             r_IDesprdShftReg7x16(6); 



 55

        r_QSymbolShftReg8x16 <= r_QSymbolShftReg8x16(6 DOWNTO 0) & 

                                                             r_QDesprdShftReg7x16(6); 

      END IF; 

    END IF; 

  END PROCESS; 

 

  r_IDesprdData <= r_ISymbolShftReg8x16(7); 

  r_QDesprdData <= r_QSymbolShftReg8x16(7); 

 

  Despread8ChanP: PROCESS (r_clk, r_Reset_N) 

    VARIABLE PNSign_int_v : integer range -1 TO 1; 

    VARIABLE ISpreadData_v : std_logic_vector(15 DOWNTO 0); 

    VARIABLE QSpreadData_v : std_logic_vector(15 DOWNTO 0); 

  BEGIN 

    IF r_Reset_N = '0' THEN 

      r_PNRAMRdAddr     <= (OTHERS => '0'); 

      r_DesprdStb       <= '0'; 

      r_CyCnt           <= (OTHERS => '0'); 

      r_Rx2p72Period    <= '0'; 

      r_PNCodeDt_R      <= '0'; 

      r_SymbStbPeriod   <= '0'; 

      r_PNCnt           <= (OTHERS => '0'); 

      r_SymbStbPeriod_r <= '0'; 

      r_IDesprdData_mc2 <= (OTHERS => '0'); 

      r_QDesprdData_mc2 <= (OTHERS => '0'); 

      r_IRxDPSScaled_r  <= (OTHERS => '0'); 

      r_QRxDPSScaled_r  <= (OTHERS => '0'); 

      r_Chan4PN         <= '0'; 

      r_IChan_sign_inv  <= '0'; 

      r_QChan_sign_inv  <= '0'; 

    ELSIF r_clk'event AND r_clk = '1' THEN 

      PNSign_int_v := 0; 

      IF r_DesprdSFEpoch = '1' OR r_uP_ForcePNSelNow = '1' THEN 

        r_PNRAMRdAddr(10) <= NOT r_uP_SelFwdSidePNCode_N; 

      END IF; 

 

      r_DesprdStb <= NOT r_DesprdStb; 

      r_CyCnt <= r_CyCnt + 1; 

      IF r_Rx5p44Stb = '1' THEN 

        r_CyCnt <= (OTHERS => '0'); 

        r_DesprdStb <= '0'; 

        r_Rx2p72Period <= NOT r_Rx2p72Period; 

        IF r_Rx2p72Period = '1' THEN 

          r_PNRAMRdAddr(9 DOWNTO 3) <= r_PNRAMRdAddr(9 DOWNTO 3) + 1; 

        END IF; 

      END IF; 



 56

 

      IF r_DesprdStb = '1' THEN 

        r_PNRAMRdAddr(2 DOWNTO 0) <= r_PNRAMRdAddr(2 DOWNTO 0) + 1; 

      END IF; 

      IF r_DesprdSymbStb = '1' THEN 

        r_Rx2p72Period <= '0'; 

        r_PNRAMRdAddr(9 DOWNTO 0) <= (OTHERS => '0'); 

      END IF; 

      -- reg PN code data from ram 

      r_PNCodeDt_R <= r_PNRAMRdData; 

       

      IF r_DesprdSymbStb = '1' THEN 

        r_SymbStbPeriod <= '1'; 

      ELSIF r_Rx5p44Stb = '1' THEN 

        r_SymbStbPeriod <= '0'; 

      END IF; 

       

      -- now if the channel is enable despread the data 

      IF r_DesprdStb = '1' THEN 

        r_PNCnt <= r_PNCnt + 1; 

        IF r_uP_ChanPNCodeEnable(conv_integer('0' & r_PNCnt)) = '1' THEN 

          IF r_PNCodeDt_R = '1' THEN 

            PNSign_int_v := -1; 

          ELSIF r_PNCodeDt_R = '0' THEN 

            PNSign_int_v := 1; 

          ELSE 

            PNSign_int_v := 0; 

          END IF; 

        ELSE 

          PNSign_int_v := 1; 

        END IF; 

 

        IF r_PNCnt = "000" THEN 

          r_Chan4PN <= r_PNCodeDt_R; 

          r_IChan_sign_inv <= NOT r_IRxDPSScaled_r(r_IRxDPSScaled_r'high); 

          r_QChan_sign_inv <= NOT r_QRxDPSScaled_r(r_QRxDPSScaled_r'high); 

        END IF; 

           

        ISpreadData_v := conv_std_logic_vector(PNSign_int_v * 

                                               conv_integer(r_IRxDPSScaled_r),16); 

        QSpreadData_v := conv_std_logic_vector(PNSign_int_v * 

                                               conv_integer(r_QRxDPSScaled_r),16); 

 

        r_SymbStbPeriod_r <= r_SymbStbPeriod; 

 

        IF r_SymbStbPeriod_r = '1' THEN 



 57

          r_IDesprdData_mc2 <= ISpreadData_v; 

          r_QDesprdData_mc2 <= QSpreadData_v; 

        ELSE 

          r_IDesprdData_mc2 <= r_IDesprdShftReg7x16(6) + ISpreadData_v; 

          r_QDesprdData_mc2 <= r_QDesprdShftReg7x16(6) + QSpreadData_v; 

        END IF; 

      END IF; 

       

      -- reg despread data so aligned with PN Code Data 

      IF r_CyCnt = X"1" THEN 

        r_PNCnt <= (OTHERS => '0'); 

        r_IRxDPSScaled_r <= r_IRxDPSScaled_mc8; 

        r_QRxDPSScaled_r <= r_QRxDPSScaled_mc8; 

      END IF; 

    END IF; 

  END PROCESS Despread8ChanP; 

 

  r_SymbDataReadyonFall <= r_SymbStbPeriod_r; 

 

  -- now do the goofy uP PN read and write stuff to simplify life for the uP 

  PNRAMuPWriteP: PROCESS (r_clk, r_Reset_N) 

    VARIABLE PNCodeNorAddr_v : std_logic_vector(15 DOWNTO 0); 

    VARIABLE PNRAMAddr_v     : std_logic_vector(3 DOWNTO 0); 

  BEGIN 

    IF r_Reset_N = '0' THEN 

      r_RAMWrRdState         <= WaitForWrRdStb; 

      r_WriteShiftReg        <= (OTHERS => '0'); 

      r_uP_PNRAMAddr         <= (OTHERS => '0'); 

      r_NumWrites_ms1        <= '0'; 

      r_uP_RAMWrStb          <= '0'; 

      r_uP_PNCodeReadValue_i <= (OTHERS => '0'); 

    ELSIF r_clk'event AND r_clk = '1' THEN 

      CASE r_RAMWrRdState IS 

        WHEN WaitForWrRdStb => 

          IF r_uP_PNCodeNewWrStb = '1' THEN 

            r_RAMWrRdState <= DoWrite; 

          ELSIF r_uP_PNCodeNewRdStb = '1' THEN 

            r_RAMWrRdState <= DoRead; 

          END IF; 

        WHEN DoWrite => 

          -- calculate the write address 

          r_WriteShiftReg <= r_uP_PNCodeWord; 

          PNCodeNorAddr_v := r_uP_PNCodeAddr - PNCodeSideStartAddr; 

            -- this will have to 

            -- be changed when more channels added ie set from chan No. Pins 

          -- the word of the PN code goes in bit 9:7 these are bits 4:2 of the 



 58

          -- Normalized Address 

          r_uP_PNRAMAddr(9 DOWNTO 7) <= PNCodeNorAddr_v(4 DOWNTO 2); 

          IF PNCodeNorAddr_v(8 DOWNTO 6) = "000" THEN 

            -- pn code is for chan 4 (0) either upper or lower 0 is upper 

            r_uP_PNRAMAddr(10) <= NOT PNCodeNorAddr_v(5); 

            r_uP_PNRAMAddr(2 DOWNTO 0) <= "000"; 

            r_NumWrites_ms1 <= '0'; 

          ELSE 

            PNRAMAddr_v := PNCodeNorAddr_v(8 DOWNTO 5) - 1; 

            r_uP_PNRAMAddr(2 DOWNTO 0) <= PNRAMAddr_v(2 DOWNTO 0); 

            r_NumWrites_ms1 <= '1'; 

            r_uP_PNRAMAddr(10) <= '0'; 

          END IF; 

           

          r_uP_PNRAMAddr(6 DOWNTO 3) <= "0000"; 

          r_uP_RAMWrStb <= '1'; 

          r_RAMWrRdState <= GoWrite16; 

        WHEN GoWrite16 => 

          r_uP_PNRAMAddr(6 DOWNTO 3) <= r_uP_PNRAMAddr(6 DOWNTO 3) + 1; 

          r_WriteShiftReg <= '0' & r_WriteShiftReg(15 DOWNTO 1); 

          IF r_uP_PNRAMAddr(6 DOWNTO 3) = X"f" THEN  

            r_uP_RAMWrStb <= '0'; 

            IF r_NumWrites_ms1 = '0' THEN  

              r_RAMWrRdState <= WaitForWrRdStb; 

            ELSE 

              r_NumWrites_ms1 <= '0'; 

              r_RAMWrRdState <= DoSecWrite; 

            END IF; 

          END IF; 

        WHEN DoSecWrite => 

          r_uP_PNRAMAddr(10) <= '1'; 

          r_uP_RAMWrStb <= '1'; 

          r_uP_PNRAMAddr(6 DOWNTO 3) <= "0000"; 

          r_WriteShiftReg <= r_uP_PNCodeWord; 

          r_RAMWrRdState <= GoWrite16; 

        -- now do a read from ram when requested same funny way 

        WHEN DoRead => 

          PNCodeNorAddr_v := r_uP_PNCodeAddr - PNCodeNormStartAddr; 

          -- the word of the PN code goes in bit 9:7 these are bits 4:2 of the 

          -- Normalized Address 

          r_uP_PNRAMAddr(10)         <= r_uP_PNCodeRdBank(0); 

          r_uP_PNRAMAddr(9 DOWNTO 7) <= PNCodeNorAddr_v(4 DOWNTO 2); 

          r_uP_PNRAMAddr(2 DOWNTO 0) <= PNCodeNorAddr_v(7 DOWNTO 5); 

          r_uP_PNRAMAddr(6 DOWNTO 3) <= "0000"; 

          r_RAMWrRdState <= GoRead16; 

        WHEN GoRead16 => 



 59

          r_uP_PNRAMAddr(6 DOWNTO 3) <= r_uP_PNRAMAddr(6 DOWNTO 3) + 1; 

          IF r_uP_PNCodeRdBank(1) = '0' THEN 

            r_uP_PNCodeReadValue_i <= r_uP_PNRAMRdData & 

                                      r_uP_PNCodeReadValue_i(15 DOWNTO 1); 

          ELSE 

            r_uP_PNCodeReadValue_i <= r_uP_ScrmRAMRdData & 

                                      r_uP_PNCodeReadValue_i(15 DOWNTO 1); 

          END IF; 

          IF r_uP_PNRAMAddr(6 DOWNTO 3) = X"f" THEN  

            r_RAMWrRdState <= GetLastBitOfRead; 

          END IF; 

        WHEN GetLastBitOfRead => 

          IF r_uP_PNCodeRdBank(1) = '0' THEN 

            r_uP_PNCodeReadValue_i <= r_uP_PNRAMRdData & 

                                      r_uP_PNCodeReadValue_i(15 DOWNTO 1); 

          ELSE 

            r_uP_PNCodeReadValue_i <= r_uP_ScrmRAMRdData & 

                                      r_uP_PNCodeReadValue_i(15 DOWNTO 1); 

          END IF; 

          r_RAMWrRdState <= WaitForWrRdStb; 

        WHEN OTHERS => NULL; 

      END CASE; 

    END IF; 

  END PROCESS PNRAMuPWriteP; 

 

  r_uP_PNCodeReadValue <= r_uP_PNCodeReadValue_i; 

   

END  behav; 

 

 

(IMPORTANT NOTICE:  The dispreader code was an already existing code from L3 and 

as part of the project we needed to extend it to a 16 channel dispread.   

We’ve included the code because we used it in the top level design and extended it their 

although the code is L3’s.  All other VHDL code included was what we have written.) 

 

5.0.  Final scope of work statement. 
 
 To say that this project was or has been educational would be an 

understatement.  Coming up to date on the concepts behind the project, such as 

spread spectrum and equalization was quite the chore itself.  Not to mention 

understanding the system L3 already had in place and trying to program 



 60

upgrades for that system in a language that we had never even used.  In 

retrospect though, that learning process was the most rewarding part of this 

design experience.  It gave us a taste of what a real working environment will be 

like.  Most likely wherever we start our careers at, we will be experiencing a 

repeated exercise of undertaking projects that involve an understanding of 

foreign concepts.  So this Senior Design has given us a heads up on what to 

expect.   

It has also been beneficial to see how a real work environment functions 

and how common drastic changes can be.  It was rather frustrating to find out 70 

percent of the way through our project that the upgrade for L3 had been put on 

hold.  In fact the whole subsidiary of L3 (Primewave) had been done away with 

for financial reasons.  So not only had we lost the support and much needed 

updates for our design, but our design in essence would never be finished while 

we were involved.  Even though we were able to code our required blocks in 

VHDL and come to an understanding of their functions and see them be 

successful with our own weights and PN codes, we never had, and probably 

never will have, the opportunity to see them used successfully in a real world 

application.  Of course our frustrations do not compare to those of the employees 

of Primewave who have been working for years on this project and now have 

been moved to the defense side of L3.  Once again this helped to prepare us for 

the real world and what to expect. 

While the majority of our project was successful, not only for educational 

purposes but also for the actual programming in VHDL (and Matlab), we were 



 61

unable to finish everything we started out wanting to do.  It would have been 

most rewarding to see our code integrated with L3’s and burned onto the Xilinx 

chip and then have it tested in a real world environment.  One thing not having 

the access to the necessary hardware to test our design did for us was make our 

preliminary research more useful.  At the beginning of the project we were 

expecting to use L3’s PN codes and weights for simulation.  Since we no longer 

had that luxury we had to implement our coding using our own PN codes.  Since 

we had researched these codes and understood their individual strengths and 

weaknesses we were able to effectively choose a code that helped us get 

positive results we would not have otherwise had.  This gave us some measure 

of satisfaction to see that our time was spent working on a successful system 

even though it was not in the environment it was originally intended for. 

In looking back on the project there is definitely some things we would do 

differently, starting with the actual choosing of the project.  In the future it would 

be nice to start a project that did not require us to be so dependant on L3 for 

help, especially since L3 was 2 hours away.  This made it very difficult to find 

times when they would be able to help us and give needed support.  Also we 

would have chosen a project that we knew at least a little bit about so we could 

spend some large amounts of time working on the project, without external help, 

and see drastic improvements.  Probably most important would have been to 

choose a project where if the company did go under we would still be able to 

accomplish all of our original goals.  There seemed to be many times where we 

felt way in over our heads and even though help did come eventually it was a 



 62

stressful experience.  It was a good experience but bad enough to make us 

weary of wanting to undertake a similar project. 

It became apparent that most other students doing senior designs 

approached it in a much more beneficial way.  Either including it with another 

class where they received credit for both cases, or more importantly as part of an 

internship where they got paid for their project and on the job training for their 

project.  If we had the chance to pick a project again we would definitely try and 

take full advantage of either one of the previously mentioned processes. 

  

6.0.      COST ESTIMATION: 
 
 One of the nicest things about this project is that money is not a big factor.  

At the beginning of the project L3 was providing the funding for a test board and 

the hardware needed for the upgrade.  After we lost access to their laboratory 

and there was no longer a board to test the code on this was not an issue, but 

still just as cheap.  The labor for the project is primarily educational (translation = 

free), so L3 had no expenses for the labor.  Since the program was put on hold 

L3 of course will not receive a finalized working prototype (but will receive our 

code), which proves the theory that you get what you pay for.  The only materials 

we had to pay for were the printouts for the preliminary and final design reports 

and the poster printout.  These expenses totaled to be about $20.00. 

Our only additional cost for the project has been traveling back and forth 

from Logan to Salt Lake City for updates and information at L3.  We did not travel 

down to L3 as often as we had first anticipated, mainly because we did not have 



 63

the opportunity to test the design.  Still we went down to Salt Lake a half a dozen 

times.  The average expense of each trip was $15.00 now that gas prices are so 

high.  So between the printouts and the gas for travel our project only cost us a 

little over $110.00, about $60.00 more than was necessary (fortunately there was 

no call for psychiatric assistance or the illegal us of drugs).  

 

7.0.    PROJECT MANAGEMENT SUMMARY: 

 

 7.1.  Tasks. 
 

Gaining an understanding of the system and the concepts behind 

equalization and spread spectrum was the first task that needed to be 

accomplished.  Doing this gave us the ability to create a simplified working 

version in Matlab that deepened our understanding of the design.  The next task 

was to learn the programming language we would be coding the design in, 

VHDL.  Once completed it was a matter of molding the two learning processes 

and transferring what we had accomplished in Matlab to VHDL, which involved 

more than just a simple data transfer.  We needed to program each block we had 

been assigned individually and then compile them into one working system with 

the help of test benches and other blocks in the design from L3.  Originally the 

biggest obstacle in accomplishing this task was fitting the timing and design 

specifications.  One of the reasons for this is that the code that L3 wrote was 

simulated in a different version of Model Sim than the version that we have been 

using.  This has created some unique problems in trying to integrate our design 

with L3’s.  Also without the complete working L3 design it was impossible to 

ensure that all the timing and fitting specifications were met.   



 64

The biggest disappointment in loosing access to L3’s laboratories and 

hardware was not being able to burn the software into the Xilinx chip and run a 

hardware test of the design.  Although not very probable it would be nice if in the 

future we had the opportunity to test our design in the PrimeWave lab and see if 

we could get it to communicate with a base station to verify that our equalization 

implementation worked in the real world.   

The following is an outline of the mentioned tasks, both complete and 

incomplete, and the schedule we followed to bring the project to its current point. 

 

7.1.1.  Solidify learning of VHDL, equalization and spread spectrum. 
 
7.1.2.  Write code for six blocks outlined in work breakdown structure that we 

 are responsible for. 

7.1.3.  Synthesize individual blocks to verify they are working 
 
7.1.4.  Synthesize entire design in VHDL to verify blocks are working together  
 
           correctly. 
 
7.1.5.  Burn VHDL code into the Xlinx Spartan 300 (incomplete) 
 
7.1.6. Testing and debugging of complete hardware system at L3 to ensure  
 
 design is successful (incomplete). 
 
 7.1.7.  Prepare Final Design Report and Give Final Design Presentation.   
 
  

 The Gant chart below is split up into week intervals (except for April and 

May), and the tasks are crossed out for their latest possible completion time. 

 



 65

 

     7.2.  Facilities. 
 

For the entire project we used the computer laboratories, including the 

Sun laboratories, at USU for our work.  Since primewave was shut down we did 

not have the opportunity of using the facilities down at L3.  

       7.3.  Personnel. 

 In order for our team to have been able to complete this project we 

needed to obtain the following skills.  Most of the concepts of the design, like 

spectral spreading and equalization, were foreign to us.  We have gained an 

understanding of these terms through the help of two Professors at USU, Dr. 

Jacob Gunther and Dr. Tamal Bose.  Their help has made it possible for us to 

move from the conceptual design into the actual design.  

Since the entire design has been coded in VHDL we needed to become 

familiar with this language.  Dr. Alan Shaw, also a professor at Utah State 

Task/week DEC2 DEC3 DEC4 JAN1 JAN2 JAN3 JAN4 FEB1 FEB2 FEB3 FEB4 MAR1 MAR2 MAR3 MAR4 APR MAY 

7.1.1 XXX XXX XXX XXX XXX             

7.1.2    XXX XXX XXX XXX XXX XXX XXX        

7.1.3        XXX XXX XXX XXX       

7.1.4            XXX      

7.1.5            XXX      

7.1.6             XXX XXX XXX   

7.1.7                XXX XXX 



 66

University, gave us some books on the VHDL language that proved to be 

invaluable resources.  Robert Taggart was the team member in charge of the 

programming design in Matlab.  He compiled the block diagrams of all the team 

members and performed the simulations that gave us the final working results.  

He was also responsible for our Poster presentation.   

Brent Haslem served as the information specialist for the project.  He  

continued to be our primary liaison with L3.  He was also responsible for 

combining all of the team members VHDL code and transferring the entire design 

from Matlab to VHDL.  His main task is to ensure that are design integrates 

properly with the existing design of L3.   

As our coding progresses we will need to continually ensure our design is 

meeting the specifications for the Xilinx Spartan 300.  This involved obtaining 

from L3 compact disks that provided coding of the Xilinx and the Microblaze.  

Since the project spanned over such a long period of time it was important that 

we stay on schedule with tasks leading up to the completion of the project.  

Brandon Wilson, who is serving as the project manager, is also responsible to 

make certain all time constraints are met.  This includes project presentations 

and reports, deliverables of the final design, and all other project management 

responsibilities.   

As each team member successfully fulfills his responsibility, we will 

successfully complete the design.  To guarantee this, each member of the team 

was involved in all three of specific personnel tasks, creating a system of checks 



 67

and balances.  This also accounted for times when one task needed more work 

than another one.   

The conclusion of the project management section is displayed in the two 

figures below which give the individuals tasks that will have to be completed to 

finish this project. 

WORK BREAKDOWN STRUCTURE CHART FORM 

 

 

 

            
 

 

 

 

1.0.            2.0.           3.0.            4.0.           5.0.           6.0.       7.0. 

 

 

 

 

 

      

 

  

 

   

 

  1.1.           1.2.     1.3.            2.1.    2.2.       3.1.  5.1.       5.2.  

 

 

 

 

 

 

 

 

              3.1.1. 

 

  

 

 

 

 

 

 

2.2.1.  2.2.2.      2.2.3.          2.2.4.  2.2.5.  2.2.6. 

 

 

Equalization Project 

Write Final 

Report        

Test 

Hardware 

Burn 

Software 

onto Chip 

Synthesize 

Software 
Write Code 

For blocks 

in design 

Learn 

current 

system 

Give Final 

Presentation 

Test 

Equalization 

in Lab 

Learn 

Xilinx 

chip 

Learn 

spreading 

and Equa. 

Synthesize 

entire 

system 

Debug 

System 

Learn 

VHDL 

Program 

blocks 

Synthesize 

each block 
Understand 

existing 

blocks 

Code Delay 

Line 

Multiplexer 

Code Scalar 

Block 

Code 

Complex 

Mult/Sum 

Code 

Equalizer Sum

Code 

Equalized 

Dispreader 

Code 12 

channel 

Dispreader 



 68

WORK BREAKDOWN STRUCTURE OUTLINE FORM 
Integration of Equalizer into existing Wireless Ethernet system. 

 

1.0.  Learn the details of existing system. 

1.1.  Understand functions of existing blocks. 

1.2.  Become familiar with Xilinx Spartan 300 chip. 

1.3.  Learn concepts of Spectral Spreading and Equalization. 

2.0.  Write Code for blocks we are responsible for. 

2.1.  Learn VHDL coding language. 

2.2.Program blocks we are responsible for. 

2.2.1.  Code delay line multiplexer. 

2.2.2.  Code 12 channel dispreader. 

2.2.3.  Code Complex Mult/Sum. 

2.2.4.  Code Equalizer Sum. 

2.2.5.  Code Scalar block. 

2.2.6.  Code Equalized Dispreader. 

3.0.  Synthesize Software. 

3.1.  Synthesize each block individually. 

3.1.1.  Synthesize entire system once every block is written. 

4.0.  Burn Software onto Xilinx Spartan 300. 

5.0.  Test Hardware to ensure system functioning properly. 

5.1.  Use L3 Laboratory to signals to see if equalization works properly. 

5.2.  Debug system until test is successful. 

6.0.  Write Final Design Report. 

7.0. Give Final Design Presentation. 



 69

8.0.  Conclusion 

 In this report we have communicated the purpose and process of updating 

the wireless telephone/Ethernet system L3 has created.  Our objective has been 

to show why equalization is necessary in providing a more reliable and 

marketable product.  Equally important was showing that the solution outlined in 

this report is not only realistic, but also an optimal choice for this design.  

 Spectral spreading (especially using QPSK, quaternary phase shift 

keying), allows L3 to maximize the amount of bandwidth they have at their 

disposal.  Using Orthogonal PNcodes also enables any given transmitter the 

maximum amount of unique signals it can transmit.  Giving receivers the ability to 

equalize these signals will not only benefit non-line of sight users, but it will also 

improve signals for receivers that are already line of sight.  Sending the signal 

through a series of delays and going through the process of finding the 

correlation between these delayed signals gives receivers the most energy 

efficient signals possible.   

Completing this design (a successful hardware test), gives L3 a full 

functioning wireless Ethernet system capable of providing high-speed service to 

anyone subscribing, regardless of his or her location.  This will not only 

guarantee customer satisfaction, but it will also guarantee customers for this 

service.  Even though Senior Design is over we have talked to Dan Griffin and 

are hoping to be able to continue work on the project.  Hopefully with his help we 

can finish fitting our code into L3’s within a couple of weeks.  This will give us a 



 70

little more satisfaction with our project, however until the project is continued at 

Primewave we will not have access to their labs for any hardware testing. 

In concluding even though we didn’t have anything ‘cool’ to show off for 

our design, it was well worth our time and effort.  We have gained what we would 

consider as valuable experience and wisdom.  One of those points of wisdom 

being, that if a professor or specialist in a field (i.e. Dr. Bose in communications) 

tells us that a project is probably way over our heads, we will take his opinion 

seriously.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 71

APPENDIX 


