CHEM442-001/002
College of Charleston
Spring 2000
Exam II

1(15). For atomic B

A) write the hamiltonian operator describing the internal atomic energy. Do not use summation notation, write out the complete set of terms.
B) write the determinant form for a trial wave function using atomic hydrogen orbitals. Do not expand the determinant.
C) write the ground state electron configuration. Is atomic B paramagnetic? \qquad
2(10). Classically, the one-dimensional kinetic energy of a particle is $(1 / 2) k_{\mathrm{B}} T$. Calculate the quantum number corresponding to this energy for a nitrogen molecule at $25^{\circ} \mathrm{C}$ in a box that is 5.00 m wide.

3(20). A student was so thrilled at being able to do the homework assignment in which $<X>$ and $\left\langle x^{2}\right\rangle$ were determined for a particle in a three-dimensional box that he decided to derive the expression for $\left\langle x^{3}\right\rangle$. Do likewise.
[Note that the integral that you will probably need is

$$
\int x^{n} \sin ^{2} x d x=\frac{x^{n+1}}{2(n+1)}+\frac{n!}{4} \text { abunchofnastytrigterms }
$$

however, time does not permit evaluating the "bunchofnastytrigterms", so omit them.]
4(20). The wave function for the SHO system is

$$
\psi_{v}=\frac{1}{\left(2^{v} v!\right)^{1 / 2}}\left(\frac{a}{\pi}\right)^{1 / 4} e^{-a x^{2} / 2} H_{v}\left(a^{1 / 2} x\right)
$$

where

$$
H_{n}(z)=(-1)^{n} e^{z^{2}} \frac{d^{n}}{d z^{n}} e^{-z^{2}}
$$

Derive the wave function for $v=5$ in terms of x and a.
$5(20)$. Calculate the $\Delta \epsilon$ between the $J=5$ and $J=0$ rotational levels for HCl given $I=$ $2.679 \times 10^{-47} \mathrm{~kg} \mathrm{~m}^{2}$.

Calculate $N_{J=5} / N_{J=0}$ at 100 K .
Calculate the $\Delta \epsilon$ between the $v=5$ and $v=0$ vibrational levels for HCl given $v_{\mathrm{o}}=$ $8.65 \times 10^{13} \mathrm{~s}^{-1}$.

Calculate $N_{v=5} / N_{v=0}$ at 100 K .
6(15). Answer the following questions for the screen captures from P-Chem:
A) For a particle in a one-dimensional box, is this $\psi^{*} \psi$ or ψ ?

What is the value of the translational quantum number n ?

B) This illustrates the phenomenon of

How will the diagram change if the barrier width increases?
C) Plot ψ for $v=4$ on the appropriate energy line.

