
College of the Holy Cross

Introduction to GNU/Linux

Basic Concepts

Welcome (or welcome back) to the College of the Holy Cross! This document will introduce
you to the Swords 219 workstations. It should be particularly helpful if you are new to
GNU/Linux, but even if you have used *nix in the past you may learn something new.

The Math/CS server radius runs the operating system “GNU/Linux”. The term
“Linux” refers only to the kernel, the single program that manages memory, disk storage,
CPU time, and input/output. “GNU” refers both to the system software—including most
of the programs you will run—and to the philosophy of Free (libre, not gratis) Software.

Unlike Microsoft Windows and Apple MacOS, GNU/Linux is largely command driven.
There are graphical programs, and a desktop environment to rival the common PC operating
systems, but many tasks are most easily accomplished at a command prompt.

Multi-User Systems

There are less obvious but more important differences between GNU/Linux and common
PC operating systems than their user interface. First, GNU/Linux is a multi-user oper-
ating system. Policies are enforced by a system of “accounts” and “passwords”, “home
directories”, and “permissions”.

User Accounts In order to use radius, you must have an account on the machine. Your
account has a unique name and is allotted a “folder” called your home directory. Similarly
to your high school locker, your home directory stores your course work, email messages,
and other private data.

Passwords Access to your account, and therefore to your home directory, is controlled by
your password. Your password is the combination to your locker; it must not be shared with

anyone. There are excellent security reasons for demanding that only you know the password
to your account. Sharing your password is grounds for losing your computer

privileges.

A good password must be easy to remember (otherwise you’ll be locked out of the sys-
tem) but difficult to guess (otherwise someone else could break in to your account). Choose
a password consisting of at least 8 characters, including letters, digits, and punctuation. To
make your password easier to remember, choose a mnemonic spelling of something you can
remember, such as Sm1;)l3y.1 The following are poor choices of password: Any literal
word that can be found in a dictionary in any language, your name or any part of it, spelled
forward or backward, or any string that is all letters, all digits, or all punctuation.

Directories As in Windows or MacOS, information on a GNU/Linux machine is stored
in chunks called files. Files are, in turn, grouped in directories with names like

/usr/bin /etc /usr/local/share /home/stu/luser

1Smiley, get it? Don’t choose this as your password; it’s easy to guess now!

(the last might be the home directory of Leon User). Directories are organized into a
“tree”: Each directory (“node”) has a unique parent directory. The parent of Leon User’s
home directory is /home/stu. The parent of /home/stu is /home. Above /home is the root

directory, /. Every file on radius lies in some subdirectory of /, which is its own parent.
As you become more experienced, you’ll learn where to look for programs and data files,
but this knowledge is not necessary to use radius.

Ownership and Permissions Every file on radius has an owner. Files in your home
directory are usually owned by you. Files in system directories like /bin are usually owned
by the administrator account, root.

Every file potentially provides three kinds of access: read (r), write (w), and execute (x).
Read permission allows you to view the file’s contents, write permission grants the right to
modify (“edit”) or delete the file, execute permission allows you to run a file, if the file is a
program.

You have write permission only in your home directory and in the system temporary
directory, /tmp, and do not even have read permission for critical system files. On a multi-
user system like radius, access restrictions are essential. You don’t want classmates copying
or deleting your work (a hilarious prank, is it not?), and no one but the system administrator
should be able to read the file containing users’ passwords or execute the reboot command.
Ownership and permissions are built into the operating system at a fundamental level,
unlike (say) Windows 9x which provides no real protection of individuals’ data.

Using GNU/Linux

This section gives a quick introduction and basic tips for system use. If you are new to
GNU/Linux, log on to a Sun workstation and experiment with commands for practice.

Logging In When you sit down at a workstation, you are faced with a login manager.
Type in your name and press return, then type in your password. (You will not see anything
when you type your password. This prevents others from seeing how many characters your
password contains.) If your account name and password are recognized, you will eventually
see a desktop, which should look generally familiar. You can use the mouse to select and
click on icons. In GNU/Linux, you single click rather than a double click. The mouse has
three buttons. The left button generally selects an icon, while the right button may cause
a menu to pop up. The middle button’s function varies from program to program.

Organizing Your Files Cultivate sensible work habits from the start. Maintain your
files in an orderly fashion, by grouping related files in a single directory, and by giving files
short, descriptive names. To create a directory, type mkdir followed by the name of the
new directory. If you are taking CS 261, you might do mkdir CS261, then put all your
files related to the course in that directory. Directory names should not contain spaces or
other punctuation. (When you learn more about file names you can relax this restriction a
bit.) As with all names in GNU/Linux, case matters; CS261, Cs261, and cs261 are three
different names.

Running Commands

The GNU shell bash is a command interpreter and scripting language. You type a command
at a prompt, press return, and the system responds. To run bash, select a terminal icon
from a drop-down menu.

When you first open a terminal window, your working directory is your home directory.
Type pwd (print working directory) to see its name. To see what files are in a directory,
type ls (list). Like most GNU/Linux commands, ls accepts options that modify the effect
of the command. For example, ls -l (long listing) shows files’ permission, owner and
group, size, and modification time.

To change your working directory, type cd (change directory) followed by the name of
the directory to move to. Typing cd by itself takes you back to your home directory, so
you can’t get very lost. Typing cd .. takes you to the parent of the working directory.
Try doing this command a few times and see what happens. If you poke around in system
directories, you’re likely to get a “permission denied” message. This does no harm, but is
merely GNU/Linux’ gentle way of saying “keep out”.

Simple commands such as ls or cd conform to the *nix philosophy: Perform one task
well, and build up complex actions from simple pieces. The shell can “daisy chain” programs
by sending the output of one to the input of the next.

Job Control Some commands run for a short time, then exit. Others start interactive
programs, such as web browsers or text editors. When the shell spawns a process, it passes
control to the “child”, and cannot accept more commands until the child “returns”. Because
you usually want to run several interactive programs simultaneously without opening a
terminal for each, the shell provides functionality called “job control”. A process can be
started in the “background” by typing a command followed by an ampersand (&). When a
shell spawns a child in the background, control returns at once to the parent and you can
type more commands.

Advanced Shell Features bash provides tab completion and command line editing. If
you press the TAB key while typing a command, bash will match what you’ve typed so far
against all possible completions, and will either complete the command as far as possible (if
there is a unique choice) or (if you press TAB again) show you a list of possible completions.
Tab completion can reduce the number of keystrokes by 60–80%, an obvious and substantial
convenience. Second, bash permits “emacs-style” searching and editing of commands (in-
cluding the arrow keys). With a couple of keystrokes, you can search through the previous
2500 commands you’ve run, and use the arrow and backspace keys to edit commands.

Every program has three “streams” by which it can exchange data with the system or
other programs: standard input (stdin, usually a file or typed command line), standard

output (stdout, usually a disk file or the screen), and standard error (stderr, usually the
screen). Output can be written or appended to a disk file, input can be read from a disk
file, and output of one command can be “piped” to the input of another. For example, the
command

grep -v "the" names.txt | sort | uniq > tmp

finds all lines in the file names.txt that do not contain the string “the”, sorts them alpha-
betically, removes duplicates, and writes the result to a file named tmp.

These features will become more useful as your use of GNU/Linux becomes more ad-
vanced. Some day you’ll confidently type monster commands like:

ssh luser@radius.holtcross.edu cd CS261 && for FILE in *.cc; do

mv $FILE $FILE.orig; sed ’s/foo/bar/g’ $FILE.orig > $FILE; \

done && tar -jcvf originals.tar.bz2 *.orig && rm -f *.orig

When the command2 exits with an error because you’ve misspelled “holycross”, or you need
to run the command again with a slight variation, you’ll welcome command editing.

Software Overview

The Sun machines have a wide variety of software, including text editors, mathematical
typesetting engines and document previewers, ray tracing and real-time mathematical visu-
alization programs, web browsers, and compilers or interpreters for many common computer
languages (C/C++, Fortran, Java, Scheme, and Perl, to name a few), as well as a full suite
of shell utilities for manipulating text files in various ways.

Here is an incomplete list of programs you will probably learn to use at some point:

emacs: A Swiss Army knife that many mistake for just a powerful text editor.3 Invoke
it by name with emacs &, then type C-h t (control-h t) for an interactive tutorial.
Don’t let the low-tech interface fool you.

gcc, g++, g77: The GNU compilers for C, C++, and Fortran. These are the programs you
use to turn your source code into executable binary files.

tcsh and bash: Two shells that feature (among many other things) command line editing,
command completion, and a history mechanism that allows you to re-run commands
very easily. Each is also a full-featured programming language, with variables, decision
statements, and loops.

LATEX: The de facto standard for professional mathematical typesetting. LATEX is a
markup language and typesetting engine that allows camera-quality printed docu-
ments (especially those containing mathematics) to be written and stored in human-
readable plain text form. LATEX encourages good writing by forcing you to concentrate
on the structure of your document rather than its appearance.

vi (vee eye): A small, fast text editor, designed to be run over slow data lines. Most
commands are one or two characters, and they are not mnemonic. vi is a useful
complement to emacs, though staunch advocates of each regularly get into flame wars
on Usenet.

xdvi, gv, xpdf : Document previewers, the first for compiled LATEX, the others for
Postscript and Portable Document Format (PDF, often incorrectly called “Adobe
Acrobat”) files.

2This command, which can be run from anywhere in the world, securely logs on to radius, finds all

C++ source files in the directory CS261 and makes backup copies, substitutes every instance of “foo” with

“bar” in these files, creates a compressed archive containing the originals, and finally removes the old files.
3See http://vh213601.truman.edu/~jay/emacs.html

pine: An easy-to-use text-based mail reader.

You’ll probably want to learn these shell utilities. Type (e.g.) ls --help for built-in
help, or man ls for the system manual page. In the man page reader, SPACE shows the next
page and q quits. Typical usage is shown.

ls: List files in a directory. (ls -lt)

cp, mv, rm: Copy, move, or remove files. (cp -p myfile.tex myfile-05.14.07.tex)

ssh and scp: A secure remote login program that allows you to work on projects from
anywhere, your dorm room or across the world. (ssh luser@radius)

less: A file pager, which shows you a text file one screen at a time. Hit SPACE for the next
screen, or q to quit. (less myfile.tex)

lpr: The print command; usually requires options to be useful.

tar (tape archive): A utility for packing several files into a single file, conceptually analo-
gous to ZIP or Stuffit. (tar -jcvf cs261.tar.bz2 CS261)

mkdir, rmdir: Create and remove directories.

grep (get regular expression): “The vice grips of Unix.” grep searches for patterns in text
files, and behaves in any of several ways upon finding a match.

find: Locates files in a directory based on attributes such as name, permissions, modifi-
cation time, or type of file.

sed (stream editor): Search and replace character strings in a file.

diff : Shows the differences between two files. Useful if you’ve been editing and want to
see all the changes you’ve made.

chmod (change mode): Changes permissions on files.

Getting Assistance The easiest way to get help is to ask someone knowledgeable, either
another student or a faculty member. Online information about most commands can be
read by typing man (manual) followed by the name of a command; type man man for details!

