
CUDA and OpenCL Implementations of 3D Fast

Wavelet Transform

Gregorio Bernabé and Ginés D. Guerrero and Juan Fernández

Computer Engineering Department

University of Murcia (Spain)

e-mail: {gbernabe,gines.guerrero,peinador}@ditec.um.es

Abstract— We present in this paper several implementations

of the 3D Fast Wavelet Transform (3D-FWT) on CUDA and

OpenCL running on a new Fermi Tesla architecture. We evaluate

these proposals and make a comparison with others optimal

executed on multicores CPU and Nvidia Tesla C870. Speedups

of the CUDA version on Fermi architecture are the best results,

improving the execution times on CPU, ranging from 5.3x to

7.4x for different image sizes, and up to 81 times faster when

communications are neglected. Meanwhile, OpenCL obtains solid

gains which range from 2x factors on small frame sizes to 3x

factors on larger ones.

I. INTRODUCTION

Efforts to exploit the Graphics Processing Unit (GPU)

for non-graphical applications have been underway by using

high-level shading languages such as DirectX, OpenGL and

Cg. These early efforts that used graphics APIs for General

Purpose computing were known as GPGPU programs.

Nvidia was first to launch a solution to exploit the GPU

computational power beyond a traditional graphics processor

and simplify the programming. CUDA [1] is Nvidia’s solution

as a simple block-based API for programming. How could it

be otherwise, its main competitor AMD introduced its own

product called Stream Computing [2].

Both companies have also developed hardware products

aimed specifically at the scientific General Purpose GPU

(GPGPU) computing market: The Tesla products [3] are from

NVIDIA, and Firestream [2] is AMD’s product line. Between

Stream Computing and CUDA, we chose the latter to program

the GPU for being more popular and complete. Moreover,

it provides more mechanisms to optimize general-purpose

applications.

More recently, Open Computing Language (OpenCL) is a

framework [4] that emerges and attempt to unify those two

models. It provides parallel computing using task-based and

data-based parallelism. It is an open standard. Up to now, it

has been adopted by Intel, AMD, Nvidia and ARM. It allows

you to program several architectures dependent upon each of

the previous manufacturers and hence not specialized for any

particular compute device.

Novel scientific applications are good candidates to take the

opportunity offered by CUDA and OpenCL for accelerating

codes on GPUs, the release of the Tesla GPU based on Fermi

architecture offers a new stage on the development of GPGPU,

and the 3D Fast Wavelet Transform (3D-FWT) represents a

solid opportunity in the video processing field.

In previous works [5][6], we contributed with a CUDA

implementation for the 2D-FWT running more than 20 times

faster than a sequential C version on a CPU, and more than

twice faster than optimized OpenMP and Pthreads versions

implemented on multicore CPUs. We extend our analysis to

the 3D-FWT scenario, different alternatives and programming

techniques have been introduced for an efficient parallelization

of the 3D Fast Wavelet Transform on multicore CPUs and

manycore GPUs. OpenMP and Pthreads were used on the CPU

to expose task parallelism, CUDA was selected for exploiting

data parallelism on the Tesla C870 with an explicit memory

handling, where GPU speed-up extends between 3x and 15x

depending on problem size.

In this paper, we present several implementations of the 3D-

FWT on CUDA and OpenCL. A comparison between both

them and our previous results is carried out.

The rest of the paper is organized as follows. Section II

presents the foundations of the 3D-FWT. Section III focuses

on the specifics of the GPU programming with CUDA and

outlines the GPU implementation. Section IV describes pecu-

liarities of the GPU implementation on OpenCL. Section V

analyzes performance and Section VI concludes.

II. THE WAVELET TRANSFORM FOUNDATIONS

The wavelet transform can be implemented by quadrature

mirror filters (QMF), G = g(n) and H = h(n) nǫZ. H

corresponds to a low-pass filter, and G is a high-pass filter. For

a more detailed analysis of the relationship between wavelets

and QMF see [7].

The filters H and G correspond to one step in the wavelet

decomposition. Given a discrete signal, s, with a length of 2n,

at each stage of the wavelet transformation the G and H filters

are applied to the signal, and the filter output downsampled

by two, thus generating two bands, G and H. The process

is then repeated on the H band to generate the next level of

decomposition, and so on. This procedure is referred to as the

1D Fast Wavelet Transform (1D-FWT).

It is not difficult to generalize the one-dimensional wavelet

transform to the multi-dimensional case [7]. The wavelet

representation of an image, f(x, y), can be obtained with a

pyramid algorithm. It can be achieved by first applying the

1D-FWT to each row of the image and then to each column,

that is, the G and H filters are applied to the image in both

the horizontal and vertical directions. The process is repeated



several times, as in the one-dimensional case. This procedure

is referred to as the 2D Fast Wavelet Transform (2D-FWT).

As in 2D, we can generalize the one-dimensional wavelet

transform for the three-dimensional case. Instead of one image,

there is now a sequence of images. Thus, a new dimension

has emerged, the time (t). The 3D-FWT can be computed by

successively applying the 1D wavelet transform to the value

of the pixels in each dimension.

Based on previous work [8], we consider Daubechie’s

W4 mother wavelet [9] as an appropriate baseline function.

This selection determines the access pattern to memory for

the entire 3D-FWT process. Let us assume an input video

sequence consisting of a number of frames (3rd dimension),

each composed of a certain number of rows and columns

(1st and 2nd dimension). The 1D-FWT is performed across

all frames for each row and column, that is, we apply the

1D-FWT rows × cols times in the third dimension. The first

1D-FWT instance requires four elements to calculate the first

output element for the reference video and the detailed video,

with these elements being the first pixel belonging to the first

four frames. The second output element for the reference and

detailed video are calculated using the first pixel of the third,

fourth, fifth and sixth video frames. We continue this way until

the entire reference and detailed video are calculated, and these

data are the input used for the next stage.

The 2D-FWT is performed frames times, i.e., once per

frame. This transform is performed by first applying the

1D-FWT on each row (horizontal filtering) of the image,

followed by the 1D-FWT on each column (vertical filtering).

The fact that vertical filtering computes each column entirely

before advancing to the next column, forces the cache lines

belonging to the first rows to be replaced before the algorithm

moves on to the next column. Meerwald et al. [10] propose

two techniques to overcome this problem: row extension and

aggregation or tiling.

Other studies [11][12], have also reported remarkable im-

provements when applying the tiling technique over the 2D-

FWT algorithm. Our experience implementing on a CPU the

sequential 2D-FWT algorithm revealed a reduction of almost

an order of magnitude in the overall execution time with re-

spect to a baseline version. This process can straightforwardly

be applied to the 3D case. In our previous work [6], we report

solid gains on execution times as well, which range from 2-

3x factors on small frame sizes to 5-7x factors on larger ones.

From now on, only the tiled 3D-FWT version is taken for

parallelization purposes, either on CPU or GPU.

III. COMPUTE UNIFIED DEVICE ARCHITECTURE

The Compute Unified Device Architecture (CUDA) [1] is

a programming interface and set of supported hardware to

enable general purpose computation on Nvidia GPUs. The pro-

gramming interface is ANSI C extended by several keywords

and constructs which derive into a set of C language library

functions as a specific compiler generates the executable code

for the GPU. Since CUDA is particularly designed for generic

computing, it can leverage special hardware features not

visible to more traditional graphics-based GPU programming,

such as small cache memories, explicit massive parallelism

and lightweight context switch between threads.

All the latest Nvidia developments on graphics hardware

are compliant with CUDA: For low-end users and gamers, we

have the GeForce series; for high-end users and professionals,

the Quadro series; for general-purpose computing, the Tesla

boards.

Focusing on Tesla, the C870, D870 and S870 models are

respectively endowed with one, two and four computing nodes

using a 1U rack-mount chassis. They are all based on the

G80 GPU, upgraded with the GT200 GPU to release the

Tesla C1060 and S1070 models. Our base architecture [6],

the Tesla C870, contains 128 cores and 1.5 GB of video

memory to deliver a peak performance of 518 GFLOPS (single

precision), a peak on-board memory bandwidth of 76.8 GB/s

and a peak main memory bandwidth of 4 GB/s under its PCIe

x16 interface.

The Fermi architecture is the most significant leap forward

in GPU architecture since the original G80. Fermi implements

IEEE 754-2008 and significantly increased double-precision

performance. It added error-correcting code (ECC) memory

protection for large-scale GPU computing, 64-bit unified

addressing, cached memory hierarchy, and instructions for C,

C++, Fortran, OpenCL, DirectCompute and other languages.

The Tesla C2050 contains 448 cores and 3 GB of video

memory to deliver a peak performance of 1.03 TFLOPS

(simple precision) and 515 GFLOPS (double precision), a peak

on-board memory bandwidth of 144 GB/s and a peak main

memory bandwidth of 8 GB/s under its PCIe x16 interface of

second generation.

The G80 and the Fermi parallel architectures are a SIMD

(Single Instruction Multiple Data) processors. In C870 and

C2050, cores are organized into 16 and 14 multiprocessors,

each having a large set of 8192 and 32768 registers, respec-

tively. The first generation of Tesla GPU has a 16 KB shared

memory very close to registers in speed (both 32 bits wide),

and constant and texture caches of a few kilobytes. On the

Fermi Tesla, the shared memory can be configured from 16KB

to 48 KB. In both architectures, each multiprocessor can run a

variable number of threads, and the local resources are divided

among them. In any given cycle, each core in a multiprocessor

executes the same instruction on different data based on its

threadId, and communication between multiprocessors is

performed through global memory.

At the highest level, a program is decomposed into kernels

mapped to the hardware by a grid composed of blocks of

threads scheduled in warps. No inter-block communication or

specific schedule-ordering mechanism for blocks or threads

is provided, which guarantees each thread block to run on

any multiprocessor, even from different devices, at any time.

Threads belonging to the same block must all share the

registers and the shared memory on a given multiprocessor.

This tradeoff between parallelism and thread resources must

be wisely solved by the programmer to maximize execution

efficiency on a certain architecture given its limitations. These



TABLE I

MAJOR HARDWARE AND SOFTWARE LIMITATIONS WITH CUDA. CONSTRAINTS ARE

LISTED FOR THE G80 AND FERMI GPUS.

Hardware feature C870 C2050

Multiprocessors (MP) 16 14

Processors / MP 8 32

32-bit registers / MP 8192 32768

Shared Memory / MP 16 KB 16 KB/48 KB

L1 Cache / MP No 48 KB/16 KB

L2 Cache No Yes – 768 KB

Software limitation C870 C2050

Threads / Warp 32 32

Thread Blocks / MP 8 8

Threads / Block 512 1024

Threads / MP 768 1536

limitations are listed in Table I for the cases of the Tesla C870

and C2050.

A. Implementation of 3D-FWT on CUDA

Our 3D-FWT implementation in CUDA consists of the

following three major steps:

1) The host (CPU) allocates in memory the first four video

frames coming from a .pgm file.

2) The first four images are transferred from main memory

into video memory. The 1D-FWT is then applied to the

first four frames over the third dimension to obtain a

couple of frames for the detailed and reference videos.

The grid is composed of rows × cols/128 blocks.

3) The 2D-FWT is applied to the frame belonging to the

detailed video, and subsequently, to the reference video.

Results are then transferred back to main memory.

The whole procedure is repeated for all remaining input

frames, taking two additional frames on each new iteration.

On each new iteration, two frames are copied, either at the

beginning or at the second half depending on the iteration

number. In particular, the first iteration copies frames number

0, 1, 2 and 3 to obtain the first detailed and reference video

frames, the second iteration involves frames 2, 3, 4 and 5 to

obtain the second detailed and reference video frames, and so

on. Note that frames 4 and 5 occupy the memory formerly

assigned to frames 0 and 1, which requires an interleaved

access to frames in the second iteration. Conflicts on shared

memory banks and coalescing on global memory accesses has

been solved.

IV. OPEN COMPUTING LANGUAGE IMPLEMENTATION OF

3D-FWT

Open Computing Language (OpenCL) is an open royalty-

free standard for general purpose parallel programming across

CPUs, GPUs and other processors, giving software developers

portable and efficient access to the power of these heteroge-

neous processing platforms.

OpenCL includes a host C API for for controlling and

interacting with GPU devices, a C language for writing device

kernels and an abstract device model that maps very well to

NVidia and ATI hardware. There are some differences between

CUDA and OpenCL in terminology, as we can observe in

table II. Therefore, we use simple source to source translation

TABLE II

DIFFERENCES IN TERMINOLOGY BETWEEN CUDA AND OPENCL

CUDA Terminology OpenCL Terminology

GPU Device

Multiprocessor Compute Unit

Scalar core Processing element

Global memory Global memory

Shared (per-block) memory Local memory

Local memory (automatic, or local) Private memory

kernel program

block work-group

thread work item

TABLE III

SUMMARY OF EXECUTION TIMES (MSECS.) FOR THE 3D-FWT ON EACH PLATFORM,

WITH THE GPU GAINS BETWEEN PARENTHESIS.

Frame size

Code version 512x512 1Kx1K 2Kx2K

CPU optimal 156.09 655.33 2843.43

CUDA C870 57.65 (2.7x) 216.66 (3.0x) 843.11 (3.4x)

CUDA C2050 29.21 (5.3x) 100.61 (6.5x) 381.58 (7.4x)

OpenCL C2050 87.12 (1.8x) 276.39 (2.4x) 1011.47 (2.8x)

to convert the kernels of the implementation of 3D-FWT on

CUDA to OpenCL.

Setting up the GPU for kernel execution differs substantially

between CUDA and OpenCL. Their APIs for context creation

and data copying are different, and different conventions are

followed for mapping the kernel onto the GPUs processing

elements. These differences could affect the length of time

needed to code and debug a GPU application, but here we

mainly focus on runtime performance differences.

V. PERFORMANCE ANALYSIS

Table III summarizes the optimal execution times we have

obtained on each hardware platform at the end of our paral-

lelization effort when the 3D-FWT is applied to a video of

64 frames of different sizes. Input data were recovered from

files in PGM format, where a single component (grayscale)

was used. I/O time to read grayscale images from file was not

considered. A similar programming effort and hardware cost

was invested on each platform.

We have included our optimal tiled 3D-FWT implementa-

tion designed with OpenMP and Pthreads [6]. This version

is executed on an Intel Core 2 Quad Q6700 CPU (see Table

III, upper side). Also, the best parallelization strategy on a

GPU using CUDA has been used to obtain the results in

C870 and C2050. The original CUDA version implemented

has been adjusted to the Fermi architecture with the memory

optimizations needed. The size of the shared memory has

been configured to 16 KB and 48 KB without influence in

the results. The OpenCL implementation has been obtained

from the CUDA version, translating line to line and following

the same model (last row of Table III).

First of all, results with Fermi Tesla clearly improve their

obtained with our original C870 as might be expected. As the

size of images increase, the difference between the original

Tesla and the last one is bigger. The average gap between them

is about 2x for the different image sizes, which confirms the

potential of the Fermi architecture. The increase in the number

of processors and cached memory hierarchy introduced are



TABLE IV

OPENCL AND CUDA EXECUTION TIMES (IN MSECS.) FOR OUR OPTIMAL TILED

3D-FWT IMPLEMENTATION ON AN INPUT VIDEO CONTAINING 64 FRAMES OF

INCREASING SIZES. THE COMMUNICATION COST IS REMOVED IN THE LAST ROW.

Frame size

3D-FWT stage – OpenCL C2050 512x512 1Kx1K 2Kx2K

1. CPU to GPU transfer 25.19 86.38 325.52

2. 1D-FWT on frames 3.53 6.64 11.73

3. 1D-FWT on rows 3.85 5.89 6.97

4. 1D-FWT on cols 3.80 9.82 29.29

5. GPU to CPU transfer 50.75 167.66 637.96

Computational time (2-4) 11.18 22.35 47.99

GPU/CPU speed-up 14.0x 29.3x 59.3x

Frame size

3D-FWT stage – CUDA C2050 512x512 1Kx1K 2Kx2K

1. CPU to GPU transfer 11.62 45.6 181.63

2. 1D-FWT on frames 2.11 4.18 7.73

3. 1D-FWT on rows 2.37 2.39 2.39

4. 1D-FWT on cols 2.29 6.86 25.15

5. GPU to CPU transfer 10.82 41.58 164.68

Computational time (2-4) 6.77 13.43 35.27

GPU/CPU speed-up 23.1x 48.8x 80.6x

responsible for most of the achieved improvement. The pro-

gramming effort to obtain the results in the C2050 has been

minimal, but it was hoped a greater improvement because there

are two generations of GPUs between both Tesla architectures

and the number of processors is 3.5 times in the Fermi GPU

than in the C870.

The OpenCL implementation obtains better results than the

optimal CPU. Speedups are considerable and present a good

scalability. The GPU speed-up factor extends into 2.8x factor

in the most favorable case. However, these outcomes are very

far from those collected through GPUs Tesla with CUDA. In

fact, results are below our initial speedups with CUDA on the

Tesla C870. This is due to the semantic gap between OpenCL

and compute devices because it is vendor independent and

hence not specialized for any particular compute device.

A. GPU profiling

For both optimal GPU versions with OpenCL and CUDA,

we may split its execution time into constituent steps for

completing a quick profiling process. Table IV reveals this

breakdown, where we can see that each 1D-FWT phase is

lower in CUDA option than in the OpenCL implementation.

This is because of the additional layer introduced by OpenCL.

The major difference extends into 1.7x factor for the computa-

tional time revealing an important and substantial discrepancy

in favor of CUDA. If we eliminate the communication time

in each configuration, accelerations obtained with CUDA are

very considerable and important. Likewise, speedups obtained

by OpenCL are highly competitive.

With regard to the communication time, this one predomi-

nates clearly over calculations in both implementations. This

is a consequence of the nature of a 3D-FWT algorithm, which

lacks of arithmetic intensity but handles big data volumes.

Now, the gap between CUDA and OpenCL is very important

and speedups go up 4.7x favorable to CUDA. Thus, it is still

unclear that OpenCL can achieve the same performance as

other programming frameworks that are designed for particular

compute devices.

VI. SUMMARY AND CONCLUSIONS

In this work, we have presented and evaluated several

methods to implement the 3D Fast Wavelet Transform on

CUDA and OpenCL on a new Fermi architecture. We have

compared these implementations with others optimal executed

on multicores CPU and Tesla C870 GPU. The implementation

on CUDA achieves better speedups, ranging from 5.3x to

7.4x for different image sizes. If we discard the cost of

communications between CPU and GPU, profits rise to a

factor of 80.6x for larger image. OpenCL presents gains up to

2.8x with regard the best implementation on CPU. However,

these outcomes are even lower than those obtained with Tesla

C870. OpenCL is hardly competitive with CUDA in terms of

performance because the first one has and environment setup

overhead that is large and should be minimize. Moreover, the

difference in the communication time between CUDA and

OpenCL is very significant, because the last one has been

designed for general compute devices.

ACKNOWLEDGMENTS

This work was supported by the Spanish MICINN, Con-

solider Programme and Plan E funds, as well as European

Commission FEDER funds, under Grants CSD2006-00046

and TIN2009-14475-C04-02/01. It was also partly supported

by the Fundación Séneca (Agencia Regional de Ciencia y

Tecnologı́a, Región de Murcia) under grant 00001/CS/2007.

REFERENCES

[1] Nvidia, “CUDA Zone maintained by Nvidia,”
http://www.nvidia.com/object/cuda.html, 2009.

[2] AMD, “AMD Stream Computing,”
http://ati.amd.com/technology/streamcomputing/index.html, 2009.

[3] Nvidia, “Tesla GPU Computing Solutions,”
http://www.nvidia.com/object/tesla computing solutions.html, 2009.

[4] The Khronos Group, “The OpenCL Core API Specification,”
http://www.khronos.org/registry/cl.

[5] J. Franco, G. Bernabé, J. Fernández, and M. Ujaldón, “The 2D
Wavelet Transform on Emerging Architectures: GPUs and Multicores,”
Still to be published in Journal of Real-Time Image Processing.
http://dx.doi.org/10.1007/s11554-011-0224-7. Special Issue, September
2011.

[6] J. Franco, G. Bernabé, J. Fernández, and M. Ujaldn, “Parallel 3D
fast wavelet transform on manycore GPUs and multicore CPUs,” in
10th International Conference on Computational Science (ICCS 2010).
http://dx.doi.org/10.1016/j.procs.2010.04.122. Procedia Computer Sci-
ence, vol. 1, Amsterdam, Holland, June 2010, pp. 1101–1110.

[7] S. Mallat, “A Theory for Multiresolution Signal Descomposition: The
Wavelet Representation,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 11, no. 7, pp. 674–693, July 1989.

[8] G. Bernabé, J. González, J. M. Garcı́a, and J. Duato, “A New Lossy 3-D
Wavelet Transform for High-Quality Compression of Medical Video,”
in Proceedings of IEEE EMBS International Conference on Information
Technology Applications in Biomedicine, November 2000, pp. 226–231.

[9] I. Daubechies, Ten Lectures on Wavelets. Society for Industrial and
Applied Mathematics, 1992.

[10] P. Meerwald, R. Norcen, and A. Uhl, “Cache Issues with JPEG2000
Wavelet Lifting,” in Proceedings of Visual Communications and Image
Processing Conference, January 2002, pp. 626–634.

[11] J. Tao, A. Shahbahrami, B. Juurlink, R. Buchty, W. Karl, and S. Vassil-
iadis, “Optimizing Cache Performance of the Discrete Wavelet Trans-
form Using a Visualization Tool,” Procs. of IEEE Intl. Symposium on
Multimedia, pp. 153–160, December 2007.

[12] A. Shahbahrami, B. Juurlink, and S. Vassiliadis, “Improving the Memory
Behavior of Vertical Filtering in the Discrete Wavelet Transform,” in
Proceedings of ACM Conference in Computing Frontiers, September
2006, pp. 253–260.


