Math 362: Real and Abstract Analysis College of the Holy Cross, Spring 2005 Notes on Taylor's Theorem

Here are two versions of Taylor's Theorem for multivariable functions.

Theorem 1. Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be k-times differentiable. Then

$$f(x) = f(p) + Df_p(x-p) + \frac{1}{2}D^2f_p(x-p, x-p) + \dots + \frac{1}{k!}D^kf_p(x-p, x-p, \dots, x-p) + R(x),$$

where

$$\lim_{x \to p} \frac{R(x)}{|x - p|^k} = 0.$$

Proof. We'll just prove the case k=2. So write

$$f(x) = f(p) + Df_p(x - p) + \frac{1}{2}D^2 f_p(x - p, x - p) + R(x)$$

Then we have R(p) = 0, DR(p) = 0 and $D^2R(p) = 0$. By the Mean Value Theorem,

$$|R(x)| = |R(x) - R(p)| \le M|x - p|$$

where $M = \sup\{\|DR(y)\| : y = p + t(x - p), 0 \le t \le 1\}$. Now

$$DR(y) = DR(p) + D^2R(p)(y-p) + R_2(y)$$
 where $\lim_{y \to p} \frac{R_2(y)}{|y-p|} = 0$.

Given $\epsilon > 0$, there is some $\delta > 0$ such that

$$|y-p|<\delta \implies \frac{R_2(y)}{|y-p|}<\epsilon.$$

Since DR(p) = 0 and $D^2R(p) = 0$, we have $DR(y) = R_2(y)$. Thus $|x - p| < \delta$ implies $|y - p| < \delta$, which implies

$$\frac{\|DR(y)\|}{|y-p|} < \epsilon$$

so $||DR(y)|| \le \epsilon |y-p| \le \epsilon |x-p|$ and thus $M \le \epsilon |x-p|$. It then follows that $|R(x)| \le \epsilon |x-p|^2$ whenever $|x-p| < \delta$. Hence

$$\lim_{x \to p} \frac{R(x)}{|x - p|^2} = 0$$

Another version of Taylor's Theorem which gives a precise form of the remainder follows from the C^1 Mean Value Theorem.

Theorem 2. Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be twice differentiable. Then

$$f(x) = f(p) + Df(p)(x - p) + \beta(x - p, x - p)$$

where

$$\beta = \int_0^1 \int_0^1 D^2 f(p + st(x - p)) \, dst \, dt.$$

Proof. By the C^1 Mean Value Theorem

$$f(x) = f(p) + \int_0^1 Df(p + t(x - p)) dt \cdot (x - p).$$

Now apply the \mathbb{C}^1 Mean Value Theorem to $\mathbb{D}f$ to get

$$Df(y) = Df(p) + \int_0^1 D^2 f(p + s(y - p)) ds(y - p)$$

Applying this with y = p + t(x - p) gives

$$Df(p + t(x - p)) = Df(p) + \int_0^1 D^2 f(p + st(x - p)) ds \cdot t(y - p)$$

so substituting for the integrand in the expression for f(x) above proves the theorem. \Box