Math 362: Real and Abstract Analysis
College of the Holy Cross, Spring 2005
Notes on Taylor’s Theorem

Here are two versions of Taylor’s Theorem for multivariable functions.

Theorem 1. Let f: R™ — R™ be k-times differentiable. Then
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Proof. We'll just prove the case k = 2. So write
£(x) = F(9) + Dfylw —p) + 5D fylx —p.x — p) + ()
Then we have R(p) =0, DR(p) = 0 and D*R(p) = 0. By the Mean Value Theorem,
|R(z)| = |R(x) — R(p)| < M|z — p|

where M = sup{||[DR(y)|| :y =p+t(z —p),0 <t <1}. Now
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Ry(y) e

ly—pl<o = .
ly — pl

Since DR(p) = 0 and D?R(p) = 0, we have DR(y) = Ry(y). Thus |z — p| < § implies
ly — p| < ¢, which implies
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so ||DR(y)|| < ely—p| < €|z —p| and thus M < ¢|x—p|. It then follows that |R(x)| < €|z —pl|?
whenever |x — p| < §. Hence
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Another version of Taylor’s Theorem which gives a precise form of the remainder follows
from the C' Mean Value Theorem.



Theorem 2. Let f: R"™ — R"™ be twice differentiable. Then

f(x) = f(p) + Df(p)(x —p) + B(z — p,x — p)
where
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Proof. By the C* Mean Value Theorem
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Now apply the C! Mean Value Theorem to Df to get
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Applying this with y = p + t(z — p) gives
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so substituting for the integrand in the expression for f(x) above proves the theorem.



