
Mobile Web Widgets:

Enabler of Enterprise Mobility Work

Alison Lee
Nokia Research Center – Palo Alto

955 Page Mill Road

Palo Alto, CA 94306

+1-650-796-5392

Alison.Lee@nokia.com

ABSTRACT
Increasingly, many smartphones (i.e., Apple iPhone, Google

Android, PalmPre, Blackberry Storm and Bold, and Nokia S60)

today are equipped with standards-based Web browsers that

facilitate access to and interaction with the Web. In some cases,

like Nokia S60 series, the smartphones add a web application

runtime environment that runs widgets. Like the desktop widgets,

Web-based mobile widgets are lightweight mobile applications

developed with standards-based Web technologies, such as

HTML, CSS, JavaScript, and AJAX. They serve as front ends to

Web 2.0 services or Internet content. Newer versions of the S60

web runtime will also have access to platform resources and

capabilities that enable more personal and context-aware widgets.

Platform service access and mobile work context provide two key

differentiators of mobile Web widgets from their desktop

counterparts. As such, the mashups enabled by mobile Web

widgets have the potential to empower large numbers of

smartphones with capabilities and services that are hitherto

limited by heterogeneity of device operating systems.

Categories and Subject Descriptors

D.2.m [Software Engineering]: Miscellaneous – rapid

prototyping. H.3.5 [Information Storage and Retrieval]: Online

Information Services – web-based services, data sharing. H.4.3

[Information Systems Applications]: Communications

Applications – Computer conferencing, teleconferencing, and

videoconferencing, information browsers. H.5.2 [Information

Interfaces and Presentation]: User Interfaces – graphical user

interfaces, prototyping, screen design, user-centered design.

General Terms

Design, Experimentation, Human Factors.

Keywords

AJAX, communication, contacts, location, mashups, mobile

information access, mobile meetings, mobile Web, mobile Web

server, personal information management, mobile Web widgets,

platform resources, shared voice and data, smartphones, Web 2.0.

1. INTRODUCTION
While overall mobile phone sales are projected to decline,

smartphone sales are expected to grow. This is due to the fact that

mobile phones have grown beyond being mobile communication

devices. Increasingly, they are used for a variety of other mobile

tasks; the least of which is access to mobile Internet services. In

the enterprise domain, there is growing interest for mobile phones

to support mobile work. The multi-function capabilities of

smartphones such as standards-based Web browser and rich media

support and the availability of key features such as GPS, camera,

and accelerometer are seen as critical to the development of rich,

context-aware services. Such services are particularly important

for mobile context where a variety of situational constraints can

be addressed by leveraging contextual information.

Studies of work reveal that mobility is common in everyday work.

At the macro-level, work requires local travel such as walking to

other buildings at the same site or remote travel to meet customers

or non-co-located colleagues. At the micro-level, mobility is a

necessary precursor for some coordination and communication

activities [1]. Studies of the mobile context and technology use

reveal differences in how work is done compared to the desk

context and which applications are used compared to PCs or

laptops [9][16][23]. For example, the unpredictability of

information access and unfamiliarity with mobile environment

pose unique difficulties. As a result, people use coping strategies

and perform preparatory work in anticipation of going mobile

known as mobilization work [18][19]. Studies of mobile device

use have also elucidated a number of tradeoffs people make and

the need to align the effort with work, mobility, and social

situation [18]. Tradeoffs include time, effort, resource

deprivation, distraction posed by working with the device, “instant

on” nature of device, and degree of interruption. Finally, studies

of information practice such as people’s use of information scraps

while being mobile highlight many unmet design needs in current

mobile personal information management tools [3].

These studies point to a large opportunity space for tools to

support mobile information access, mobile communication, and

other activities around mobile work. Many of these applications

are integration of information access and functionality in a

manner that is suited for the mobile context. Thus, mobile Internet

services and mobile widgets have much to offer in this space by

enabling specialized mashups [20]. The mashups are not limited

only to aggregation, projection, and cross product of external data

and resources but could include data and resources local to the

smartphone such as contacts and GPS. As these mashups are

developed with standards-based Web technologies, such as

HTML, CSS, (asynchronous) Javascript, and XML, all that is

required is a Web browser or Web runtime to host the mashup

[20]. Many smartphones are equipped with a Web browser (i.e.,

Apple iPhone, Google Android, PalmPre, Blackberry Storm and

Bold, Windows Mobile, and Nokia S60). Newer Nokia S60 smart

Copyright is held by the author/owner(s).

WWW 2009, April 20-24, 2009, Madrid, Spain.

phones also include a widget engine for mobile Web widgets. As

a result, mobile Web mashups have the potential of running on

heterogeneous smartphones.

The next section reviews the current state of mobile Web

applications and mobile widgets. Then, we introduce a number of

widgets that we have developed to expand on the power of mobile

Web widgets to enhance mobile work. The widgets tap

smartphone resources (e.g., contacts, cameras, GPS) and combine

them with the Web of services and content available to support

needs and activities of workers while being mobile. Each widget's

development was motivated by and addressed different mobile

work needs. The examples illustrate the value of the web runtime

framework and demonstrate the potential of mobile Web widgets

and smartphones as key enablers of mobile work. Section 4

explores issues related to mobile user experience, mobile

information needs, and context modeling opportunities. We also

highlight some key technical challenges that need to be addressed

before mobile Web widgets can unleash the power of smartphones

as an integral tool for mobile worker.

2. WIDGETS AND MOBILE WIDGETS
Widgets are lightweight, task-specific, mini-applications that

leverage local and/or Web content. Widgets (also known as

gadgets) execute within a runtime environment known as a widget

engine. Thus, launching a widget does not require launching a

Web browser and loading the widget. Like Web applications, the

Web and mobile Web variants of widgets are created using

HTML, CSS, Javascript and XML. Unlike Web browsers, the

widget engines lack the browser UI elements and functionality

such as back button or URL input field or history. Widgets occupy

a small display footprint with all visible UI elements being

associated with the mini-application.

Web widgets (e.g., Google gadgets) are reusable components of

Web applications that run in a Web browser and are embedded

and executed in a third-party Web page (e.g., social network site,

blog, auction site). They are neither packaged nor installed on a

client. They enable developers to share their Web applications and

to make their Web sites accessible to audiences through third-

party Web pages.

Device widgets, of which mobile widgets are one form, are

downloaded and installed on a user’s PC or mobile device. In

recent years, device widgets have proliferated since Apple re-

popularized them in Dashboard widgets [12]. Unlike Web

widgets, device widgets can access device data and resource.

Users can personalize the application. Yahoo! Widgets

(previously known as Konfabulator), Apple’s Dashboard widgets,

and Google Gadgets (running on Google Desktop) are examples

of desktop widgets [5]. Widsets, Opera Widgets, and S60 Web

Runtime (WRT) widgets are examples of mobile Web widgets

[10][17]. The first is built with java and run on java-enabled

phones while the latter two are built with standard-based Web

technologies running in a widget engine. In the case of the S60

WRT widgets, they are integrated with the mobile phone

operating system. As such, they are installed, accessed, and

managed like other S60 applications. Like other S60 applications,

they have an icon and look and feel no different from other S60

applications.

Each device widget is a packaged file that contains one or more

HTML, CSS, and Javascript, image and/or sound files. Each

package contains a manifest file with metadata about the widget

as well as an image file for the widget’s icon. A widget package is

created using a standard packager such as ZIP. A media type, one

for each vendor, distinguishes the different vendor widget. If the

appropriate widget engine is installed on the user’s device, and the

widget engine has correctly registered a media type and/or file

extension, the Web browser should automatically associate the

downloaded resource with the widget engine.

3. SEVERAL WIDGETS
We present four different widgets that we have developed. They

arose from different needs for using mobile Web applications.

They include a mobile meeting service, a remote content access

service, mobile information access centered on scheduled events,

and knowledge acquisition tool based on collective intelligence.

We describe each in turn focusing on mobile work needs that

inspired the service and how the widget versions arose.

3.1 Mobile Meetings
Nokia Easy Meet is a Web-based, real-time collaboration service

that allows mobile users to participate in remote meetings using

their mobile phones. It provides simultaneous voice and data

sharing. Mobile users can view images, slides, chat, meeting

minutes, and chalk marks on slides. A participant list provides an

awareness mechanism and shows all the people participating in

the meeting along with their contact information. Voice

communication with data sharing is supported over a 3G network

or 2.5G with wi-fi. By clicking the ‘voice conference’ option,

participants can initiate a voice call to an audio conference bridge

passing along the ‘audio conference’ id and pin without any

further key entries from the user. Nokia Easy Meet is accessible

Figure 1: Two different screen layouts – tabbed, accordion.

from any mobile device with a standards-compliant Web browser

(S60, Opera, Firefox, IE7, Safari).

Meeting notifications with the meeting url are sent via SMS as

well as email. The SMS notification is particularly useful when

users want to join a meeting from the mobile phone. When

clicked, the mobile Web browser is launched and a connection to

meeting server is made. Meeting hosts can forward this url via

SMS or email to other people at anytime. While registered users

can create, edit, or host meetings, guest users can be invited on a

per meeting basis to participate. Both invitation forwarding and

guest access were designed to lower barriers to participation and

to foster technology support of ad-hoc and planned meetings.

Meetings are not only restricted to those that are scheduled for a

certain time and time period, they may include permanent

meetings that are always active. Such meetings permit users to

suspend and resume without the overhead of creating new

meetings. They can become a place where conversations, shared

content, and meeting minutes cumulate over a series of

engagements that stretch over time. Studies of mobile work reveal

that ad-hoc, serendipitous and informal meetings are common-

place [1][2][16][24]. Unlike remote meeting tools that support

stationary, desk-based interactions, Nokia Easy Meet enables

face-to-face interactions of co-present participants in a variety of

mobile settings such as meeting rooms, public spaces, hallways or

on trains [1] [19]. This is a new dimension that differentiates a

mobile meeting service from desktop-based meeting service.

Finally, information access while being mobile is typically

unpredictable and uncertain [19]. Unless mobile users anticipate

or opportunistically plan their information needs, there will be

mobile occasions when users need to access information not

available on their mobile phone but are on their remote

computers. This is very likely in meetings when the need to share

a report or slide deck arise. Nokia Easy Meet enables mobile

phone participants to share files by uploading them to the server

from their remote computers. The meeting service is integrated

with a remote content access service Ovi Files

(http://files.ovi.com). Each computer that a user wishes to access

remotely must be registered with Ovi Files and a connector

application installed. Thereafter, users may access their content

from a mobile phone.

Nokia Easy Meet supports two different screen layouts to

accommodate different mobile phone screen resolutions (see

Figure 1). The screen layout used is determined by a simple

heuristic – mobile browser display width. Widths that are QVGA

(320x240 or 240x320) or smaller use the small, tab layout and

larger mobile displays use the large, accordion layout. Nokia Easy

Meet is accessible from any mobile device with a standards-

compliant Web browser.

As part of this mobile Web application service, we also created a

S60 WRT widget. The widget provides a subset of the service

functionality that enhances user experience of Nokia Easy Meet.

First, users can customize the widget with their user id and

password. Second, the widget launches and connects to the

service and logs the user in at the same time. Third, the widget

retrieves and displays the user’s meetings (see Figure 2). The

meeting list can be refreshed by simply clicking the ‘Refresh’

short-cut. Thus, with about 2 clicks, the user can join a meeting

without having to key in urls, user id, or password, remember

meeting times, etc. All of the widget’s functionality exists as part

of the Web application accessed through a mobile Web browser

but has been repackaged into a widget that can be installed on

user’s mobile phone and customized with the user’s information.

3.2 Remote Content Access
While we initially integrated the remote content access

functionality with Nokia Easy Meet, its functionality is useful

outside of the meeting context. In fact, Ovi Files provides an S60

widget for mobile phone use. We have repackaged our remote

content access functionality as a widget also (see Figure 3). There

were two reasons for this. First, our widget supports a different UI

from the one for Ovi Files but one consistent and familiar to users

of Nokia Easy Meet. This familiarity should facilitate use outside

of meeting service for these users.

Second, and more importantly, we are developing a context-aware

model of content access that factors in time, location, and file-

type. By repackaging the remote content access functionality as its

own widget, a user-based context model of general access can be

built through everyday use. Then, with more data on patterns of

access, we plan to provide an alternate UI that suggests candidates

for the remote content that the user wants to access based on the

user’s context (i.e., time and location). The non-predictive UI

allows the user to traverse the file system until the file is located.

In the case of deep file systems or the case when users are not sure

Figure 2: Nokia Easy Meet widget.

Figure 3: Remote content access – traversing files system.

of where the file is located, this can result in several user clicks to

locate the file. An effective context-aware variant would reduce

time and effort.

From the perspective of a widget, this remote content service has

value when integrated with mobile meetings as well as standalone.

In the latter case, rather than relying on human proxy or deferring

until one returns to the machine, this service can provide access

readily [16][19]. When made context-aware through mobile

meetings or in terms of time and location, users can gain just-in-

place, in-the-hand access.

3.3 Mobile Information Access
We recently conducted a number of informal interviews of mobile

users in our organization to discover people’s practices and

activities prior to and en-route to meetings [13]. The study was

exploratory in nature and was intended to provide insights for

mobile services that support people’s mobile information access

needs. We obtained several interesting insights.

First, all the interviewees engaged in varying amounts of

mobilization work with preparatory activities in anticipation of

going mobile [2][3][16][18][23][24]. Second, all the interviewees

made extensive use of their calendars not only for scheduling

appointments, meetings, and events. They used these time

containers to corral information that was peripherally as well as

centrally relevant to the event such as email, phone numbers,

URLs, documents, etc. That is, users had co-opted or overloaded

their calendar with information scraps that they might need at the

meeting or en-route to the meeting [3]. Many of them also relied

on printing this information to have the information readily

accessible when the need arise. Third, in probing for why they use

paper, users indicated that they were not confident or thought the

time, effort, or lack of device functionality to support “just-in-

place” information access to the calendar data. Finally, in

brainstorming services that could support their mobile information

access needs, users described technology use cases that would

make the calendar data actionable. That is, rather than simply

being apprised of the calendar content such as who they were

meeting, what the audio conference code and password

information, or meeting address, users wanted to call the person

they were meeting, dial the audio conference bridge for the

meeting, or get directions to the meeting location.

This study led us to explore the development of a mobile Web

calendar mashup that focuses on giving the mobile worker the

flexibility and ability to use calendar information to perform a

variety of activities that meet their mobile work needs. This

service leverages a user’s existing calendar and their practice of

corralling information into calendars. Users can access the service

from their mobile Web browser or an S60 widget. The service

presents users with details of their upcoming meeting along with

value-added data and functionality in support of their activities

while en-route to their meetings. Users can also view upcoming

meetings so that they can take preparatory actions in anticipation

of mobile information access needs or activities. As a mobile

mashup, a calendar event integrates a temporal context where a

variety of information is already encapsulated.

3.4 In-Between Work – Collective Intelligence
The nature of work undertaken while being mobile is highly

varied [19][24]. In particular, during business trips, work cannot

be characterized as pertaining only to the specific purpose of the

trip. Studies show that there are large amounts of time spent

outside of a trip’s scheduled activities that is in-between tasks and

meetings. One of our interviewee’s in our study described this

time as “holding tank.” The time is also referred to as “dead”

time, “travel” time, “spare” time, or “wasted time” [19][24].

Understanding the exact form that “dead time” takes for mobile

workers is important for understanding and supporting the

different levels of information access required or possible in the

particular situations and places where they arise and the

organization and execution of work. Perry et al. [19] found that

activities were rarely organized according to priority or urgency,

but according to the context in which dead time occurred and the

technological resources available. Hence, work was fit in as and

when possible. They found that dead time was rarely used as

efficiently as it could be. The challenge for designing devices and

services is to allow mobile workers to make full use of dead time,

taking into account the diversity of environments in which it

occurs and the paucity of available resources. These studies reveal

that such services should be lightweight and highly flexible, rather

than highly specific, integrated or complex systems or single-use

devices. There are numerous studies that reveal people’s

appropriation and co-opting of technologies including our own

interview study.

Pursuant to this, we explored services that could be lightweight

and suitable for “dead time” during mobility situations. One area

in enterprise work that is critical to organizations is tapping

knowledge diffused in an organization. A key element of the

service was to tap this without great deal of cognitive or physical

effort and without need for huge expenditure of time [23]. Such a

service should also entice individuals to participate and to

contribute their knowledge. We developed a game-like service

that would tap individual’s foresight about outcomes of future

events and have them stake their opinions through wagers.

We created a widget that enabled users to select particular game

and conduct trades in the particular game. Then, they would buy

or sell contracts on outcomes of future events. Doing this in the

form of a mobile widget seemed appropriate as people could

engage in it whenever and wherever they had a little bit of time.

Furthermore, if people become privy to information that they

believe would affect the outcome of particular future events, then

acting on this knowledge as quickly and as timely a manner would

be important. The mobile phone seems both convenient and easy

as it is always accessible and always with the user.

4. Issues
Mobile Web widgets and widget engines are available on mobile

devices. Aside from the S60 WRT engine from Nokia, Opera

recently began support of them in Version 9.5 [17]. However,

there remain incompatibilities across widget engines [5]. There

are now efforts within W3C to standardize widget [4]. Without

such an effort, incompatibilities, such as a different media type for

each vendor, will limit inter-operability of widgets across

Figure 4: Individual and 7-day view in TimeSAGE.

different widget engines. This will cause confusion for end-users

with mobile phones and widget engines from different vendors.

The focus of this section is not to rehash the incompatibilities’

discussion as there are efforts afoot to deal with them. Instead, we

raise the discussion up a level to mobile applications and the

engineering of widgets to support mobile work. The discussion is

based on a number of observations arising from our experiences

and requirements with development of a variety of smartphone

widgets for mobile work. This discussion revolves around three

main topics: mobile user experience, software engineering

practices, and systems engineering issues.

4.1 Personalization and Customization
One of the main advantages of a widget-based implementation of

a service compared to a browser-based implementation is

personalization of the user interface (UI), user experience and

situational context. User preferences may often be due to personal

tastes. As well, different mobile devices may have different screen

sizes, screen resolutions, aspect ratios and input capabilities.

When accessed with a mobile device versus a laptop browser, an

effective user experience can be more than just personal

preferences. It would depend on the capabilities of the device used

by the user. The Nokia Easy Meet application supports two

different screen layouts depending on screen size; a choice that

can be easily determined based on a simple heuristic. However,

other aspects of the device may not be as easily determined (i.e.,

presence of qwerty keyboard, touch interface).

A widget, with its persistent storage for preferences, is a useful

feature that allows the user to set and store the selected UI options

for the particular device. Thus, when accessed with non-qwerty,

QVGA mobile phone, a user may select shortcut key options or

handwriting to ease input interactions and opt for spoken output

rather than having all information crammed into a small display.

However, when accessing this same service from their laptop, the

settings for the application may be different since keyboard and

mouse is available.

In all the widgets described in the previous section, a common

function included in the widgets is login to the service. User ids

and passwords can be persisted using user preference storage

mechanism of widget. This is done when the user configures the

widget with their credentials. After that, users no longer need to

key in this information as they would in the mobile browser

counterpart. As well, negotiation of login can be automated by the

widget on startup for protected services that users access.

Use of preference storage to keep user credentials has the benefit

of reducing user interaction related to authentication to a

minimum; when personalizing the widget for the first time or

whenever they change their password. Having to key in their

credentials every time can be inconvenient (e.g., mobile phone

lacking qwerty keyboard) and disruptive to their workflow. This is

analogous to users who have opted to use an “always on” device

like a mobile phone to look up contact information rather than

waiting to “bootup” a laptop to access the information. In fact,

this was one of the user experience consideration that spurred the

development the Nokia Easy Meet widget.

4.2 Proxying Authentication
Storing user credentials can have security benefits to the user akin

to the security benefits of smart cards or credit cards. That is, the

vehicle (in this case the widget) presents the credentials as part of

negotiating authentication with service. This approach is also

beneficial when accessing services that act as a proxy to the actual

service containing protected resources or providing protected

services. Both the remote content access widget and calendar

widget are examples of using the services we developed as a

proxy to actual services; Ovi Files and Google Calendar

respectively. For example, Nokia Easy Meet never retains or

persists the user’s Ovi credentials but only facilitates the

authentication with Ovi. Through a secure https connection the

remote content widget passes along the user’s id and password. In

turn, the Nokia Easy Meet server passes this on to Ovi files using

Single SignOn (SSO) APIs to authenticate the user to Ovi. Since

this functionality was developed in support of the mobile meeting

tool, reusing the same proxy service in developing our context-

aware file service was handy.

Authentication with some services that use SSO can involve a

complex series of redirects. Letting a trusted proxy service handle

this rather than the widget itself simplifies the widget

functionality. More importantly, some Single SignOn services

require a large number of redirects that can time out over slow

connections or worse yet, a widget engine may abandon the

process thinking that it is trapped in infinite redirects. Using a

trusted proxy with bandwidth and resources to deal with this is

important for robustness. Finally, as our research goal is to rapidly

experiment and prototype new services, use of a trusted proxy

service means that authentication functionality can be solved once

and used by many experimental services.

4.3 User Input and Output
AJAX applications are highly interactive Web applications that

exploit a set of technologies that enable exchanging small

amounts of data with the server behind the scenes [20]. As a

result, Web pages do not need to be reloaded when this happens.

The increased responsiveness and interactivity has enabled

developers to create highly graphical and dynamic UIs. The

resulting Web applications invariably require a mouse or 2-D

pointing device to work smoothly. Unfortunately, a rich AJAX

application can be cumbersome to use on a mobile device that

lacks a touch interface or adequate 2-D pointing device.

On many mobile devices, a 5-way joystick (see Figure 5) is

typically used for intra-page navigation and interaction. On S60

Web browsers, the Mini-Map and virtual pointer [11] are

enhancements that facilitate Web browsing using the 5-way

joystick. The virtual pointer technique combines mouse pointing

with focus navigation to select focusable elements while pressing

the 5-way joystick to navigate to the element. This allows

focusable elements to be selected with minimal key presses.

However, this still relies on 2-D pointing actions to move towards

the focusable elements.

More importantly, in designing screen layout, designers take care

in different segments of the display for application functionality.

For example, sidebars contain links to content that are peripheral

Figure 5: 5-way joystick in the center of keypad.

to the content of a Web page whilst the main content area contain

content central to the page. However, the same care is not

extended to developing input operations for moving through such

content areas in a logical way. By developing input mechanisms

to move through such regions in a facile way can greatly improve

input interactions with such content from a mobile device.

One input navigation technique for mobile device interaction

would mimic keyboard navigation using the 5-way joystick. The

ideas underlying AxsJAX, a framework for making AJAX

applications accessible, are also useful for mobile Web

applications where mobile device and context can challenge even

able-bodied users [7]. In particular, by developing content

navigation rules for AxsNav [21], a widget designer identifies

different trails through the various semantic regions of a widget’s

UI (e.g., sidebar, main content). The content navigation rules

include shortcut keys for traversing the links in a trail. On the

mobile phone, the shortcut keys can be assigned to the buttons of

the 5-way joystick. Such an approach would be more effective

then tab navigation executed without knowledge of the semantic

regions of an application.

The AxsJAX approach leverages reflection (i.e., discovering

information about interaction widgets) capability provided by

ARIA properties role and state and notification (i.e., detecting

relevant changes) capability provided by ARIA live regions [7]

[8]. The S60 Web browser and widget engine do not presently

support ARIA although Opera 9.5 does. The lack of ARIA does

limit the extent to which mobile widgets and applications to

develop multimodal interaction capabilities that address

constraints of mobile devices. While AxsNav is made easier with

support for XPath in the browser, it can be supported without

using Javascript implementation of XPath for browsers and

widget engines that do not support it natively.

Many smartphones are equipped with other forms of input and

output capabilities. These include touch input, voice input, voice

capture, video playback, and video capture. As well, it is also

common-place to find sensors and haptics technologies. Such

capabilities unleash the breadth and alternatives to traditional

input and output modalities capabilities that mobile Web

applications and widgets can leverage. As an example, haptics can

be exploited for input and output that facilitate eyes-free

interactions.

4.4 Data Plans, Bit Rate, Power Utilization
The Nokia Easy Meet service is a real-time collaboration tool

developed with AJAX techniques. When in a meeting, data and

voice charges can mount. Data relating to shared content, chat,

and other awareness information is provided to keep the mobile

meeting participant apprised of developments. This is facilitated

by asynchronous XML http polling requests. We took care in our

design to control the amount of data exchanged, the transfer

speed, and the frequency of the requests and updates. All three

impact cost on user’s data plan, the responsiveness of the

application, and battery drain. Hence, one cannot directly apply

techniques used to create desktop-based AJAX application to

mobile Web applications and widgets. For example, excessive or

unnecessary polling can have impact on costs, user experience,

and use of the smartphone. Our approach to address this was to

create an AjaxBroker to mediate and aggregate XHR requests

[14].

Early in our development, we found that a one-hour conference

could drain the battery because of over-polling or of spikes in

power when setting up network connections when under-polling.

As a consequence, when we developed the widget, we elected not

to refresh their conference display periodically (see Figure 2) but

instead provide a manual Refresh button. Users can launch the

widget and leave it in the background. When they desire an

update, the widget can be brought into foreground to be interacted

with. Transitioning to more extensive service functionality is

facilitated by the widget. That is, the widget can check for updates

or launch the mobile Web browser to enable more detailed work

such as a mobile meeting.

4.5 Bridging Work and Technology
Widgets provide specialized functionality. In the development of

our services, we created browser-based Web applications. Widget

functionality emerged to grease the user’s interaction with the

service. In the case of Nokia Easy Meet, it made accessing a

mobile meeting easier by connecting to the service’s URL,

logging in for the user and enabling users to get periodic

awareness of updates to their meeting. The remote access content

widget emerged as a realization of enabling general and everyday

access to one’s remote content outside of mobile-meeting

situation. . In the case of calendar application, the widget could be

placed in the background much like the Nokia Easy Meet widget

to support users while they are mobile by making the event

information readily accessible (i.e., just-in-place mobile

information access). The game widget arose from its natural

affordance to support dead-time activity

4.6 Mobile Phone Platform Access
Both the remote content access service and the calendar service

can leverage a user’s current location as well as other resources on

the mobile phone. In pilots of the Nokia Easy Meet service, we

have received user requests to access their mobile phone contact

list for people to invite when they create meetings. As well, users

also indicated that once meetings are created, our service should

update their calendar with the meeting. These examples show the

desirability of being able to access platform resources and data to

support the mobile Web services. This is a capability that is not

yet supported on mobile Web browsers or widget engines.

In the implementation of the calendar and remote content services,

platform data and resources are accessed via a personal S60 HTTP

server that we developed. The server is a simple, HTTP server

that responds to HTTP 1.1 Get/Post requests from applications

running on the mobile phone. It is implemented in PyS60 [ref].

Web service APIs are installed in the script directory of the S60

HTTP server. These APIs are PyS60 or native scripts that access

and interact with platform resources (e.g., camera, GPS) and data

(e.g., contacts). The APIs return a JSON object [25].

Unlike the mobile Web server [26] the simplicity of the personal

S60 server means that it neither supports external network

requests nor does it support multi-threading for multiple,

simultaneous requests. Keeping it simple and for personal access

rather than being externally accessible has privacy, resource

utilization, and security benefits. This approach was undertaken as

platform resources via widgets are as yet unavailable in existing

S60 devices. More importantly, the browser-based version of the

application can use the same approach to access platform

resources just like it accesses 3
rd

 party APIs. Platform access for

mobile browsers is not imminently available.

4.7 Enabling Rapid Prototyping
In all implementations of mobile Web applications and its

widgets, we have followed a number of software engineering

practices. First, all services maintained a separation between data,

presentation, and logic. Django, a high-level python Web

framework that supports object-oriented engineering principles,

was used in the development of three of the four services. It

provides a number of important building blocks such as object-

relational mapper to describe database layout in python code,

support for url design that is important in crafting web service

APIs, and a template language to separate design, content and

code. What is important to note is not specifically that Django was

used but the selection of a framework that supports good object-

oriented approach to service creation. The game service was

developed using another framework that had similar building

blocks.

To illustrate why selection of such a framework is important is to

look at the contribution of a template system in the development

of the service. We were able to create the UI for the browser and

widget versions without replicating the work to create their views

for each platform. As we iterated over the functionality of the

service and re-factored selected functionality from the browser

Web application for use as a widget, the template system enabled

this. Finally, testing of widget was greatly facilitated by testing in

a browser before final testing on the mobile devices. A number of

issues and bugs were identified and addressed quickly. Debugging

of widget code on the mobile device is not always easy for lack of

good tools. Finally, by emulating the widget environment in the

browser, it was easy to iterate on designs of the widget.

5. Conclusion
This position paper used studies of mobile work to show how it

differs from desk-work. As well, we presented a number of

mobile Web applications and widgets that we developed to

illustrate our explorations of smartphone-based services to support

mobile work. Widgets were developed to support mobile Web

browser application (i.e., Easy Meet), were pulled out of mobile

Web application for general use that could become contextualized

(i.e., remote content access), were developed to mash up

information and services related to calendar events, and were used

as lightweight mechanisms to tap into collective intelligence.

As smartphones begin to take hold as more than communication

devices, the role of widgets and mobile Web applications will take

on an importance as device of mobile workers. We found that the

use of mobile Web applications and mobile widgets to be

extremely promising for exploring, prototyping, and piloting

mobile services. In addition, mobile services in support of mobile

work will need to integrate data and resource from the cloud as

well as from the mobile phone platform itself. While

incompatibilities and pervasiveness of the capabilities exist on the

mobile platform, we have found that the smartphone platform and

the mobile Web widgets to be promising technologies for

exploring mobile work services. We have presented some of our

experiences and issues with using these technologies. They

represent challenges that need to be addressed before the power of

smartphones and mobile mashups can be realized as integral tools

for mobile workers.

6. REFERENCES
[1] Bellotti, V. and Bly, S. Walking Away from the Desktop

Computer: Distributed Collaboration and Mobility in a

Product Design Team. In 1996 Proceedings of the

Conference on Computer-Supported Cooperative Work.

ACM (1996), 209-218

[2] Bergqvist, J., Dahlberg, P., Ljungberg, F., and Kristoffersen,

S. Moving Out of the Meeting Room: Exploring Support for

Mobile Meetings. In S. Bodker et al. (eds.), Proceeding of

6th ECSCW Conference, Kluwer (1999), 81-98.

[3] Bernstein, M. van Kleek, M., Karger, D., and Schraefel,

M.C. Information Scraps: How and Why Information Eludes

our Personal Information Management Tools. ACM

Transactions on Information Systems, 26(4), ACM (2008),

24-46.

[4] Bersvendsen, A. and Caceres, M. Widgets 1.0: APIs and

Events. http://www.w3.org/TR/widgets-apis/, W3C (2009).

[5] Caceres, M. Widgets 1.0: The Widget Landscape (Q1 2008).

http://www.w3.org/TR/widgets-land/. W3C Working Draft

14, (2008).

[6] Caceres, M. Standardising Widgets.

http://datadriven.com.au/thesis/confirmation/confirmation.pd

f (2007).

[7] Chen, C. and Raman, T.V. AxsJAX: A Talking Translation

Bot Using Google IM: Bringing Web-2.0 Applications to

Life. In Proceeding of the 2008 International Cross-

Disciplinary Conference on Web Accessibility (W4A), ACM

(2008), 54-56.

[8] Craig, J., Cooper, M., Pappas, L., Schwerdtfeger, R.,

Seeman, L. Accessible Rich Internet Applications (WAI-

ARIA) 1.0. W3C (2009). http://www.w3.org/WAI/PF/aria/

[9] Cui, Y. and Roto, V. How People Use the web on Mobile

Devices. In Proceeding of the International World Wide Web

Conference WWW2008, ACM (2008), 905-914.

[10] Forum Nokia. Widgets. http://www.forum.nokia.com/

main/resources/technologies/browsing/widgets.html.

[11] Grassel, G, Geisler, R., Vartiainen, E., Chauhan, D.,

Popescu, A. 2006. The Nokia Open Source Web Browser for

S60. MobEA III Workshop held in conjunction with

WWW2006 conference.

http://www.research.att.com/~rjana/MobEA-

IV/PAPERS/MobEA_IV-Paper_3.pdf

[12] Kaar, C. An Introduction to Widgets with Particular

Emphasis on Mobile Widgets. University of Applied

Sciences, Hagenberg. Technical Report 06/1/0455/009/02

(2007), 6 pgs.

[13] Lee, A., Adalumo, G., Agarwal, T., and Tran, T. Calendars

as Mobile Habitats. Draft, (2009), 10 pgs.

[14] Li, D. and Anand, M. MaJaB: Improving Resource

Management for Web-Based Applications on Mobile

Devices. To appear in Proceedings of MobiSys 2009, ACM

(2009),14 pgs.

[15] OAuth Workgroup. OAuth Core 1.0. (2007).

http://oauth.net/core/1.0.

[16] O'Hara, K., Perry, M., Sellen, A, & Brown, B. Exploring the

Relationship Between Mobile Phone and Document Use

During Business Travel. In B. Brown, N. Green, and R.

Harper (eds.), Wireless World: Social and Interactional

Aspects of the Mobile Age, Springer-Verlag (2001), 180 -

194.

[17] Opera. Opera Widgets. http://widgets.opera.com/.

[18] Oulasvirta, A. and Sumari, L. Mobile Kits and Laptop Trays:

Managing Multiple Devices in Mobile Information Work. In

Proceeding of Conference on Human Factors in Computing

Systems, ACM (2007), 1127-1136.

[19] Perry, M., O’Hara, K., Sellen, A., Brown, B., and Harper, R.

Dealing with Mobility: Understanding Access Anytime,

Anywhere. ACM Transactions on Computer-Human

Interaction, 8(4), ACM (2001), 323-347.

[20] Raman, T.V. Toward 2^W, Beyond Web 2.0.

Communications of the ACM. ACM (2009), 52-59.

[21] Raman, T.V. and Chen, C. AxsJAX Content Navigation

Rules (CNR) Reference. Google Code (2008). http://google-

axsjax.googlecode.com/svn/trunk/docs/cnr.html.

[22] Scheible, J. and Tuulos V. Mobile Google Maps: Rapid

Prototyping of Applications on the Mobile Platform. Wiley

(2007).

[23] Sohn, T., Li, K.A., Griswold, W.G., and Hollan, J.D. A Diary

Study of Mobile Information Needs. In Proceeding of

Conference on Human Factors in Computing Systems, ACM

(2008), 433-442.

[24] Wiberg, M. RoamWare: An Integrated Architecture for

Seamless Interaction In between Mobile Meetings. In

Proceedings of GROUP’01, ACM (2001), 288-297.

[25] Wikipedia. JSON. http://en.wikipedia.org/wiki/JSON.

[26] Wikman, J. and Dosa, F. Providing HTTP Access to Web

Serbers Running on Mobile Phones, NRC-TR-2006-005.

Nokia Research Center (2006).

http://research.nokia.com/tr/NRC-TR-2006-005.pdf.

