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CHAPTER 5 - Frequently used Symbols

a = dimensionless traffic parameter L = distance

A = stop-start wave amplitude L = length of periodic interval

� = sensitivity coefficient

b = net queue length at traffic signal

c = g + r = cycle length � = wave length of stop-start waves

c = coefficient0

= constant, independent of density k

ds = infinitesimal time

�t, �x = the time and space increments respectively

such that �x/�t > free flow speed 


� , 
� = deviationsi i+1

� = state vector

� , �  = state vector at position i, i+1i i+1

f(x, v, t ) = vehicular speed distribution function

f = relative truck portion, k  = kpass

f = equilibrium speed distribution0


 = fluctuating force as a stochastic quantity q k = arrival flow and density conditions

g = effective green interval q = capacity flow

= is the generation (dissipation) rate at node j at r = effective red interval

t = t  + n�t; if no sinks or sources exist  =0

0 and the last term of Equation 5.28 vanishes T = oscillation time

g = minimum green time required for t = timemin

undersaturation 

h = average space headway - = relaxation time as interaction time lag

i = station u = speed

j = node U (k) = equilibrium speed-density relation

k = density

k , k = density downstream, upstream shock- +

k = operating point0

k = equilibrium density10

K = constant valueA

k = density within La 2

k = density "bumper to bumper"bumper

k , q = density, flow downstreamd d

k , q = density, flow upstreamu u

k = vehicle density in homogeneous flowhom

k = jam density of the approach underj

consideration 

= density and flow rate on node j at 

t =  t  + n�t 0

k = density conditions m

k = density "bumper to bumper" for 100%pass

passenger cars y(t) = queue length at any time point t

k = reference state y = queue length from i to j assuming a positiveref

k = density "bumper to bumper" for 100% trucks direction opposite to x, i.e. from B to Atruck

ld = logarithmus dualis

l = characteristic lengtho

µ = dynamic viscosity0

µ = viscosity term

n = current time step

N = normalization constant

n , n = exponentsi 2

N = number of cars (volume)i

7 = eigenvalue

p = probability

q = actual traffic volume, flow

Q = net flow rate0

q = average flow ratea

a a

ni

) = quantity0

t = the initial time0

e

= equilibrium speed

u = free-flow speed of the approach underf

consideration

u = group velocityg

u  - u = speed rangemax min

u = shock wave speedw

u = spatial derivative of profile speedz

v(k) = viscosity

v = values of the group velocityg

W(q) = distribution of the actual traffic volume

values q

x = space

xh = estimated queue length

x , t , y = coordinates at point ii i i

X = length of any line ijij

y = street width

ij

z = x - U, t, collective coordinate

= shockspeed
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5.
CONTINUUM FLOW MODELS

5.1  Simple Continuum Models

Looking from an airplane at a freeway, one can visualize the then we can obtain speed, flow, and density at any time and point

vehicular traffic as a stream or a continuum fluid.  It seems of the roadway.  Knowing these basic traffic flow variables we

therefore quite natural to associate traffic with fluid flow and know the state of the traffic system and can derive measures of

treat it similarly.  Because of this analogy, traffic is often effectiveness, such as delays stops, total travel, total travel time,

described in terms of flow, concentration, and speed.  In the fluid and others that allow engineers to evaluate how well the system

flow analogy, the traffic stream is treated as a one dimensional is performing.

compressible fluid.  This leads to two basic assumptions: a)

traffic flow is conserved and;  b) there is a one-to-one As Section 5.1.3 suggests, solution of the simple continuum

relationship between speed and density or between flow and

density.  The first assumption is expressed by the conservation

or continuity equation.  In more practical traffic engineering

terms, the conservation equation implies that in any traffic

system input is equal to output plus storage.  This principle is

generally accepted, and there is no controversy as to its validity.

However, the second assumption has raised many objections in

the literature partly because it is not always understood and

partly because of contradicting measurements.  Specifically, if

the speed, u, is a function of density it follows that drivers adjust

their speed according to the density, k, (i.e., as density increases

with distance then speed decreases).  This is intuitively correct,

but it can theoretically lead to negative speeds or densities.  In

addition, it has been observed that for the same value of density

many values of speed can be measured.  Evidently the

assumption has to be qualified.  The qualification is that speed

(or flow) is a function of density but only at equilibrium.

Because equilibrium can rarely be observed in practice, a

satisfactory speed-density relationship is hard to obtain, and it is

often assumed or inferred theoretically.  This particular difficulty

has led some researchers to dismiss continuum models or try to

oversimplify them.  However, as subsequent sections

demonstrate, continuum models can be used successfully in

simulation and control.

Since the conservation equation describes flow and density as a

function of distance and time, one can immediately see that

continuum modeling is superior to input-output models used in

practice (which are only one dimensional, because they

essentially ignore space).  In addition, because flow is assumed

to be a function of density, continuum models have a second

major advantage, (e.g. compressibility).  The simple continuum

model referred to in this text consists of the conservation

equation and the equation of state (speed-density or flow density

relationship).  If these equations are solved together with the

basic traffic flow equation (flow equals density times speed),

model leads to the generation of shock waves.  A shock wave is

a discontinuity of flow or density, and has the physical

implication that cars change speeds abruptly without time to

accelerate or decelerate.  This is an unnatural behavior that

could be eliminated by considering high order continuum

models.  These models add a momentum equation that accounts

for the acceleration and inertia characteristics of the traffic mass.

In this manner, shock waves are smoothed out and the

equilibrium assumption is removed (i..e., the high order models

apply to non-equilibrium flows since speed is not necessarily the

equilibrium speed but is obtained from the momentum equation).

In spite of this improvement, the most widely known high order

models still require an equilibrium speed-density relationship;

recently new high order models were proposed that remove this

requirement, but they are largely untested.

It therefore appears that high order models are preferable to the

simple continuum; however, their conceptual appeal should be

tempered by the difficulty of deriving, calibrating, and

implementing a rigorous and practical momentum equation.  To

be sure, existing literature suggests that the simple continuum

model performs better than existing high order models if

properly implemented.  Intuitively, this could be true when speed

flow and density are averaged over long time spans (i.e., in the

order of 5 minutes) rather than short ones (i.e., in the order of 30

seconds).

In this chapter, both simple and high order models are presented

along with analytical and numerical methods for their

implementation.  The intent of the chapter is not to reiterate well-

known literature reviewed in the previous monograph but rather

to summarize the essence of the simple continuum theory for the

practicing engineer and demonstrate how it can be implemented

in the modeling and analysis of real life situations.  With respect

to high order models which evolved over the last three decades,

we determined that this subject has not been covered adequately;

therefore, it is covered in more detail here.
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(5.1)

5.1.1  The Conservation Equation

The conservation equation can easily be derived by considering

a unidirectional continuous road section with two counting

Stations 1 and 2 (upstream and downstream, respectively) as

shown in Figure 5.1.  The spacing between the two stations is

�x; furthermore, no sinks or sources are assumed within �x (i.e.,

there is no generation or dissipation of flow within the section).

Let N  be the number of cars (volume) passing Station i duringi

time �t and q , the flow passing station i; �t is the duration ofi

simultaneous counting at Station 1 and 2.  Without loss of

generality, suppose that N >N .  Because there is no loss of cars1 2

in �x (i.e., no sink), this assumption implies that there is a

buildup of cars between Station 1 and Station 2.  

Let  (N  - N ) = �N; for a buildup �N will be negative.  Based2 1

on these definitions we have:

Then the build-up of cars between stations during �t  will  be 

(-�q)�t.  If �x is short enough so that density (concentration)k

within it is uniform, then the increase in concentration �k

between Stations 1 and 2 during the time interval �t is

This means that the buildup of cars is

Because cars are conserved

If the medium is now considered continuous and the discrete

increments are allowed to become infinitesimal, then taking the

limit we obtain:

Figure 5.1
Road Section Used for Deriving the Conservation Equation.
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(5.1)

(5.2)

(5.4)

Equation 5.1 expresses the law of conservation of a traffic fundamental relationship:

stream and is known as the conservation or continuity equation.

This equation has the same form as in fluid flow.  If sinks or

sources exist within the section of the roadway, then the

conservation equation takes the more general form:

where g(x,t) is the generation (dissipation) rate in vehicles per

unit time per unit length.  In practice, generation of cars is

observed when flow is interrupted (such as at entrances, exits, or

intersections).

Solution of the conservation equation as it applies to traffic flow

was first proposed by Lighthill and Whitham (1955) and by

Richards (1956).  Recently, implementation to traffic analysis

simulation and control was proposed by Stephanopoulos and

Michalopoulos (1979; 1981).

5.1.2 Analytical Solution of the

Conservation Equation; 

Shock Waves

Equation 5.2 is a state equation that can be used to determine the

flow at any section of the roadway.  The attractiveness of this

equation is that it relates two fundamental dependent variables,

density and flow rate, with the two independent ones (i.e., time

t, and space x).  Solution of Equation 5.2 is impossible without

an additional equation or assumption.  The first alternative is

possible by considering the momentum equation described in

Section 5.2.  The second option is the one adapted in the simple

continuum modeling.  It simply states that flow, q, is a function

of density, k, i.e., q = f(k).  This, or equivalently, u = f(k), is a

very reasonable assumption,  but it is only valid at equilibrium.

For this reason the high order continuum models are, in

principle, more appealing but in practice have failed to prove

superior to the simple continuum alternative.  This is partly

because a rigorous form of the momentum equation is hard to

derive and partly because its calibration and implementation is

still rather complex for most practical applications.

Returning to the solution of Equation 5.2 and considering the

q = ku (5.3)

we can easily observe that if u = f(k), then in Equation 5.2, we

effectively have one equation with only one unknown which can

be solved analytically.  Analytical solution of the general case is

very involved and impractical for real life applications.

Therefore, we restrict ourselves only to the pipeline case in

which there are no generation or dissipation terms i.e., g(x,t)=0.

With this in mind, the conservation equation can be rewritten as:

or

It should be noted that f(k) can be any function, and that no

particular assumptions need to be made in order to keep the

results general.  For example, if the speed-density relationship is

linear as suggested by Greenshields (1934), Equation 5.4

becomes:

where u  represents the free flow speed and k  the jam density.f j

Equation 5.4 is a first order quasi-linear, partial differential

equation which can be solved by the method of characteristics.

Details of the solution as well as the complete formulation of the
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(5.5)

simple continuum modeling were first presented by Lighthill and connecting the two flow conditions (i.e., upstream and

Whitham (1955).  In practical terms, the solution of Equation 5.4 downstream).

suggests that:

� The density k is constant along a family of curves called moves downstream with respect to the roadway; conversely,

characteristics or waves; a wave represents the motion

(propagation) of a change in flow and density along the

roadway.

� The characteristics are straight lines emanating from the

boundaries of the time-space domain.

� The slope of the characteristics is:

This implies that the characteristics have slope equal to the

tangent of the flow-density curve at the point representing

the flow conditions at the boundary from which the

characteristic emanates.

� The density at any point x,t of the time space domain is process follows the steps of the solution of the conservation

found by drawing the proper characteristic passing through equation as outlined above.  The top of the figure represents a

that point. flow-concentration curve; the bottom figure represents

� The characteristics carry the value of density (and flow) at

the boundary from which they emanate.

� When two characteristic lines intersect, then density at this

point should have two values which is physically

unrealizable; this discrepancy is explained by the generation

of shock waves.  In short, when two characteristics

intersect, a shock wave is generated and the characteristics

terminate.  A shock then represents a mathematical

discontinuity (abrupt change) in k,q, or u. assumes that the faster flow of point B occurs later in time than

� The speed of the shock wave is: that of point A; therefore, the characteristics (waves) of point B

will eventually intersect with those of point A.  The intersection

of these two sets of waves has a slope equal to the chord

(5.6)

where k  , q  represent downstream and k , q  upstream are higher because the speed of the traffic stream is representedd d u u

flow conditions.  In the flow concentration curve, the shock

wave speed is represented by the slope of the line

It should be noted that when u  is positive, the shock wavew

when u  is negative, the shock is moving upstream.w

Furthermore, the mere fact that a difference exists in flow

conditions upstream and downstream of a point does not imply

that a shock wave is present unless the characteristics intersect.

Generally this occurs only when the downstream density is

higher than upstream.  When density downstream is lower than

upstream, we have diffusion of flow similar to that observed

when a queue is discharging.  When downstream density is

higher than upstream, then shock waves are generated and

queues are generally being built even though they might be

moving downstream.  

Figure 5.2, taken from Gerlough and Huber (1975),

demonstrates the use of traffic waves in identifying the

occurrence of a shock wave and following its trajectory.  The

trajectories of the traffic waves.  On the q-k curve, point A

represents a situation where traffic flows at near capacity

implying that speed is well below the free-flow speed.  Point B

represents an uncongested condition where traffic flows at a

higher speed because of the lower density.  Tangents at points A

and B represent the wave velocities of these two situations.  The

areas where conditions A and B prevail are shown by the

characteristics drawn in the bottom of Figure 5.2.  This figure

connecting the two points on the q-k curve, and this intersection

represents the path of the shock wave shown at the bottom of

Figure 5.2.

It is necessary to clarify that the waves of the time-space diagram

of Figure 5.2 are not the trajectories of vehicles but lines of

constant flow and speed showing the propagation of conditions

A and B.  The velocities of individual vehicles within A and B

by the line connecting the origin with A and B in the q-k curve.
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Figure 5.2
Shock Wave Formation Resulting from the 

Solution of the Conservation Equation.

5.1.3  Applications

Although the simple continuum theory was developed in the mid

50s and is extensively referenced in the literature, it is not widely

employed in practice.  This is partly because of the lack of

understanding of the physical problem under consideration and

partly because of difficulties in defining initial and boundary

conditions.  Furthermore, analytical solutions are not easily

obtainable for realistic initial and boundary conditions, complex

u-k or q-k relationships, or interrupted flows.  The first problem

can be addressed by better understanding the results of the

previous section and clearly defining the physical problem.  The

application of the next section (Stephanopoulos and
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Michalopoulos 1979) presents an example of how this can be queue length).  For fixed-time control such approximations may

achieved.  It also demonstrates how analytical solutions can be suffice, but when further accuracy or realism is required, more

very instructive in better understanding the inner workings of rigorous modeling is necessary.  Another disadvantage of input-

traffic.  Other applications of shock waves in signal control, output analysis is that the assumption of compact queues leads

analysis of platoon dynamics, arterial street, and freeway flow to miscalculations of the queue size itself and therefore results in

can be found in Stephanopoulos and Michalopoulos (1981), miscalculations of delays (Michalopoulos and Pisharody 1981).

Michalopoulos and Pisharody (1980), Michalopoulos (1988), The simple continuum model offers the advantage of taking

Michalopoulos et al. (1991).

The problem of applying the simple continuum theory in more

complex situations, such as interrupted flow, can only be

addressed by solving the conservation equation numerically.  A

numerical approach for implementing the simple continuum

modeling is also presented in this chapter.  This approach

(Michalopoulos et al. 1987) has been employed for analyzing

traffic flow in both freeways (Michalopoulos et al. 1991) and

arterials (Michalopoulos 1988).  The following section only

presents an application of the simple continuum modeling to

signalized intersections for the purpose of illustrating how the

theory can be used to better understand the formation and

dissipation of queues.  The practical implementation of the

theory to freeway and intersection simulation and control can be

found in the above-mentioned references.

5.1.4  Formation and Dissipation of 

          Queues at Signalized Intersections

Consider a single-lane queue at the beginning of the effective

green at a signalized intersection.  If the number of cars in the

queue (i.e., the queue size) at this time is x and the average space

headway is h, then the estimated queue length (i.e., the space

occupied by the x cars) is xh.  Suppose now that shortly after the

beginning of green, N  cars join the queue while N  are1 2

discharged in front.  Then following the same logic, the queue

length should be [x + (N  - N )]h.  However, generally this is not1 2

the case, since shortly after the commencement of green the

queue length is growing regardless of the net difference N  - N ;1 2

for instance, if N  = N  the effective queue size continues to be1 2

x, but the queue length can no longer be estimated from the

product xh.  Clearly, the average space headway is a function of

time because of compressibility (i.e., the changing density within

the queue in both time and space).  This observation leads to the

conclusion that although input-output analysis can be used for

describing the evolution of queuing situations in time, they yield

crude estimations of another important state variable (i.e., the

compressibility into account since u = f(k) and also it is two

dimensional in nature (i.e., in order to obtain the desired results

it is necessary to associate traffic flows and densities with time

and space).

Application of the simple continuum modeling to this problem

begins by definition of boundary and initial conditions which is

obtained by examining an approach to a signalized intersection

as shown in Figure 5.3, (Stephanopoulos and Michalopoulos

1979).  In this figure x,t represent distance and time respectively;

it is assumed that within distance L from the stop line there are

no entrances or exits.  Further it is assumed that L is long enough

so that queues do not extend beyond this section and that flow

downstream of the stop line is uncongested.  Finally, in Figure

5.3, L  and L   represent the initial  and  final  queue  length  at1 1
'

the  start  and  end of the cycle c,  respectively.

Along the x axis, of Figure 5.3, point B corresponds to the

stopline and point A to the tail end of the queue at the beginning

of the effective green interval; t = 0 corresponds to the start of

the effective green.  Within AB, jam density and zero flow

conditions prevail.  Upstream of A and in the remaining portion

L  of section L, cars arrive at an average flow rate q .  Thus,2 a

density within L  is k .  Assuming an average arrival flow q 2   a a

and density k  during the cycle, then flow and density at the a 

beginning of section L are q  and k  during the period g + r = c,a a

where c is the cycle length and g,r represent the effective green

and red times respectively.  Finally, assuming that the cycle is

saturated, capacity flow and density conditions q  and k  prevailm m

at the stopline during g (i.e., from point B to point F) while

during the effective red flow, at the stopline (point F to end of

cycle) is congested (i.e., q = 0 and k = k ).   The characteristicj

lines emanating  from     t = 0, x = 0, and x = L were drawn based

on this definition of initial and boundary conditions.  These lines

are tangent to the flow-versus-density curve evaluated at the flow

and density conditions corresponding to the point of origin.  

For example, within AB, the slope of the characteristics is

negative, and it is the same as the tangent at the point 0,k  of thej

flow-density curve, where k  represents the jam density.  Toj



5.  CONTINUUM  FLOW MODELS

5 - 7

Figure 5.3
Queue Length Developments at a Signalized Intersection 

During a Saturated Cycle.

visualize this, one can imagine the simple flow density curve

resulting from the Greenshields (1934) model shown at the right

of Figure 5.4.  At point B, density changes instantaneously from

k  to k , where k  is density at capacity; therefore, thej  m m

characteristics at B fan out (i.e., they take all possible slopes

from (dq/dk) ,  to zero).  Proceeding in this fashion, one can0 kj

draw the remaining characteristics as shown in Figure 5.3.

The characteristic lines emanating from the boundaries divide

the entire time-space domain [0 < x < L, 0 < t < c] into four

distinct zones of different flow and density conditions as shown

in Figure 5.3.  When the characteristics intersect, ashock wave

is generated.   At the tail end of the queue, shock wave ACMDE

is generated during the period of one cycle; therefore, this line shock is constant k .  This is the reason the shockwave CMD is

represents the trajectory of the tail end of the queue and its nonlinear, in fact, it moves with variable speed as shown by the

vertical distance to the stopline represents queue length denoted slope of line CMD.  At the end of the effective green (point F),

as y(t).  The slope of line ACMDE at any point represents the

speed at which this shock wave (or, equivalently, the tail end of

the queue) propagates upstream or downstream of the roadway.

Derivation of the queue tail trajectory proceeds by examining the

intersection of the characteristics.  To begin with, it can be seen

that at point A, a linear shock wave is generated moving

backwards with respect to the stop line.  This shock ends at C

since line BC represents the last characteristic carrying density

k emanating from the stop line.  After C, density downstream ofj

the shock is variable due to the varying densities carried by the

fanning characteristics of zone 3 while density upstream of the

a
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shock wave FD is generated and meets the tail end of the queue

at point D.  Again,  this  shock  moves  with  variable  speed  as

density 

 downstream of it (Zone 4) is constant and equals to k  whilej

upstream (Zone 3) density varies between k  and k .  At point D, Based on the earlier discussion the following analyticalj m

a linear slack similar to AC takes over.  Finally, at the end of the expressions can be obtained for the queue length and dissipation

cycle, the distance L  represents the final queue length, or,'
1

equivalently, the initial queue length of the next cycle.

It should be noted that if the cycle is undersaturated, line ACMD

intersects the stopline during green and point D falls on the

stopline;  after point D, the queue length is zero.   In this case,

for the remainder of the green interval, vehicles depart without

delay; at point F, the queue length starts increasing again linearly

until the end of the cycle.  This as well as other complexities,

such as gradual transition to capacity or the presence of sinks

and sources are discussed in Stephanopoulos and Michalopoulos

(1979) and Michalopoulos (1988).

5.1.4.1  Analytical Results

Each segment of line ACMDE and the coordinates of points C,

M, D and E can be derived analytically.  In order to obtain

analytical results, one must assume a specific relationship

between flow and density or, equivalently, between speed and

density.  For simplicity, the linear speed-density model

(Greenshields 1934) can be assumed, but it should be noted that

similar results can be obtained for any other model.  The

trajectory of the queue length in Figure 5.3 was derived by using

the following notation (Stephanopoulos and Michalopoulos

1979):

y(t)  = queue length at any time point t,

g = effective green interval,

r = effective red interval,

c = g + r = cycle length,

g = minimum green time required formin

undersaturation,

X = length of any line ij,ij

u = free-flow speed of the approach underf

consideration,

k = jam density of the approach under consideration,j

q ,k = arrival flow and density conditions,a a

    x ,t ,y = coordinates of point i, and consideration,i i i

y = queue length from i to j assuming a positive ij

direction opposite to x, i.e. from B to A (Figure

5.3).

times (Stephanopoulos and Michalopoulos 1979):

(5.7)

(5.8)

(5.9)

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)

(5.19)

(5.20)

In an undersaturated cycle, the queue dissipates in time:

(5.21)

This is the minimum green time required to dissolve the initial

queue L .  In such a cycle, the final queue length L  is1 1
'

independent of the initial L  and is given by:1

(5.22)
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Details such as gradual transition to capacity at point B and 5.1.4.3  Signalized Links and Platoon Behavior
capacity drops during green can also be taken into account.

5.1.4.2  Queue Length Stability

The analytical relations between the initial and final queue wave developments at a signalized link during a saturated cycle.

developed in the preceding section can be used for stability Line A ,C ,M ,D ,E ,F ,H  corresponds to the downstream

analysis in saturated cycles.  Equation 5.19 can be rewritten as queue, and its trajectory can be determined analytically

(5.23) is very large even under simplifying assumptions, one can see

where

(5.24)

If c and g are given, b is constant, i.e., it is independent of the

initial queue L .  Thus, Equation 5.23 can be generalized for any1

cycle N and rewritten as

(5.25)

where L  and L  are the queues at the beginning of cycle N andN N+1

N+1.  Clearly, a steady state exists if L  = L  or if L =L +b,N  N+1 N N

i.e., if b = 0.  Therefore, for steady state:

(5.26)

and solving for g/c:

(5.27)

Since � is positive, it is easily seen that if g/c < �, the queue

length at the end of the cycle will be growing for as long as this

situation persists.  Otherwise, if b < 0 or, equivalently, if 

g/c > �, the queue at the end of the cycle will decrease.  It should

be noted that Equations 5.25 and 5.27 are meaningful for

saturated cycles (i.e., for green times less than the ones given by

Equation 5.21).  Otherwise, L  is not related to L  and it isN+1 N

given from Equation 5.22.  A final note concerning the stability

of the steady state is worthy of emphasis.  As Equation 5.25

reveals, the steady state is metastable.  If b = 0, a small variation

of the demand will change the steady state to a nearby value that

is also metastable.  Therefore, the queue length at the beginning

of each cycle will change according to the fluctuating values of

b, which depend on the demand.

Extension to similar analytical results for a system of

intersections is a rather complex analytical exercise, but it is very

useful in obtaining an insight of the nature of the problem.

Figure 5.4 presents just a possibility of queue length and shock

3 3 3 3 3 3 3

(Michalopoulos et al. 1980).  Since the number of possibilities

that we have to turn to numerical methods for solving the

conservation equation at complex situations.

A major benefit of the continuum modeling is the fact that

compressibility is built into the state equations since speed or

flow is assumed to be a function of density.  This suggests that

as groups of cars enter areas of higher density, the continuum

models exhibit platoon compression characteristics; conversely,

when they enter areas of lower density we observe diffusion or

dispersion.  This phenomenon has been shown analytically in

Michalopoulos and Pisharody (1980), where it is demonstrated

that by using continuum models we do not have to rely on

empirical dispersion models such as the ones employed today in

most signal control packages.  The result is a more realistic and

elegant modeling that should lead to more effective control.

5.1.5  Numerical Solution of the

          Conservation Equation

The advantage of the analytical results presented thus far is that

they visually depict the effects of downstream disturbances on

upstream flow.  Thus they provide a good insight on the

formation and dissipation of queues and congestion in time and

space in both freeways and arterials; further, they can be used to

demonstrate that platoon dispersion and compression are

inherent in this modeling (i.e., it does not have to be induced

externally).  The disadvantage of the analytical solution lies in

the oversimplifications needed in the derivations.

These include simple initial flow conditions, as well as arrival

and departure patterns, absence of sinks or sources, and

uncomplicated flow-concentration relationships.  Most

importantly, complexities frequently encountered in real
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Figure 5.4
Shock Wave Developments Between Two Signalized 
Intersections During a Saturated Downstream Cycle.

situations such as turning lanes, side streets, or freeway each node of the discretized network at consecutive time

entrances and exits cannot be treated analytically with ease.  As

in similar problems of compressible flow, these difficulties can

be resolved by developing numerical solutions for the state

equations.  Clearly, a numerical methodology is needed for

numerical implementation of the conservation equation in

practical situations.  This allows for inclusion of complexities

one is likely to encounter in practice (turning lanes, sinks and

sources, spillbacks, etc.) treatment of realistic arrival and

departure patterns, more complicated u-k models, as well as

inclusion of empirical considerations.  Numerical computation

of k, u, and q proceeds by discretizing the roadway under

consideration into small increments �x (in the order of 9 to 45

meters) and updating the values of these traffic flow variables on

increments �t (in the order of one second or so).  

Space discretization of a simple signalized traffic link without

side streets is presented in Figure 5.5 in which the dashed

segments represent dummy links that are necessary in the

modeling in this application (Michalopoulos 1988).  It should be

emphasized that this discretization is not physical and is only

performed for computational purposes.  Referring to the solid

segments, density on any node j except the boundary ones (i.e.,

1 and J) at the next time step n+1 is computed from density in

the immediately adjacent cells (both upstream and downstream

j-1 and j+1 respectively) at the current time step n according to

the relationship:
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(5.28)

(5.29)

(5.30)

(5.31)

in which:

= density and flow rate on node j at t=t +n�t0

t  = the initial time0

�t, �x = the time and space increments respectively such this is essential for analyzing flow regardless of the modeling and

that �x/�t > free flow speed.

= is the generation (dissipation) rate at node j at 

t = t +n�t; if no sinks or sources exist 0

and the last term of Equation 5.28 vanishes.

Once the density is determined, the speed at t+�t (i.e., at n+1)

is obtained from the equilibrium speed density relationship u (k),e

i.e.,

For instance, for the Greenshields (1934) linear model,

where u  is the free flow speed and  the jam density.  Itf

should be noted that Equation 5.28 is applicable for any speed

density model including discontinuous ones; if an analytical

expression is not available, then u can easily be obtained

numerically from the u-k curve.  Finally, flow at t+�t is obtained

from the fundamental relationship:

in which, the values of k and u are first obtained from Equations

5.28 and 5.29.  It can be demonstrated (Michalopoulos 1988)

that measures of effectiveness such as delays, stops, total travel,

etc., can be derived from k, u, and q.  Further, the generation

term can either be measured (e.g., by detection devices) or more

practically estimated in each time step (Michalopoulos 1988;

Michalopoulos et al. 1991).  It is important to note that Equation

5.28 allows congestion to propagate both upstream and

downstream rather than upstream only.

It should be evident that the above solution requires definition of

the initial state of the system (i.e., the values of k, u, and q at

t=t ) as well as boundary conditions, (i.e., k and q at j=1 and j=J,0

upstream end of the link and stopline respectively).  However,

solution method (i.e., arrivals and departures at the boundaries

and initial flows must always be specified).  For practical

implementation of Equations 5.28, 5.29, and 5.31, one only

needs to specify arrival and departure flow rates; density at j=1

and j=J is obtained from an equilibrium q-k model.  The

discretization of Figure 5.5 and numerical solution of this section

assume that all space increments �x are equal.  Variable space

discretization is also possible; however, regardless   of   the

discretization  scheme   the  relationship

�x/�t > u  must be maintained at all times for convergence.f

Finally, direct measurement of density and initial and boundary

conditions can be obtained by wide area detection devices that

were only recently developed and implemented in the field

(Michalopoulos et al. 1992).  This is particularly important for

measuring and periodically updating initial conditions.

In conclusion it is noted that more accurate numerical methods

can be developed for solving the conservation Equation 9; such

methods are not recommended as they lead to sharp shocks

which are unrealizable in practice.  This along with numerical

examples and applications are discussed in the references cited

earlier.  One of the most interesting applications is the one in

which the simple continuum model  is implemented for

analyzing multiple lane flows (Michalopoulos et al. 1984).  The

modeling is relatively simple, but it can only be implemented by

numerical methods.

5.1.6 Application to Multi-Lane

Flow Dynamics

A simple continuum model for describing flow along two or

more homodirectional lanes can be obtained by considering the
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(5.32)

(5.33)

Figure 5.5
Space Discretization of a Simple Link.

conservation equation of each lane.  This is accomplished by where � is a sensitivity coefficient describing the intensity of

observing that the exchange of flow between lanes represents

generation (or loss) of cars in the lane under consideration.  The

generation term is obtained from the assumption that the

exchange of vehicles between two neighboring lanes is

proportional to the difference of the deviations of their densities

from equilibrium values (Gazis et al. 1962).  These values are

known lane-specific constants which can be obtained

experimentally.  Based on these considerations, the following

system describes flow on a two lane freeway (Munjal and Pipes

1971).

where, t and x are the time and space coordinates, respectively;

q (x,t) is the flow rate of the ith lane (i = 1, 2); k (x,t) is thei ¬ 

density of the ith lane (i = 1, 2); and Q (x,t) is the lane changingi 

rate (i = 1, 2).  From the assumptions stated above

Q  = �[(k  - k ) - (k  - k )]1 2 1 20 10

Q  = �[(k  - k ) - (k  - k )]2 1 2 10 20

interaction, having units of time ; k  is the equilibrium density-1
10

of the ith lane.  Since the system is conserved it can be easily

seen that Q  + Q  = 0.1 2

The above formulation does not take into account generation or

loss of cars that are introduced at entrance or exit ramps.  In

addition, when densities are equal lane changing will occur if k10

g k .  While this formulation results in lane changing even at20

very low densities, this is a rather rare behavior at nearly free

flow conditions (assuming no generation of cars).  A simple

improvement would be to assume that the sensitivity coefficient,

�, depends on the difference in density between the two lanes

rather than being constant.  With this improvement and the

inclusion of sinks and sources as well as an interaction time lag

(Gazis et al. 1962), the previous formulation can be modified to:

where g(x,t) is the generation rate in lane 1; at exit ramps g is

negative.  
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(5.34)

(5.35)

       (5.36)

Q  = �[{k (x, t--) - k (x, t--)} - (k  - k )]; 1 2 1 20 10

Q  = �[{k (x, t--) - k (x, t--)} - (k  - k )], 2 1 2 10 20

where

k  is a constant value below which no exchange of flow occurs;A

- is the interaction time lag, and k  the jam density.0

In this formulation it is assumed that cars are generated in (or

depart from) lane 1 (i.e. the right lane of the highway).  A similar

generation term could also be added to lane 2 if appropriate.

The system of governing equations (Equations 5.32 and 5.33)

can be solved numerically by discretizing in time and space

(Michalopoulos et al. 1984).  Figure 5.6 presents space

discretization of a two lane freeway section including an entrance

ramp; multiple entrances and exits can be treated similarly.

Following guidelines similar to those of Section 5.1.5, a

 numerical solution of Equations 5.32 and 5.33 is

(Michalopoulos et al. 1984):

where  : the density of the ith lane and the jth node at

t = t  + n # �t; t  = the initial time0 0

Figure 5.6
Space Discretization of a 2-Lane, One Dimensional Freeway Section.
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(5.37)

(5.38)

,

u (k ) is the equilibrium speed corresponding to ; assuminge i,j
n

the simple equilibrium model of Greenshields (1934) it can be

easily verified that G  = k u (1 - (k  /k )) where u  and kn n n
i , j i , j ƒ i , j 0 ƒ 0

represent the free flow speed and jam density, respectively.

Following computation of density at each time step, the flow rate

 and speed u  are obtained fromn
i , j

and

The upstream or downstream boundary conditions (k ; k )n n
1, j i, j

required in the solution correspond to the arrivals or departures,

and they can be constant, time varying, and/or stochastic; the

latter can be generated numerically by simulation techniques.

Initial conditions can be either constant or varying with space

depending on the particular situation under consideration.

Further, at the downstream boundary when flow is unspecified

and �x is sufficiently small, it can be assumed that;

Finally, during the initialization period 0 � t � °-,( i.e., when n -

s � 0) it can be assumed that , implying no exchange

of flow between lanes.

Extension of the simple continuum modeling to more than two

lanes is straightforward.  If I represents the number of lanes, the

general conservation equation of each lane is

where

g  = 0 for all internal lanes, i.e. for i = 2,3,..., I - 1i

alternatively

The  above  equations  are  also  valid  for  the  first  and  last

lanes  (i = 1 and i = I); in these cases one should set i - 1 = i  for

i = 1; i + 1 = i  for i = I and g  = ƒ(x,t).i

Following a similar notation as before, the general solution of

Equation 5.37 is:

where
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(5.39)

(5.40)

The models presented to this point did not include the street

width y, explicitly (i.e., they were discrete with respect to this

spatial dimension).  This discretization appears natural due to the

division of the road surface in lanes.  However, during the lane

changing process, flow and speed exhibit a second component

parallel to the y dimension.  In principle, a two dimensional

formulation with respect to space should more adequately

describe the traffic flow process.  A simple continuum

formulation based on the law of conservation alone is

x,  y,  t   are  the   space  and  time   coordinates, respectively; 

k = k(x,y,t) = the traffic density; u  = u (x,y,t) = the x componentx x

(parallel to the road axis) of the  velocity   vector;

u  = u (x,y,t) = the y component of the velocity vector; g(x,y,t) isy y

the generation rate.

Since the above equation has three unknowns, it must be

combined with two equations of state of the form

It should be noted that in this new formulation, density

represents the number of cars per unit area; for instance jam

density is defined as:

where h , h  are the minimum space headways in each directionx y

x and y respectively.

The general conservation form of Equation 5.39 is

Again Equations 5.39 and 5.40 can be solved numerically, and

expressions for u (k) and v (k) can be obtained (Michalopoulose e

1984).

5.2  High Order Models

5.2.1  Criticism of Simple

          Continuum Models

The simple continuum models used in the previous section

resulted in the kinematic wave description of traffic flow.

However, these models have some shortcomings which are given

in the following list:

� Kinematic models contain stationary speed-density relation

(i.e., the mean speed should adjust instantaneously to

traffic density) more realistic is that speed is adapted after

a certain time delay and to reflect traffic conditions

downstream.

� Kinematic wave theory shows shock wave formation by

steeping speed jumps finally to infinite sharp jumps.  A 

macroscopic theory is based on values which are average

values from an ensemble of vehicles.  Averages are taken

either over temporal or spatial extended areas.  Infinite

jumps, therefore, are in contradiction to the basics of

macroscopic description.  The only solution is to include

noninstantaneous adjusting of speed-flow characteristics

by an additional acceleration equation, which at the end

introduces diffusion and smears out sharp shocks

(compare Figure 5.7).

� Unstable traffic flow is characterized under appropriate

conditions by regular stop-start waves with amplitude-

dependent oscillation time.  Oscillatory solutions cannot be

derived from kinematic wave equations.

� The dynamics of traffic flow result in the hysteresis

phenomena.  This consists of a generally retarded behavior

of vehicle platoons after emerging from a disturbance

compared to the behavior of the same vehicles

approaching the disturbance (compare Figure 5.7).

Simple continuum models cannot describe such
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Note: Macroscopic Models are based on temporal and spatial average values which do not lead to sharp shocks even in the

case of vehicles distributed like a heaviside step function.

Figure 5.7
Macroscopic Models.

phenomena.  In Figure 5.8, hysteresis phenomenon is an essential for the design of all sorts of traffic control, this

example of dynamic behavior of traffic flow which cannot be mixing is highly questionable.

covered by simple kinematic traffic wave theory.  Volume and

density represented by the observed platoon are different after The significant shortcomings of the simple continuum models

emerging from a kinematic disturbance compared with the suggest the justification for a dynamic extension leading to an

platoon approaching the disturbance.  Data from aerial survey improved description of traffic flow.

recording (Treiterer and Myers 1974; Treiterer 1973).

� Besides hysteresis, the crucial instability effect is

bifurcation behavior (i.e., traffic flow becomes unstable

beyond a certain critical traffic density).  Once

overcrossing the critical density, the traffic flow becomes

rapidly more congested without any obvious reason.

Kinematic traffic wave theory can only show that wave

propagation direction can change from downstream to

upstream.

� Finally, with the dynamics of traffic flow the deviations of

measured state points from the approximating curve for

the speed-density relation can be explained not only as

stochastic effects.  To dispense a dynamic description by

using a steady state speed-density characteristic mixes

stationary and non-stationary measured traffic state points.

Since the speed-density relation as an operating line is

5.2.2  Transients and Stop-Start Waves

Before developing detailed higher order continuum model

(taking into account acceleration and inertia effects by regarding

non-instantaneous and spatially retarded reactions), experimental

observations are reported such as transients and the formation of

stop-start waves.

The most impressive measurements of transients and stop-start

wave formation are gained from European freeways.  Due to

space restrictions, there are numerous freeways with two lanes

per highwayin Europe.  These freeways, often equipped with a

dense measurement grid not only for volume and occupancy but

also for speed detection, show stable stop-start waves lasting in

some cases for more than three hours.  Measurement data exists

for Germany (Leutzbach 1991), the Netherlands (Verweij 1985),

and Italy (Ferrari 1989).  At first, the German data are reported.
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Figure 5.8
Hysteresis

Phenomenon as an Example 
of Dynamic Behavior of Traffic Flow. 

 The series are recorded from the Autobahn A5 Karlsruhe-Basel The data for Figures 5.9 a,b and 5.9 c,d are from the Institute of

at 617 km by the Institute of Transport Studies at Karlsruhe Transport Studies at the University of Karlsruhe, Germany

University (Kühne 1987).  Each measurement point is a mean (Michalopoulos and Pisharody 1980).  The data above shows a

value of a two-minute ensemble actuated every 30 sec.  The proportionality between amplitude and oscillation time.  This

dates stem from holiday traffic with no trucks. strong dependence is an expression for the non-linear and

All reported cases have densities beyond the critical density and harmonic oscillations, the amplitude is independent of the

show unstable traffic flow (i.e., stop-start waves with more or oscillation time as the linear pendulum shows.  Obviously, the

less regular shape and of long duration - in some series up to 12 proportionality holds only for the range between traffic flow at

traffic breakdowns).  It is possible to draw in each measurement a critical lane speed of about 80 km/h (= speed corresponding to

series and idealized strongly periodic stop-start waves and to

collect the resulting amplitudes and oscillation times.

Oscillation time, T, and stop-start wave amplitude A from an between free-flow speed and complete deadlock, saturation

idealized strongly periodic shape derived for the stop-start waves effects will reduce the proportionality.

reported in Figures 5.9a,b and 5.9c,d (Kühne 1987) are as

follows. As an example of transient effects, measurements from the

oscillation time T 16 min 15 min 7.5 min 5 min

amplitude A 70 km/h 70 km/h 40 km/h 25 km/h

measurement figure   2 a   2 b   3 a   3 b

inharmonic character of the stop-start waves.  In the case of

the critical density k  � 25 veh/km) and creeping with jam speedc
of about 10 km/h.  For oscillations covering the whole range

Netherlands are described.  The data are recorded as one-minute
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Figure 5.9 a,b
Time Series of Mean Speed for Unstable Traffic Flow ( Michalopoulos and Pisharody 1980).

 

Figure 5.9 c,d
Time Series of Mean Speed for Unstable Traffic Flow with Small 

Undulations (Michalopoulos and Pisharody 1980).

 Note:  Data from the Institute of Transport Studies at the University of Karlsruhe, Germany.  
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average values from March 30, 1983 for the freeway A16  average spacing of 500 m between each measurement site.  In

Westbound 1.1 to 4.35 km between 3:30 and 6:00 p.m.  The Figure 5.10, the one-minute mean values are plotted as a

section contains an auxiliary on ramp between 2.0 and 2.5 km sequence of adjacent measurement sites.  Figure 5.10 represents

and an exit to Rotterdam Centrum between 2.9 and 3.3 km, as the time development of mean speed from adjacent measurement

well as, an entrance from Rotterdam Centrum between 3.8 and sites taken from the freeway A16 near Rotterdam, the

4.35 km.  The motorway is a three-lane highwaywith  the Netherlands.  The transient break in runs into stationary stop-

exception between 3.3 and 3.8 km where the highwayhas only start waves with amplitude � 30 km/h and oscillation time � 4

two lanes.  Data are taken from measurement sites at 1.1, 1.6, minutes.  The traffic breakdown runs backwards with negative

2.0, 2.5, 2.9, 3.3, 3.8, and 4.35 km which corresponds an

Figure 5.10
Time Development of Mean Speed from Adjacent Measurement Sites (Verweij 1985).
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group velocity � -10 km/h.  Data from Verweij (1985).  The data  traffic breakdown runs backwards with negative group velocity,

refers to the medium lane with almost only passenger car traffic. so that upstream sites experience the breakdown later than

The transient effects are very clear to recognize.  At 4.35 km,

there is a traffic breakdown from 3:50 to 5:20 p.m. with an A number of comparable measurements exist.  For instance,

average speed of 70 km/h compared to free flow speed of about Koshi (Koshi et al. 1976) shows data from Tokyo expressway

110 km/h.  The speed development within the congested area is Radial Number 3.  Again, the one-minute values show

erratic with no marked oscillations.  This breakdown is amplified oscillations.  At the beginning, and immediately after a weaving

from measurement site to measurement site upstream and area which produces continuous disturbances, the oscillations

becomes a regular stop-start wave at 3.3 km with an oscillation are not very large in amplitude but are amplified as they

time of about four minutes and an amplitude of 30 km/h.  At the propagate to the upstream.  The highest waves reach a speed of

far away upstream measurement site 1.1 km, due to wide approximately 40 km/h, and the oscillations of the two

spreading of the original disturbance,  the traffic flow becomes neighboring lanes of the regarded two-lane highwaybecome

erratic again where the area of slow traffic motion is almost

completely damped out.  The measurements also show that the

downstream sites.

more synchronous as they propagate upstream.    (See Figure

5.11.)

Note: _____:  outer lane; -----:  inner lane, average flow rate 1600 veh/h/2 lanes.

Figure 5.11
Time Development of Speed Upstream on Toll Gate at Tokyo Expressway

(Koshi et al. 1976).
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(5.43)

Other instructive measurement series for transients and stop-start

waves are reported from Italy (Ferrari 1989).  On the A14 near

Bologna, data were collected on August 14, 1979 - the

traditional summer exodus to holiday resorts with a number of

long distance trips by drivers unaccustomed to using the

motorway.  This showed excellent examples of the formation of

stop-start waves.  For the U.S., comprehensive measurements

over a long freeway stretch exist only for Interstate 80 between

Oakland and San Jose, California.  Usually, heavy loaded

freeways are found within urban areas.  There the distances

between entrances and exits are short, usually ½ to 2 miles,

which do not allow formation of stationary stop-start waves

without being disturbed by merging traffic from extended

weaving areas.  The section between Hesperian and A-Street of

the regarded stretch extend for 9000 ft; it has extremely good

speed measurement equipment. 

5.2.3  Momentum Equations

The extension of the simple continuum models in order to

explain the dynamic effects in the preceding section was first

pointed out by Whitham (1974) and Payne (1979).  The actual

speed u(x, t) of a small ensemble of vehicles is obtained from the

equilibrium speed-density relation after a retardation time - and

from an anticipated location  x + � x:

(5.41)

How to treat this recursive equation is shown in detail by

Müller-Krumbhaar (1987).  Expanding in a Taylor series with

respect to - and �x - assuming both quantities can be kept small

- yields to the substantial acceleration of a vehicle platoon

(5.42)

where the arguments x and t are suppressed for convenience.  In

the right hand side of Equation 5.41, we used 

where .  The derivative dv/dt is the acceleration of an

observer moving along the streamline x = x (t).  In a fixed

coordinate system this transforms into 

(5.44)

(i.e., the substantial acceleration is decomposed into a

convection term indicating the acceleration due to spatial

alterations of the stream lines, and into a local acceleration

stemming from explicit time dependencies).

Continuity equation

(5.45)

and momentum equation

(5.46)

form a set of first order, partial differential equations which are

supposed to describe dynamic effects associated with the traffic

flow, such as stop-start waves formation, bifurcation into

unstable flow and transients, and traffic behavior at bottlenecks.

We mention, however, that basic equations cannot describe stop-

start waves nor correct behavior at a bottleneck.  Figure 5.12a

shows speed measurements from Interstate 80 between Oakland

and San Jose during morning peak with stop-start wave

formation.  Data for southbound shoulder lane after McCrank

(1993) and Varaija et al. (1994).  To interpret the different terms

in the resulting momentum equation, a microscopic

interpretation is given on the basis of a gas kinematic approach.

It is assumed that a vehicular speed distribution function, f(x,v,t),

describes the number of dN of vehicles lying at time, t, on the

road interval between  x  and x + dx  and having a speed

between  v  and  v + dv  by:

(5.47)

then the corresponding density increment is given by: 

(5.48)
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Note: Data for south bound shoulder lane during morning peak with stop-start formation after McCrank (1993) and 

Varaija et al. (1994). 

Figure 5.12a
Speed Measurements from Interstate 80

 between Oakland and San Jose. 
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Figure 5.12b
Measurement Array for Speed Measurements from Interstate 80 between 

Oakland and San Jose after McCrank (1993) and Varaija et al. (1994).

while the density and mean speed are defined by: 

 (5.49)

(5.50)

Convection motion and relaxation to an equilibrium speed

distribution f  leads to an equation of motion for the distributiono

function f (Phillips and Prigogine 1979; Prigogine and Herman

1971) :

(5.51)

Calculating the first and second moments of this equation of

motion yields 

(5.52)

Multiplying the momentum Equation 5.46 with k gives:

(5.53)

Upon comparing with (Equation 5.52), we finally obtain

(5.54)

The coefficient  has therefore, the meaning of the standard

deviation of the vehicular speed distribution.  In kinematic gas

theory, this speed distribution is linked to temperature.  The gas

kinematic interpretation can be completed by an interpretation

stemming from sound propagation in compressible gases.

Without relaxation and non-linear convection term, the

continuity equation and momentum equation read

(5.55)

multiplied by  and  respectively, gives 
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(5.56)

which is the sound propagation equation in compressible gases.

The coefficient , is therefore the sound velocity for

propagation of disturbances without regarding non-linear

convection and relaxation to equilibrium speed-density relation.

Finally, comparing the momentum equation with the

hydrodynamic Navier Stokes equations

local   +  convection = volume + pressure  + viscosity 

acceleration force    gradient (5.57)

the term  can be identified with the traffic dynamic

pressure 

(5.58)

related to the potential of the traffic stream and the reversible

part of the energy flow.  These interpretations show that the

pressure term    has the meaning of an anticipation

term, which takes into account drivers  ́reactions to downstream

disturbances.  As an approximation with limited application

regimes

            = constant, independent of density k (5.59) 

is used.  A density dependence of the anticipation coefficient 

is investigated by Helbing (1994) as well as in the Section 5.2.9.

The relaxation term

(5.60)

describes the non-instantaneous adaption of the actual speed to

the equilibrium speed-density relation.  The relaxation time - is

the time a platoon of vehicles reacts to speed alterations.  It has

something to do with the reaction time of an ensemble of cars

and must therefore be in the range of reaction time of drivers´

car-units

(5.61)

  

For instance, the German "tachometer - half" rule fixes the legal

safety distance, in meters, taking the half of the actual speed in

km/h - leads to a reaction time of 1.8 sec as distance in meters

during reaction leads to reaction time of 8 sec.  It corresponds to

the U.S. rule for every 10 mi/h, one more car length (old

American passenger cars!).

Anticipating Section 5.2.10, again a value of - = 1.8 sec indeed

leads to excellent agreement between the model and calculations.

Earlier papers (Cremer et al. 1993; Kühne 1991; Kühne 1984)

have used much larger figures and interpret - as a macroscopic

reaction time which summarizes drivers  ́reaction times.  The use

of unnatural high figures would lead to difficult interpretations

(see e.g. Castillo, et al. 1993).

Relaxation and anticipation can be put together in a concise

driving force term

(5.62)

To anticipate drivers  ́reactions, one substitutes the fundamental

diagram Q(k) by the volume-density relation Q(k)-

(5.63)

In view of this substitution, it becomes apparent that even under

steady-state conditions maximum traffic volume is not constant

but depends on the density gradient.  In particular, it is

interesting to note that it is allowed for  q  to become larger than

q , namely if k is sufficiently high and, furthermore,  k   ismax x

negative.

For the equilibrium speed-density relation, , under

homogeneous conditions several mathematical formulae have

been proposed.  A fairly general formula satisfying the boundary

conditions:

(5.64)

is given by (Cremer 1979),
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 (5.65)

with appropriate choice of the static parameters

=  free flow speed,

(5.66)

= density "bumper to bumper," and

n ,n  = exponents.1 2

As a limiting case (n  � �) the exponential functions2

(5.67)

can be used which do not approach zero at bumper to bumper

density but which appeal by their simplicity.

Sometimes polynomial formulae are used such as

(5.68)

or Padé polynomials

(5.69)

The coefficients for all trials are determined from measurement

points by the least squares method.  The difficulty is to use only

those points which refer to homogeneous and stationary

situations and to cut off inhomogeneous nonstationary points.  In

(Dressler 1949) a self-consistent method is proposed to cut off

unstable traffic flow situations.  In all cases, one has to bear in

mind that because the sample size for traffic includes only a few

particles, fluid models have certain shortcomings which restrict

their applicability in a strong mathematical sense.

5.2.4  Viscosity Models

Construction of stationary stop-start waves in the density regime

beyond the stability limit can be done by introducing a collective

coordinate

(5.70)

which contains the unknown group velocity u .  If density andg

mean speed depend only on the collective coordinate  z  

(5.71)

the system of partial differential equations transforms into a

system of ordinary differential equations.  Then the basic

equations read:

continuity equation

(5.72)

and momentum equation

(5.73)

The continuity equation can be integrated immediately 

(5.74)

This means that the density and speed, in a frame running with

group velocity u , must always serve as supplements.  Waveg

solutions with a profile moving along the highway are only

possible if the density at one site increases on the same

proportion as the mean speed decreases with respect to the

group velocity u  and vice versa.  The constant  has theg

meaning of a net flow and is a result of boundary and initial

conditions to be fulfilled.  

Substituting the integrated continuity equation into the

momentum equation leads directly to a profile equation for speed

profiles of stop-start wave solutions:

(5.75)

To simplify the mathematical manipulations, dimensionless

variables could be introduced

(5.76)
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leading to the profile equation (' suppressed) has to therefore be cancelled, otherwise ambiguous solutions

(5.77)

The profile equation, thus, is an ordinary differential equation of

first order which can be directly integrated.  It contains two

arbitrary parameters: the flow rate  and the group

velocity u .  g

The profile equation for u  has a singularity.  This singularity forz

vanishing denominator

(5.78)

(negative speeds are excluded!)

has been discussed in detail by Dressler (1949).  It is connected

with vertical slope which can be either an inflection point or an

extremum with respect to z = z (u).  An extremum would lead in

a representation u = u (z) to an ambiguous solution which has to

be excluded.  In order to get an inflection point, the conditions 

(5.79)

have to be fulfilled simultaneously.  The calculations yield 

In connection with the correct selection of solutions of the
(5.80)

(5.81)

and show that both conditions for an inflection point with

vertical slope cannot be fulfilled simultaneously.  The singularity

occur.  In order to achieve this cancellation, the zeros of the

denominator and numerator in the profile equation for u  have toz

coincide which fixes the group velocity to 

(5.82)

Group velocity u  and bottleneck capacity Q  are independentg 0

parameters; fixing their values to obtain unambiguous solutions

indicates a limitation of the underlying model.  With the values

of the group velocity v  and net flow rate Q  given by Equationg 0

5.82, a monotonic shape of the profile is obtained, and so far no

periodic solutions are available.  This situation is identical to that

of elementary shallow water theory, where the profile equations

for a steady flow do not exhibit periodic solutions, although

periodic roll waves are observed in every inclined open channel

with suitable water height.  To resolve this discrepancy, pieces

of continuous solutions, as Figure 5.13 demonstrates, must be

put together by jumps (Leutzbach 1985).  To look for such

partially continuous periodic solutions is an analogy to get

shockwave formation within the kinematic wave theory.  The

dynamic theory provided up to now gives two reasons for a

jumping solution.  First, the starting point of the continuity

equation is a conservation law for the vehicle number of a

stretch; that is an integral law which allows finite jumps in the

density.  Secondly, the linear stability analysis developed in the

subsequent section shows that higher wave numbers become

more unstable than lower ones.  This leads to a steeper shape of

the speed and density profile and to the formation of shock fronts

again containing finite jumps.  To derive the jump condition, the

profile equation is integrated over the discontinuity for an

infinitesimal increment including the jump. 

In hydrodynamics, integration is achieved by using higher order

conservation laws like conservation of energy or of entropy.  In

traffic flow, such higher order conservation laws are not obvious

and the derivation of jump conditions, therefore, is ambiguous.

kinematic wave theory, an entropy condition was formulated

(Ansorge 1990; Bui et al. 1992)

(5.83)

The ambiguity can be resolved by using the experimental results:
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Figure 5.13
Construction of Partially Continuous Wave Solutions (Leutzbach 1985).

� the transition from free traffic flow (free flow speed 100-

140 km/h Europe, 75 mi/h U.S.) to jammed-up traffic

occurs on a length of minimum 80 m,

� the speed amplitude A =  u  - u   of a stop-start wavemax min

and the oscillation time, T , have the ratio A/T � 280 km/h2

in the proportionality regime, and 

� the group velocity for upstream running shock fronts in

unstable traffic flow seldom exceeds u  = - 20 km/h.  Theg

experimental data suggest the presence of an intrinsic

dampening that is modeled by introducing a viscosity term

   

into the momentum equation.  The basic higher order traffic flow

model then reads: 

(5.84)

The dynamic viscosity, µ , is determined by scaling0

investigations.  In the shear layer, speed decreases from free flow

to deadlock local acceleration, and dynamic viscosity

overwhelms all other effects

 
(5.85)

which leads to the speed profile within the shear layer decaying

from free flow speed u  to zero along the space coordinate x:f

(5.86)

and to the characteristic length l  during the characteristic time0

-

(5.87)

There is minimal use of the viscosity model since its significance

has not been completely understood.  From the possible

solutions of the kinematic theory, the entropy condition selects

those which correspond to the lower envelope of the shock

conditions (Bui et al. 1992).  In the case of gas dynamics, this is

very reasonable because it is well known that the Euler equations

which display shocks are approximations of the Navier Stokes

equations which contain viscosity and do not exhibit shocks.
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)�ũe ilx�7(l)t

k̃ ũ
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1

c0

U
�

e (k0) k̃	ũ	il
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As the numerical treatment later on shows a simple constant

dynamic viscosity,  can be assumed which leads to the

viscosity term ).  This approach is used constantly in the

following 

viscosity term = 

The difficulties arising from the higher order models without

viscosity (e.g. the inability to properly describe for bottleneck

and stop-start behavior) are reviewed by Hauer and Hurdle

(1979).  The great numerical effort by Babcock et al. (1982) as

well as the introduction of an adaptive discretization procedure

by Cremer and May (1985) are attempts as well.  From an

analytical point of view, the latter procedures are nothing more

than the introduction of a numerical viscosity in order to

continuously describe bottleneck behavior and stop-start waves.

To obtain useful results, it is essential to overcome the

mathematical problems of unphysical solutions due to vanishing

viscosity by introducing the entropy condition or a small but not

vanishing viscosity.  Nevertheless, one has to keep in mind the

limitations of the one-dimensional aggregate models presented

(Papageorgiou 1989).  In special traffic situations, the one-

dimensional description fails.  If an off-ramp throughput is less

than the traffic wishing to exit, one or more right lanes of the

main road may be blocked while traffic on the left lanes may be

fluid. Restrictions of the one-dimensional description occur

when trucks are not allowed to use the far left lane and block the

right lane while traffic on the left lane may be fluid.  Another

restriction occurs if special lanes are dedicated to buses, taxis,

and high occupancy vehicles.

5.2.5  Stability Analysis of

    Higher Order Models

The basic equations

(5.88)

admit the equilibrium solution

(5.89)

relying on the equilibrium speed-density relation U (k).  Toe

determine the stability of this solution the trial solution 

(5.90)

is substituted in the model equations and only term up to first

order in  and  are considered (for convenience dimensionless

coordinates

  

are used where ' is suppressed).  In Equation 5.90, l is the wave

number and 7 (l) is the corresponding frequency.

The continuity and the momentum equations are rewritten as:

(5.91)

with � as the inverse Reynolds number

(5.92)

The condition for non-trivial solutions yields the eigenvalues

(5.93)

where a is the dimensionless traffic parameter

(5.94)

The traffic parameter characterizes the traffic conditions by

increment of speed density relation and absolute value of the

operating point k .  Regarding only the infinitesimal vicinity of0

the operating point corresponds to the restriction on a linear

stability analysis and is similar to the wave theoretic stability

interpretations in kinematic traffic wave theory.
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The two branches of the eigenvalues correspond to two different Beckschulte 1993).  The positive values of the upper branch lead

types of excitations.  One branch leads to permanent negative to instability of the equilibrium solution.

real part (- sign) and is, therefore, stable.  The other branch (+

sign) has a real part which can change its sign independent of the The corresponding eigenfunctions can easily be calculated to 

traffic parameter a and which then leads to instability of the

equilibrium solution.  The cross-over point is given by

(5.95)

This corresponds to a real wave number if a > 0, which becomes

a necessary condition for unstability.  For a < 0, no cross over

point can be reached.  The overall stability analysis is stable a <

0 equilibrium for solution can become unstable  a > 0 was also

derived by Payne (1979).

The wave number dependence on the real part of the eigenvalue

7 together with the stability domain is shown in Figure 5.14 and

Figure 5.15.   Figure 5.14 shows the wave  number dependence

of the real part of the eigen values for  a > 0  from the linear

stability analysis of the equilibrium solution (Kühne and 

(5.96)where N is a normalization constant.  For instance at the

transition point

the upper branch reads 

(5.97)

Figure 5.14
Wave Number Dependence from the Linear Stability Analysis.
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Figure 5.15
Traffic Parameter a and Stability Domain of the Homogeneous Traffic Flow.

To interpret this upper unstable branch, the sign of density and analysis, (i.e., the unstable traffic patterns are connected with

speed deviations from the equilibrium are considered the upper non-linearity stochastics) (Kühne and Beckschulte 1993).  These

branch describes excitations where speed and density vary in non-linearity stochastics define time and length scales of

opposite direction.  A speed increase with respect to the coherence which have to be distinguished from ordinary noise

homogeneous equilibrium solution k = k , u = U (k )0 e 0

corresponds to a decrease of density.  This excitation leads to

unstable traffic flow beyond a critical density.  If it is possible to

react throughout the whole excitation by modulations of speed

and density which go in phase, the second and lower branch is

reached which leads to stable but unnatural behavior in traffic

engineering.  The drivers  ́reaction to reduce the speed in heavy

traffic flow when density is increasing is the reason for

instabilities, spreading of shock waves, and formation of

congestion with stop-start waves.  Of course, this reaction is

correct with respect to safety.  With artificial distance control

systems, however, the lower branch excitation becomes feasible.

The reaction "higher density - higher speed" then leads to the

expected increase of capacity by means of distance control

systems.

In the unstable regime, the linear stability analysis indicates

exponential growing of perturbances.  Since, saturation effects

will confine the increase of a non-linear stability, analysis in the

unstable regime has to be considered.  Several methods of non-

linear stability analysis have been developed to describe the

correct behavior in the unstable regime, mostly based on a

truncated expansion using the eigenmode expansion from linear

stability analysis as a starting point.  Under certain

circumstances chaotic motion is observed by this complete

due to omnipresent random influences.

5.2.6  Numerical Solutions by

    Finite Element Method

Over a wide range, higher order models up to now have failed to

demonstrate their superiority over simple continuum models

even after improving the solution algorithms.  This situation is

similar to the application of the Euler equations in

hydrodynamics in comparison with simple hydrostatic

considerations, which do not yield improved results and even

yield wrong results (e.g., shear layers, buoyancy, and boundary

conditions for eddies). The full fluid dynamic effects can be

taken into account correctly only at the Navier Stokes level.  It

is, therefore, no surprise that traffic flow at bottlenecks,

formation of stop-start waves, and the variety of traffic patterns

in unstable traffic flow could only be described with higher order

models (including viscosity and differentiating between

vanishing viscosity and viscosity tending to zero).  Besides the

in-depth understanding of the macroscopic traffic flow

mechanisms, appropriate numerical methods have to be

provided.  Simple forward discretization schemes are not
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suitable and in many cases lead to wrong results due to the propagation speed of shock waves of about 20 km/h is chosen in

connected numerical instabilities. order to also record shock front spreading.  This gives

The numerical methods must contain:

� Implicit integration procedures with centered differences

and correct treatment of the non-linearities by a Newtonian

iteration procedure, which is stable under all conditions

and

� Correct recording of boundary and initial conditions

regarding the hyperbolic character of the basic differential

equation system.

The implicit procedure turns out to be numerically stable if the

coefficients do not alter suddenly.  Bottlenecks have therefore to

be introduced with smoothed boundaries.

Sometimes additional simplifications can be used (e.g., using

logarithmic density or separating the conservative part of the

momentum equation); these methods are linked to special forms

of an anticipation term and a fundamental diagram which cannot

be recommended in general.

Crucial for the numerical solution is the correct choice of the

spatial and temporal step size for discretization of the space and

time coordinate.  A number of papers propose a spatial step size

of about 500 m arguing that this is the coherence length of

spatial variations and is traditionally equal to the spacing of

measurement sites (e.g. dense equipped line control systems or

tunnel stretches) (Cremer 1979).  Experience with numerical

solutions shows that significantly smaller sizes have to be

considered.  The calculations concerning the Boulevard

Périphérique around Paris use 125 m and propose even smaller

discretization structures (Papageorgiou et al. 1990).  The smaller

structure is induced by the characteristic length of shear layers

(l  = 80 m) and is motivated by the minimum size of variationso

which coincide with one car length.  Since the numerical effort

is inconsiderable,

�x = 5 m (5.98)

will be chosen throughout numerical procedures.

The spatial step size is connected via the characteristic speed

with the temporal step size.  As appropriate, the backward

� t = 1 sec (5.99)

Since the time step is smaller than the usual actualization rate of

measurements for boundary conditions (which usually come in

a 30 sec scanning rate), the measurement data have to be

interpolated providing a smoothing effect welcome for

stabilizing the numerical calculations.

For numerical integration, the basic equations are transformed

by

(5.100)

into a system of three equations for the unknown variables k, v,

and w.  To identify the static and dynamic parameters at one

glance, the variables are normalized in the following way:

(5.101)

where the reference state k   can be the density bumper toref

bumper in case of a unique lane number.  The unknown

variables can be put together to a vector �,

(5.102)

and the basic equations have the form of a quasi-linear partial

differential equation:

(5.103)

with 

(5.104)
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The equations contain the static speed-density fit, We integrate Equation 5.103 along its characteristics.  To ensure

(5.105)

with the exponents n  and n  describing the density dependence,1 2

as well as with the density "bumper to bumper," , which

is space-dependent in the case of lane dropping and bottlenecks.

The basic equations contain two dynamic parameters:

 (5.106)

uniqueness, we need two initial conditions, e.g.  

k = k (x, t = 0)      u = u (x, t = 0) and

three boundary conditions, e.g.,

  

k = k (x = 0, t)   u = u (x = 0, t)   w = w (x = 0, t) (5.107)

For numerical stable solutions, the hyperbolic character of the

differential equation system has to be considered.  Therefore,

only few boundary conditions on the left and right boundary can

be used:

k = k (x = 0, t)     u = u (x= L, t)    u = u (x = 0, t) (5.108)

For detailed numerical solution, the equations are integrated

section wise according to the scheme shown in Figure 5.16

(Kerner and Konhäuser 1993a).

To this aim the continuous functions, 

(5.109)

Figure 5.16
Stepwise Integration of the Quasi Linear Differential Equation 

in Time and Space Grid  (Kerner and Konhäuser 1993a).
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are replaced by functions defined as a lattice:

(5.110)

All derivatives are replaced by centered difference quotients 

(5.111)

(5.112)

and the function values are replaced by the midpoint values 

(5.113)

The integration procedure is a stepwise process starting with the

variable at the known time layer  ,

known variables to start with 

(5.114)

and proceeding from this layer to the next unknown layer

 

unknown variables to be calculated

(5.115)

Since the basic equation are non-linear, an implicit procedure

must be used with respect to the unknown variables .  It

turns out that the Newtonian iteration procedure is extremely

stable.  The variables are replaced by an approximation 

and the deviations  are calculated by linearizing the

starting equations.  Denoting the deviation vector by:

(5.116)

the basic equations can be written in the form of

(5.117)

with     (5.118)

(5.119)

(5.120)

(5.121)

where the abbreviations

(5.122)

(5.123)

are used.

Starting with the initial condition as the lowest approximation,

(5.124)

and using the left boundary condition,

(5.125)
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the  are calculated recursively by

(5.126)

as a function of , which in turn is determined by the right

boundary condition

(5.127)

An alternative rearrangement of the deviations  is possible in

order to produce a tridiagonal form which facilitates the fit of the

boundary conditions (Kerner and Konhäuser 1993a).

The complete numerical solution procedure is shown in the flow

chart of Figure 5.17.

5.2.7 Parameter Validation with Examples

from Actual Measurements

For parameter validation, we compare measurements at an

intermediate cross-section with calculations of mean speed and

traffic volume or local density based on the model under

investigation.  The principle is shown in Figure 5.18.

Mean speed and traffic volume or local density are measured at

the boundaries x = 0 and x = L and at the intermediate distance

x = d.  The initial condition is mainly a uniform distribution

compatible with the boundary condition series.  After some

transient iterations, the course of mean speed and local density

is calculated from the model equations and compared with the

intermediate measurement.

Figure 5.17
 Flow Chart of the Numerical Solution Procedure (Kerner and Konhäuser 1993a).
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Figure 5.18
Principal Arrangement for Parameter Validation 

by Comparison of Measurements and Calculations.

The performance index, defined as conditions (weather, time of day), rather than on the specific

(5.128)

is a function of the static and is to be minimized,

(5.129)

by the optimal parameters.

Obviously, the results depend on the step sizes chosen in the

discretization procedure.  Step sizes together with static and

dynamic parameters form a set of at least eight parameters which

have to be chosen simultaneously to achieve minimum.

Systematic procedures like minimum determination by gradient

method or comparable methods appear to be too complicated.

Instead, Monte Carlo methods reduce the computational effort

and give reasonable results.  In some approaches (Babcock et al.

1982), the static speed-density relation is calibrated individually

for each subsection.  In the validation procedure described here,

the model is calibrated with a unique speed-density

characteristic. This is based on data from the follow-up versions

of the Highway Capacity Manual (HCM) (Wemple et al. 1991),

including data from Europe and the U.S.  One main reason to

redesign the high flexibility in matching the real observations for

each subsection individually is the lack of sufficient data.  The

unique speed-density characteristic depends on geometrical data

(number of lanes, slope, curvature) and environmental

location.  Speed limits are introduced by reducing the free flow

speed and the exponents n , n  in case of an analytical relation1 2

which uses powers (Cremer 1979) (an example is given in the

following).  Different truck ratios can be introduced by altering

the density bumper to bumper for which the transformation

(5.130)

f = relative truck portion,  k   = kpass

k = density "bumper to bumper" pass

for 100% passenger cars

k = density "bumper to bumper" truck

for 100% trucks

is appropriate.

For validation, data from the Autobahn A3 Fürth-Erlangen near

Nuremberg are used.  It is within a line control system with

corresponding dense measurement cross sections approximately

every 1,000 m.  Between the access Frauenaurach and Erlangen-

West in the direction of Frankfurt a.M., six cross sections with

980 m  average spacing are available every 60 sec.  The data are

near values, separately detected for passenger cars and the rest

of the vehicles (discriminated by vehicle length) for each lane of

the two-lane carriageway.  A stretch was selected with a total

length of 2,100 m with left-hand side and right-hand side

boundary conditions and an intermediate cross section which is

1,400 m apart from the left boundary.
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Data were taken during the weekend of November 7 and 8, 1992 Another European example, data from French freeways are

with a relatively low truck ratio.  With the Monte Carlo method, taken.  The Boulevard Périphérique as the ring freeway around

the following parameters were selected for a two-lane highway Paris is well-equipped with measurement stations.  Since there

(5.131)

Figure 5.20 shows the time series of the mean speed at the

intermediate cross section together with the simulated data.  The

course is reproduced by the simulation in detail, while the strong

elongations are slightly smoothed.  

The corresponding dimensionless numbers are: 

(5.132) at a Bottleneck

It turns out that the traffic flow model describes a fluid in the

intermediate state between low and high Reynolds numbers.

Since it is now a high Reynolds number fluid, a neglection of the

viscosity term is not possible.  An expansion with respect to

small Reynolds numbers is not possible.

The shear layer depth is 

(5.133)

and the critical density for the two-lane highwayis calculated

from

(5.134)

to

(5.135)

is a general speed limit on French freeways, the data differ from

German Autobahn data.  Figure 5.19 shows the arrangement of

the measurement cross sections.  Figure 5.20 reproduces the

time series of traffic volume and mean speed from the

measurement sites which serve as basic data.

For a further detailed investigation in parameter validation, the

reader is referred to three comprehensive examples:

(1) A3 Fürth-Erlangen near Nuremberg, Germany (see Kühne

and Langbein- Euchner 1993),

(2) Boulevard Périphérique, Paris, France (see Papageorgiou

et al. 1990), and

(3) Interstate 35 W in Minneapolis, MN (see Sailer 1996).

5.2.8 Calculation of Traffic Flow

The calculation of traffic behavior at a bottleneck turns out to be

the crucial test for the usefulness of a traffic flow model.  The

observations of traffic flow at a bottleneck are:

� Traffic volume can exceed capacity within the bottleneck

only for a short time maximum of some minutes;

� Traffic density can at no point exceed density bumper to

bumper;

� If travel demand exceeds capacity, congestion occurs in

front of the bottleneck location;

� Spilled-up traffic is marked by upstream running shock

fronts and the formation of stop-start waves in the

congested regime;

� Spatial changes occur on scales shorter than 100 m; and

� The boundary conditions have to be chosen in such a way

that traffic patterns and resulting traffic volume are effects

of and not causes for traffic dynamics.

A reduction of lanes (two-lane to one-lane) has been simulated

on the basis of the previously described high order macroscopic

traffic flow model.
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Figure 5.19
Autobahn Section for Validation of the Macroscopic Freeway Model. 

Figure 5.20
Measurement and Simulated Time Series at the Mean Speed 

of the Intermediate Cross Section on the Test Section.
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The following results for a 10 km stretch of a two-lane Figure 5.21b shows the temporal traffic speed development up

highwayare shown with a bottleneck - reduction of maximum to 200 seconds after an initially homogenous density distribution.

density from 320 to 220 vehicles per km - between the space This formation is accelerated by using boundary conditions for

marks of 6.5 and 8.5 km as shown in Figure 5.21a.  Within the the left boundary, that put a higher value of traffic volume into

bottleneck a high density regime is formed.  The minimum of the the stretch.  The speed course in Figure 5.21b shows the

speed lies at the first third of the bottleneck.  At the outlet, due relaxation of this initially inhomogeneous flow to homogenous

to the metering effect of the bottleneck, speed increases and the flow in the first part of the stretch.  The bottleneck lasts from

calculations show clearly the corresponding rise. space mark 6500 m to 8500 m.  Calculations are from Sailer.

From the minimum speed within the low speed regime, an seconds.  The speed peak wanders upstream while the

overreaction of the drivers is deduced.  This overreaction in overreaction regime fades away.  Additional undulations are

braking forces an acceleration as revenge and thus leads - if the formed - the stop-start waves.  Figure 5.21d shows the traffic

overall speed is sufficiently low - to an upstream movement of speed course at the bottleneck after 1000 seconds.  In the

the speed minimum within the bottleneck.  The beginning of the congested area, in front of the bottleneck well established stop-

overreaction regime itself is spreading downstream and reaches start waves occur.

finally the end of the bottleneck.

Figures 5.21b-d show the development of the speed course for formation of a density peak within the bottleneck.  The second

a 1000 seconds time period; after an initially homogeneous group indicates the movement of the density peak on the one

constant distribution forms a spatial structure. 

Figure 5.21c shows the traffic speed course after 300 to 800

The first group from the series of snap shots reproduce the

Note: Immediately after an initially homogeneous density distribution.

Figure 5.21a
Temporal Traffic Density Development One to Four Minutes (derived from Sailer 1996). 
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Figure 5.21b
Traffic Density Course after Six to Ten Minutes (derived from Sailer 1996). 

Figure 5.21c
Density Speed Course after 12 to 24 Minutes (derived from Sailer 1996).  
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Figure 5.21d
Density Speed Course at the Bottleneck after 30 Minutes (derived from Sailer 1996). 

 hand and the fading of the overreaction regime border.  It also

shows that within the bottleneck additional small undulations

occur - the annoying stop-start waves which characterize spilled-

up traffic flow.  The last snap shot gives an impression of the

density distribution developing out of the initially constant

distribution in the case of overcritical bottleneck density - keep

in mind that the bottleneck itself lasts from 6.5  to 8.5 km.  The

stop-start waves lie in the congestion regime upstream of the

lane reduction stretch.     

5.2.9 Density Dependent Relaxation

Time and Anticipation Coefficient

For simplicity up to now, a constant relaxation time - with

respect to density as well as a constant anticipation term has

been regarded.  Several attempts to describe both coefficients in

a more realistic way have been undertaken.  First, we look at the

relaxation time with the dependencies (Michalopoulos et al.

1992):

(5.136)

Depending on the choice of r the relaxation time grows when

traffic approaches density bumper to bumper and decreases

when density is very low.  The density dependence reflects the

fact that approaching the desired speed seems almost impossible

in dense traffic because of interactions with other drivers.  This

frustration effect gets smaller with decreasing density.  In low

dense traffic, a quiet relaxation to the original desired speed is

possible which can be modelled by a smaller relaxation time

(compare Figure 5.22).  In Section 5.2.3 it was shown that the

anticipation coefficient  has the meaning of the standard

deviation of the vehicular speed distribution.  For this standard

deviation, early measurements exist which show a broadening of

the speed distribution for low dense traffic as a consequence of

the possibility to realize individual desired speeds.

The narrowing of the speed distribution ends with beginning

congestion.  Stop-start waves and critical fluctuations which

accompany unstable traffic flow lead to a broadening of the

speed distribution.  The reason is not due to different desired

speeds but to the dynamics of traffic pattern formation which

results in a broad speed distribution at a local measurement site

(Heidemann 1986).
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Note: Density-dependent relaxation time which reflects frustration effects in approaching the desired speed in dense traffic

(Kühne and Langbein-Euchner 1993). 

Figure 5.22
Density-Dependent Relaxation Time.

Figure 5.23
Speed Distribution Idealized Gaussian Distribution 
for Free and Nearly Free Traffic Flow (Pampel 1955).
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Finally, in completely congested traffic, with creeping flow, is equal to the momentary speed standard deviation  and

mean speed and speed distribution coincide.  There is no measurements result in local standard deviation values.  The

possibility for realization of different speeds.  The standard

deviation tends to zero.  As a summary, Figure 5.24 shows the

complete dependence of the anticipation coefficient c  fromo

density k.  The estimation value stems from the validation

calculations of Section 5.2.7.

In order to compare the numerical values with measurements of

standard deviations from local speed distribution, consider that 

transformation succeeds with the relaxation (Leutzbach 1985),

(5.137)  

with  as a mean value for nearly free traffic flow,

the transformation supports the assumption of c = 70km/h as a0 

proper value in an overall constant approximation.

Figure 5.24
Anticipation Coefficient

5.3  Stochastic Continuum Models 

5.3.1  Fluctuations in Traffic Flow

All measurements of speed, volume, and density indicate that

traffic flow is a stochastic process which cannot be described

completely by temporal and spatial development of macroscopic

fluid variables.  The question is how to incorporate the stochastic

character into the macroscopic description and what

consequences for early incident detection can be derived from

the stochastic behavior with respect to time and space.

First, some measurements are reported which show speed

distributions during jam formation and acceleration noise

distributions.  Measurements of traffic data which show the

formation and dissolution of congestion are relatively scarce.  As

an example, measurements of traffic on Easter 1976 between

10:30 a.m. and 1:50 p.m. on the German Autobahn A5
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Bruchsal-Karlsruhe as a two-lane highwayin each direction are  Finally, ten minutes later the distribution represents barely

presented.  Figure 5.25 shows the mean speed time series as congested traffic with a relatively narrow distribution since

one-minute moving average with 30 sec offset for the passing critical fluctuations have dissolved.

lane in the direction of Karlsruhe at 617 km on April 15, 1976.

At time 4,600 sec, there is a speed breakdown which reoccurs

after 10 minutes.  In Figure 5.26 the corresponding speed

distributions are recorded.  Vehicle speeds are divided into

groups of 5 km/h width.  The frequency of vehicles in each speed

class are determined during a 5-minute period with a beginning

offset at the times 4,000 sec, 4,180 sec, 4,300 sec, 4,480 sec and

4,750 sec.  The speed distribution beginning with  4,000  sec

ends at 4,300 sec which is 5-minutes before the  traffic

breakdown.    It  shows  an approximate Gaussian distribution

with a standard deviation of 15 km/h and a near value of

120 km/h.  Three minutes later, but still two minutes before the

beginning of the congestion, there is a clear broadening of the

distribution, traffic flow becomes more erratic; there is an

increase in the number of both slower and faster cars.  Five

minutes later, the distribution lasts just until the beginning of the

traffic breakdown - the speed distribution is even broader.  Eight

minutes later, the distribution is extremely broad since it includes

non-stationary situations. 

5.3.2  Calculations of Speed Distributions

The broadening of the speed distribution when approaching the

critical density connected with formation of jams and stop-start

waves was theoretically found by Heidemann (1986).   He

calculated the speed distribution as a function of traffic density

from transition probabilities between different speed classes.  As

critical density, a value of 25 veh/km is typical for traffic

breakdowns due to overload.

To guarantee that the speed distribution is sufficiently updated

and the regarded ensemble is stationary enough, the Sturges

thumb rule (Sturges 1926) is applied for class width estimation.

In order to divide the speed distribution into a proper number of

classes, an empirical rule is chosen that gives the class width:

(5.138)

Figure 5.25
Time Series of Mean Speed on Autobahn A5 Bruchsal-Karlsruhe 
at 617 km, April 15, 1976, 10:30 a.m. - 1:50 p.m. (Leutzbach 1991).
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Figure 5.26
Speed Distribution During Congestion Formation of Figure 5.25. 

where,

ld = logarithmus dualis

q = average volumem

u  - u = speed range max min

t = observation time 

The meaning of this rule is that the proper speed class width is

given by the range of speed values divided by the average

information content of the corresponding measurement events.

For a two-minute interval and an average traffic volume of 2,000

veh/h, the class width is 

�u = 10 km/h (5.139)

A finer subdivision would not make sense due to the strong

fluctuations, and a coarser subdivision would unnecessarily blur

 details.  The speed detection must, therefore, be done with

errors less than 5 km/h which can be achieved by double

inductive loops as well as millimeter-wave Doppler radar.

Within a macroscopic description of traffic flow, the

incorporation of fluctuation is possible in two ways.  First, a

noise term can be added to the acceleration equation.  The model

equations are then rewritten to include a fluctuating force, 
,

(5.140)

This addition has the effect that speed and density no longer take

exact values but are randomly distributed around a mean value

instead.  The fluctuation term describes noise by an all-in-one

representation of random influences such as bumps,

irregularities in street guidance, and fluctuations in drivers´

attention.  The noise due to discrete character of the

measurement events is superposed and can be included in the

fluctuating force description.  In the simplest case, the stochastic

quantity 
 is 
 - correlated in space and time with a Gaussian

distributed while noise spectrum

(5.141)

where <.....> denotes the expectation value over an ensemble of

realizations.  The quantity  is the standard deviation of the

speed distribution for free traffic flow.  The 
 - correlation means

that correlations decay rapidly in space and time at least within

the space scale  (= 35 m) and within the time scale - (=1.8

sec). 
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Another approach in a macroscopic stochastic description is fulfilled and the linear part in the basic equations

considers the convection nonlinearities as feedback effects. approximately vanishes.  The marginally stable solution then

These effects lead to a competition between saturation of strong obeys the equation (' suppressed)

spatial variations and over-proportional amplification of slow

undulations.

The effect can be explained by the marginally stable solution

(compare the linear stability analysis of Section 5.2.5).

Introducing the state vector � which summarizes density and

speed with respect to an operating point  in a slightly

different way as in Section 5.2.6

(5.142)

the basic equations read in a comprehensive form 

 (5.143)

with 

(5.144)

as independent variables and the approximations

(5.145)

At the marginal stable point (~ suppressed)

k = -u

(5.146)

(5.147)

which has the solution

u = f (x - u t) (5.148)

for the initial condition u (x, t = 0) = f (x).  The solution u is

dependent on u itself.  This is a typical feedback with foundation

in the convection nonlinearity u u .  The feedback affectsx
saturation in the case of strong spatial variations (uniform

steeping) and over-proportional amplification of slow spatial

variations (amplification of small disturbances).  The

competition between these effects produces irregularities near

the stability threshold.  These nonlinearity fluctuations describe

deterministic motion and do not need noise for explaining an

erratic behavior.  It superposes the omnipresent noisy

oscillations and can be used separately for representation of

fluctuations in traffic flow.

5.3.3  Acceleration Noise

A stochastic continuum theory must be able to quantify the noisy

character of traffic flow due to individually different

accelerations of the vehicles which build up a regarded

ensemble.  The drivers of such an ensemble are influenced by

many disturbances like bumps, curves, lapses of attention, and

different engine capabilities.  The acceleration of a regarded

vehicle can be split into a term which describes velocity control

within a car following model and a random term which is the

natural acceleration noise.  This noise is usually defined as the

root mean square deviation of the acceleration of the vehicle

driven independently of other vehicles (Herman et al. 1959).

Besides the dependence on the type of road, the number of

curves, and the occurrence of bottlenecks in traffic, the

acceleration noise is a function of the density and traffic volume.

First tests to determine the noise distributions experimentally are

reported in Herman et al. 1959.  An accelerometer of an

equipped test car was evaluated for trips under different density

conditions and with different driving tasks for the driver.  When

one merely tries to keep up with the stream, the distribution is

essentially Gaussian with a standard deviation of   ) = 0.03g, 

while the distribution ranges from  - 0.05g to 
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+ 0.05g.  When the driver is to attempt 8 to 16 km/h faster than  the standard deviation, of the acceleration noise distribution,

the stream average, high accelerations and decelerations occur occurs in the vicinity of the critical density which shows that the

more frequently giving rise to two wings and a significant broadening of the speed distribution coincides with the

broadening () = 0.07g) of the distribution. broadening of the acceleration noise distribution as an

The acceleration noise as a measure of the acceleration in the transition regime between stable and unstable traffic flow.

distribution shows similar behavior compared to the speed These observations fit with early investigations of Herman et al.

distribution.  A measurement series described by Winzer (1980) (1959) and Drew et al. (1965) who, for the first time, looked at

is reported, which has investigated the trip recorders of a vehicle acceleration noise distributions.

fleet floating in the traffic flow on the Autobahn A5 Durlach-

Bruchsal, Germany.  One hundred sixty measurement trips were After quantifying the experimental situation a continuum theory

evaluated.   All possible traffic flow situations were encountered approach is sketched.  As the boundary and initial conditions  are

although free or nearly free traffic flow made up the majority. essential and, for reasons of clarity, periodic boundary conditions

Figure 5.27 shows the results of standard  deviation of the will be considered.  

acceleration noise for different traffic densities.  A singularity of

expression for traffic becoming erratic with critical fluctuations

Note: Data from an evaluation of 160 trips on the Autobahn A5 between exit Durlach and exit Bruchsal near Karlsruhe, Germany.

Figure 5.27
Standard Deviation of the Acceleration Noise 
for Different Traffic Densities (Winzer 1980).
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These conditions claim is introduced as the only independent variable.  The equation of

(5.149)

where L is the length of the regarded periodic interval.  The

periodic boundary conditions seem somewhat artificial, but they

are  easy  to  handle.    In  the  case  for  L � �  an  independence

of specific boundary conditions can be shown (Kerner and

Konhäuser 1993b).  As carried out in Kerner and Konhäuser

(1993b), the initially fixed number of vehicles remains constant:

(5.150)

with k  the vehicle density in homogeneous flow.  Thehom

corresponding value of the homogeneous speed is deduced from

the equilibrium speed density relation

(5.151)

if N and L are given, there is only one homogeneous state

(5.152)

this has a consequence that a Fourier series for an arbitrary

solution has to exclude the wave number l = 0 and reads

(5.153)

The lowest wave number  determines the stability range

which reads (Kühne and Beckschulte 1993) 

with

(5.154)

For simplification, further stationary solutions of the underlying

traffic flow model are regarded.  In order to obtain stationary

solutions, the collective variable

(5.155)

continuity can be integrated

(5.156)

where the external given flow Q  is linked to the solid vehicle0

number N by 

(5.157)

The stationary profile equation has the form of a non-linear

Newton equation of motion

(5.158)

5.3.4 Microscopic Time Gap Distribution

and Macroscopic Traffic Volume

Distribution

The basis of a stochastic description of traffic flow is that speed

and density do not adopt discrete values but instead are randomly

distributed around a mean value.  The microscopic behavior is

no longer given by a fixed distance law, but by a time gap

distribution as the macroscopic description is stated by a

probability distribution for the traffic volume.

The connection between microscopic time gap distribution and

macroscopic traffic volume distribution is explained by means

of elementary considerations:

If p(n,s)  =   probability of finding n vehicles during the

 times

and q ds    =  arrival probability of one vehicle during the 

infinitesimal time ds when q is the actual      

stationary traffic volume.

1-q ds = probability that the vehicle number remains

unchanged during the time ds,

then the probability of finding n vehicles during the time s+ds is
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p(n, s+ds) =  p (n-1, s)qds + p(n, s) (1-qds) (5.159) can be derived.  This probability is identical with the probability

Since the vehicle number n can be generated by an arrival during than s.  Time gap distribution (compare Figure 5.28) and traffic

the time extension between s and s+ds starting from  n-1

vehicles with one additional arriving or by a conservation of the

vehicle number n.  Expanding with respect to ds gives

(5.160)

for the actual traffic volume q.  If the traffic volume itself is

distributed with a distribution W(q) one has to integrate overall

possible values q

(5.161)

from which the time gap distribution,

(5.162)

that the time gap between the arrival of the next vehicle is larger

volume distribution are therefore related by Laplace

transformation.

For practical reasons, the empirical data are approximated with

a least square fit as Padé-expansion

(5.163)

It should be noted that for s � 0.2 sec, the probability P(s) has

constantly the value one.  This refers to a minimum time gap

during which certainly no vehicle is registered and which is

caused by the finite length of the vehicles.

Figure 5.29 reports the corresponding Laplace transformation as

the traffic volume distribution (Kühne 1989).  The maximum of

the traffic volume distribution changes from q = 0 to q g 0 at a

Figure 5.28
Time Gap Distribution for the Median Lane 

From the Autobahn A8 near Stuttgart, Germany. 
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Figure 5.29
Traffic Volume Distribution as Result of a Laplace Transformation. 

critical density value of about 25 veh/km/lane.  The change in the The maximum of the traffic volume distribution is not identical

shape of value of the traffic volume distribution occurs at the with the mean value which is given by 

same critical traffic density for which homogeneous traffic flow

becomes unstable.  This coincidence expresses the connection

between microscopic time gap distribution and macroscopic

instability phenomena.
(5.164)

It is just the most likely value in case of a measurement series

covering all possible traffic volume values!
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