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Abstract

Emerging neural theories of consciousness suggest a correlation between a specific type of

neural dynamical complexity and the level of consciousness: When awake and aware,

causal interactions between brain regions are both integrated (all regions are to a certain

extent connected) and differentiated (there is inhomogeneity and variety in the interactions).

In support of this, recent work by Casali et al (2013) has shown that Lempel-Ziv complexity

correlates strongly with conscious level, when computed on the EEG response to transcra-

nial magnetic stimulation. Here we investigated complexity of spontaneous high-density

EEG data during propofol-induced general anaesthesia. We consider three distinct mea-

sures: (i) Lempel-Ziv complexity, which is derived from how compressible the data are; (ii)

amplitude coalition entropy, which measures the variability in the constitution of the set of

active channels; and (iii) the novel synchrony coalition entropy (SCE), which measures the

variability in the constitution of the set of synchronous channels. After some simulations on

Kuramoto oscillator models which demonstrate that these measures capture distinct ‘fla-

vours’ of complexity, we show that there is a robustly measurable decrease in the complex-

ity of spontaneous EEG during general anaesthesia.

Introduction

The idea that the level and range of consciousness relates in some way to dynamical complexity

of brain activity is becoming increasingly prominent [1–7]. A common way to conceptualize

dynamical complexity in this setting is as simultaneous differentiation (subsets of the system

being dynamically distinct) and integration (the system as a whole exhibiting coherence), and

this idea draws from what is taken to be a fundamental property of conscious experience,

namely that each conscious scene is composed of many different parts and is different from

every other conscious scene (differentiation), yet each conscious scene is experienced as a
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coherent whole (integration) [2–5]. A number of different measures of neural dynamical com-

plexity have been proposed based on information sharing and transfer [2, 4, 8–14]. Properties

of these measures have been explored on simple models, for instance neural network activity of

artificial agents [9, 15]. However, these measures, based on information sharing and transfer,

rely on restrictive assumptions, such as stationarity and linearity, that limit the conclusions

that can be drawn when applied to real brain data [16, 17].

A series of recent studies take a more pragmatic approach to investigating the relationship

between consciousness and complexity [18–22]. These studies have investigated, for subjects in

diverse states of consciousness (e.g. wakeful rest, deep sleep, general anaesthesia), the electroen-

cephalographic (EEG) response to transcranial magnetic stimulation (TMS). It has been found

that, when subjects are unconscious, the response is stereotypical across electrodes and remains

local to the site of stimulation, whereas when subjects are conscious, the response differs

between electrodes and spreads across the whole cortex. In this way, the extent of both differen-

tiation and integration is greater when the subject is conscious. A simple measure of complex-

ity based on the (lack of) compressibility of the EEG response, as quantified by the Lempel-Ziv

algorithm [23], was developed for these data: the Perturbational Complexity Index (PCI) [21].

The PCI reflects simultaneous integration and differentiation since the EEG response is least

compressible when it is both widespread and inhomogeneous. In a first application of this

method, the PCI values obtained for conscious subjects were consistently higher than for

unconscious subjects, to the extent that a single classifier threshold could be applied: when the

PCI value was above the threshold the subject was always conscious and when the PCI value

was below the threshold the subject was always unconscious [21].

On spontaneous steady-state EEG data, several indices labelled as measures of complexity

have been computed on single time-series, reflecting local signal diversity over time rather than

differentiation and/or integration across a network. These measures include various forms of

spectral entropy [24–26] and again Lempel-Ziv complexity [27–35] and all of them have a ten-

dency to decrease during general anaesthesia. Recently these measures have also been applied

to auditory evoked potentials in disorders of consciousness patients [36], and values were

found to correlate with behaviourally-diagnosed level of consciousness, although there was no

single cross-subject threshold for classifying subjects as conscious or unconscious.

Here we investigated three simple measures of complexity on multi-dimensional spontane-

ous steady-state EEG data from subjects undergoing propofol-induced general anaesthesia.

The first of these is the aforementioned Lempel-Ziv complexity. On spontaneous data Lempel-

Ziv complexity strictly only reflects differentiation (and not integration); it computes diversity

in patterns of activity in both space and time. The other two measures are amplitude and syn-

chrony coalition entropy (respectively ACE and SCE). ACE is a variant of a measure intro-

duced by Shanahan in [37], and reflects the entropy over time of the constitution of the set of

most active channels, while the novel SCE reflects the entropy over time of the constitution of

the set of synchronous channels. ACE is similar to Lempel-Ziv complexity, in the sense that it

quantifies variability in space and time of the activity. By contrast, SCE is conceptually different

because it quantifies variability in the relationships between pairs of channels.

We computed Lempel-Ziv complexity and the coalition entropy measures for sets of equally

spaced channels across the whole scalp and also for sets of channels restricted respectively to

the frontal, parietal, temporal and occipital lobes, on full broadband signals and on frequency-

restricted signals, in each case comparing results for data from wakeful rest, mild sedation and

general anaesthesia. We contrasted these measures’ ability to indicate conscious level on these

data, with that of control measures not based on signal complexity, including normalized delta

power [36, 38, 39]. In order to facilitate interpretation of our results we also computed the
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measures on simulated data from (i) random matrices with varying numbers of identical sig-

nals; (ii) a modular network of Kuramoto oscillators, as in [37].

Methods

Ethics statement

The data analysed in this study were obtained from a previous study [38] with procedures

approved by the Ethics Committee of the Faculty of Medicine of the University of Liège.

EEG data acquisition and preprocessing

Spontaneous high-density EEG recordings (256 electrodes, EGI [40]) were re-analysed from 7

healthy subjects, sampled at 1000Hz, before, during and after propofol-induced general anaes-

thesia. Propofol is an intravenous anaesthetic that is widely used in surgical settings and which

reversibly induces a state of diminished responsiveness behaviourally similar to non-rapid eye

movement sleep [41]. States of consciousness were defined behaviourally using the Ramsay

scale [42]. The 4 different states labelled here are: wakeful rest (WR), mild sedation (MS; slower

response to command, Ramsay scale score 3), loss of consciousness (LOC) with clinical uncon-

sciousness (no response to command, Ramsay scale score 5), and recovery of consciousness

(wakeful rest after propofol, WRa) [38]. Propofol was administered as described in [38]: ‘A

simple constant rate infusion of propofol was used together with the computerized Marsh

model to predict when to manually adjust infusion rate to maintain predicted steady-state pro-

pofol levels, although the main goal was to achieve the range of clinical states (Ramsey scores).’

Average arterial blood concentrations of propofol were 1.91±0.52mcg/mL for MS and 3.87

±1.39mcg/mL for LOC [38]. 20 minutes of recording during each of these 4 states were

obtained for each subject.

The data were pre-processed as follows. First epochs of recording and complete channels

that showed obvious artefacts were rejected by visual inspection. Artefacted channels were

identified by their extreme amplitudes and irregular behaviour throughout the complete

recording and entirely removed. Artefacted epochs, displaying abnormally high amplitudes for

several seconds across all channels (typical for muscle movement), were manually excised and

the remaining data concatenated. Then 50Hz and 100Hz frequency noise (artefacts from elec-

tricity mains) were removed by Butterworth notch filtering. Next the data were down-sampled

from 1000Hz to 250Hz and spatially filtered by computing the surface Laplacian.

Surface Laplacian is a method for spatial filtering of EEG data, performed in order to

increase topographical specificity (i.e. to make each channel’s activity more directly indicative

of brain activity under the channel’s electrode). It reduces the effect of volume-conduction

(electrical fields tangentially conducted along the skull) so the filtered signal reflects more

closely the local brain activity—radial dipoles in gyral crowns [43]. For each electrode, the sur-

face Laplacian can be implemented as a subtraction of a weighted sum of its nearest neigh-

bours’ electrical activity. This filtering method was applied using MATLAB with BCIlab and

EEGlab [44].

Finally linear de-trending and baseline subtraction was performed for each channel of each

segment. After preprocessing the length of the time series varied per subject and per condition

between 9–14min, i.e. approximately half the length of the raw data. Fig 1 illustrates example

10sec segments of EEG data for WR and for LOC. Analyses were performed using such non-

overlapping 10sec segments for a total number of on average 60 segments of EEG recording per

subject and per condition.

Complexity of Spontaneous EEG Decreases during General Anaesthesia

PLOS ONE | DOI:10.1371/journal.pone.0133532 August 7, 2015 3 / 21



EEG channel selection

Analyses were performed on automatically selected electrodes, first 25 taken from across the

whole cortex, see Fig 2a, and secondly 25 taken exclusively from either frontal, parietal, tempo-

ral or occipital cortex, Fig 2b. A k-medoids clustering algorithm [45] was implemented in

Python to automatically select electrodes spatially uniformly distributed over a particular

region (either the whole cortex or a specific lobe).

Fig 1. Two 10sec EEG segments from 25 channels. The segment in the left panel is during wakeful rest
(WR) and the segment in the right panel is during propofol-induced loss of consciousness (LOC); both
segments are shown after pre-processing. The voltage scale is the same for both conditions and the maximal
fluctuation shown is approximately 0.1mV (for more data details, see [16, 38]). The recordings for LOC
display visibly stronger slow waves (low-frequency components) as compared to those for WR.

doi:10.1371/journal.pone.0133532.g001

Fig 2. Channel selection from the high density (256 electrodes) EEG. The electrode layout is from
manufacturer EGI [40]. The homogeneously distributed channel selection is shown for: a) analyses across
the whole scalp; b) analyses restricted to a certain lobe. Chosen channels are indicated as black stars. See
text for details.

doi:10.1371/journal.pone.0133532.g002
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The k-medoids cluster algorithm takes two arguments as input, first a set of 3D coordinates

of points in space (i.e., the EEG electrode coordinates) and second the number of desired clus-

ters. It outputs labels for each point, indicating to which cluster it belongs and also if it is this

cluster’s representative. The cluster representative is the point in a cluster which has the least

mean Euclidean distance to all other points of that cluster. The algorithm finds these labels by

initialising cluster representatives as randomly chosen points of the set, as many as there are

desired clusters. Then it iteratively adjusts labels until all points are divided into approximately

equally large regional clusters. The representatives of the clusters are then approximately

homogeneously distributed across the cloud of all points in space, irrespective of the cloud’s

shape.

Statistics

For within subject comparison of states, we considered differences in the scores of a measure to

be substantial if the effect size as measured by Cohen’s d was greater than 0.8 (a threshold indi-

cating large effect size [46]). For a given subject, measure and state pair, we computed Cohen’s

d as the difference of the mean scores across segments for each state respectively, divided by

the pooled standard deviation.

In addition we compared for each measure and state pair the mean scores across subjects.

Given the independence of different subjects, we applied a Wilcoxon rank sum test for each

measure and state pair, corrected for false discovery rate (FDR), using the Benjamini-Hochberg

procedure.

Lempel-Ziv complexity

For a given segment of data, Lempel-Ziv complexity quantifies complexity by counting the

number of distinct patterns of activity in the data. It can be thought of as being proportional to

the size of a computer file containing the data, after applying a compression algorithm. Com-

puting the Lempel-Ziv compressibility of data requires a binarization of the multidimensional

time series. Casali et al [21] computed this measure on event-related, as opposed to resting

data, and so used a threshold relative to pre-stimulus activity (baseline) to define the binariza-

tion. Here our threshold was based on the instantaneous amplitude of the Hilbert transform,

i.e. the absolute value of the analytic signal of the channel’s time series. The threshold Ti for the

ith channel was chosen as the mean of the absolute value of the analytic signal of the ith channel.

The data segment is then treated as a binary matrix, with rows corresponding to channels

(time series) and columns corresponding to time (observations). A Lempel-Ziv compression

algorithm obtains a list of words (binary subsequences that appear at least once) in the data

matrix, as sketched in Fig 3. The Lempel-Ziv complexity is then proportional to the number of

binary words. The greater the degree of randomness, the greater the number of different sub-

sequences that will be present, and thus the higher the Lempel-Ziv complexity.

Different implementations of Lempel-Ziv data compression were tested, all resulting in

nearly identical outcomes (see section ‘LZ measures’ in S1 Document for variants), so here we

present results from the fastest and simplest implementation, denoted LZc, (rather than pre-

cisely the one used by Casali et al [21]). LZc is obtained by rearrangement of the binarized mul-

tidimensional time series, observation by observation, into a binary sequence as described in

(c) in Fig 3 and then applying a standard open source Lempel-Ziv compression algorithm [47]

to this sequence. LZc tells us how much variety there is in the patterns of activations.

We normalize LZc by dividing the raw value by the value obtained for the same binary

input sequence (s in (c) of Fig 3) randomly shuffled. LZc’s raw score for a binary sequence of

fixed length is maximal if the sequence is entirely random. (The variation in LZc for 50
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different shufflings of the same input sequence was under 0.002% of the mean result across

those 50, showing that the data matrices we analysed were sufficiently large such that there was

negligible variance arising from basing the normalization on just a single random shuffling.)

Thus the normalized LZc values indicate the level of complexity on a scale of 0 to 1. Note that

Casali et al [21] instead used the asymptotic analytical upper bound as the normalization. This

differs from the normalization used here because we require a maximal score of 1 for the same

input randomized in time, which is the upper bound of the measure for the given input dimen-

sions. See Section ‘LZ measures’ in S1 Document for details on the computation of LZc and

comparison with PCI.

Coalition entropy measures

The idea of coalition entropy was introduced by Shanahan [37, 48]. In its original form it mea-

sures the entropy (over time) of the constitution of the set (coalition) of channels that are

Fig 3. Schematic of the computation of Lempel-Ziv complexity LZc. a) xi is the activity of the ith EEG electrode, i.e. the ith channel, and ai is the (Hilbert)
amplitude of xi. b) bi is binarized ai, using the mean activity of ai as binarisation threshold. c) After binarisation of all n channels, successive n × 1 dimensional
observations are concatenated to obtain one binary sequence s in which patterns are searched and listed into a dictionary of binary words via a Lempel-Ziv
algorithm. d) Lempel-Ziv complexity LZc is proportional to the size of this dictionary.

doi:10.1371/journal.pone.0133532.g003
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active, given a binarization scheme for classifying channels as either active or inactive. We call

this measure amplitude coalition entropy (ACE). Here we compute it using the same binariza-

tion as described for LZc, i.e. taking for each channel the mean of the absolute value of the ana-

lytic signal as the threshold. As for LZc we normalize ACE by dividing the raw value by the

value obtained for the same binary input shuffled (the upper bound), where shuffling means

that the position of each digit was randomly changed. Note Shanahan’s original version differs

slightly from the version used here by utilizing a fixed absolute binarisation threshold (which is

not applicable to real EEG data), and taking the asymptotic analytical upper bound as the nor-

malization (which is again not reached for the shape of data matrix analyzed here, since the

time-series are not long enough for all possible coalitions to be sampled). The entropy (over

time) of the constitution of the set of channels that are active (assuming n channels in total)

was implemented by mapping each of the possible n × 1 dimensional binary observations to a

distinct integer and then computing the entropy of the resulting sequence of integers.

We also introduce a new variant of coalition entropy, synchrony coalition entropy, denoted

SCE. This measures the uncertainty, and hence diversity, over time of the constitution of the

set of channels that are in synchrony—rather than active—schematically described in Fig 4 and

formally defined as follows:

For data Xt, consisting of channels Xi,t, i = 1, . . ., n, we consider two channels to be in syn-

chrony at time t if the absolute value of the difference between their instantaneous Hilbert

phases is less than 0.8 radians (approximately 45 degrees). Then we define coalition time-series

Ψ
ðiÞ
t byCðiÞ

j;t taking the value 1 if channels i and j are synchronised at time t and taking the

value 0 otherwise. The coalition entropy of Xt with respect to channel i is the entropy of Ψ
ðiÞ
t

(over time), normalized as a proportion of its maximum possible value N:

SCEðiÞ ¼ �
1

N

X

c

pðΨðiÞ
t ¼ cÞ log pðΨðiÞ

t ¼ cÞ : ð1Þ

The overall SCE is then the mean value of the SCE(i) across channels. The upper bound SCE

would arise from completely random coalition time-series in which each entry is 1 with proba-

bility 0.5. Such time-series are generated (with the same dimensions as those arising from the

data) to obtain the normalization factor N. Note that SCE does not score exactly 1 for shuffled

input data—unlike ACE and LZc—as the probability at a give time-point of two shuffled chan-

nels being in synchrony is less than 0.5.

Python implementation of all three complexity measures can be found in the Supplemen-

tary Information (S1 Code).

Kuramoto model

In order to explore simulated time series for which SCE and ACE vary differently, we used a

Kuramoto model. We used the same parameters as those in Shanahan [37] (with a small excep-

tion, see below). That is, we simulated 8 communities of 32 oscillators, with the activity of each

oscillator being a unit complex number with phase θ. For the ith oscillator the evolution of its

phase in time is given by:

dyi
dt

¼ 1þ
1

N þ 1

X

N

j¼1

Ki;j sin ðyj � yi � ai;jÞ: ð2Þ

The matrix K of coupling strengths was such that each oscillator is fully connected to its

own community and has 32 random connections to oscillators in other communities. N

denotes the number of connections per oscillator. Inter-community coupling strengths were
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Fig 4. Schematic of the computation of SCE. a) Two time series. b) The analytic signals of these two, being complex signals with the real part being the
original signal and the imaginary part being the Hilbert transform of the signal. c) A synchrony time series is created for this pair of signals, being 1 at time t if
the phases of the complex values of the analytic signals have similar magnitude at this time t. d) SCE(i) with respect to channel i is the entropy over columns
(n × 1 synchronies) of the matrixΨi containing all n synchrony time series for channel i. The overall SCE is then the mean value of the SCE(i) across
channels.

doi:10.1371/journal.pone.0133532.g004
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set to 0.4, and intra-community coupling strengths to 0.6. As shown in the equation, all natural

frequencies are 1. An Euler method step size of 0.05 was used and 1500 time steps were gener-

ated, starting from random initial phases. The first 500 time steps were discarded. The phase

lag parameter bi;j ¼
p

2
� ai;j was varied uniformly for inter-community connections, and held

constant at 0.15 for intra-community connections. (Keeping the intra phase lag fixed is the

only difference from the parameters in [37]). A small value of β corresponds to a large phase

lag and leads to little synchrony whereas larger values of β correspond to smaller phase lags

and leads to greater inter-community synchrony. A single time-series was generated for each

community by taking the real part of the average instantaneous activity over all of its oscilla-

tors. Thus the activity Xc(t) of the c
th community Cc is given by

XcðtÞ ¼ Re
1

32

X

j2Cc

eiyjðtÞ

 !

: ð3Þ

Results

Measure comparison on simulated time series

In the following we describe results from analyses of 2 differently generated time series. Firstly,

analyses based on random time series constructed a priori, and secondly data generated by the

Kuramoto model. These two different analysis show respectively: (i) each measure captures the

degree of randomness in binary matrices of activations (LZc, ACE) or synchronies (SCE); (ii)

there exists a scenario in which SCE diverges from LZc and ACE and thus captures a distinct

‘flavour’ of complexity.

In the first simulation, we consider binary matrices, which represent the coalitions of either

active (for LZc and ACE) or synchronous (for SCE) channels at each observation. We plotted

the dependence of the measures against increasing order in this input matrix as follows. First a

random binary matrix of 25 channels × 2500 observations was created (an entry being 1 with

probability 0.5) and one by one each channel was replaced by a copy of the first channel. Thus

at first the input matrix was fully random, then after one iteration there were two identical

channels, at second iteration three identical channels (with random channel indices), until at

the final iteration a matrix was obtained consisting of 25 identical channels. Coalition entropy

and LZc all score 1 for the initial randommatrix and decrease as the number of duplicate chan-

nels increases, approaching zero when all channels of the matrix are identical, see Fig 5

(repeated 100 times with identical results). Thus, as expected, LZc and ACE increase monoton-

ically as the level of randomness of the matrix of activations increases, and so does SCE with

the matrix of synchronies.

In the method just described, each channel remains fully random while the cross-channel

variability is reduced. An alternative manipulation of randomness is to alter the regularity of

each channel independently. We sorted increasingly long subsequences of each binary time

series. That is, for each time series a subsequence of fixed length was chosen, starting at a differ-

ent randomly chosen time in each time series. Then this subsequence of a given series is

replaced by the same subsequence but ordered, placing all zeros to the left and all ones to the

right within this subsequence. Now the length of the subsequence is increased stepwise, result-

ing in increasingly ordered binary matrices for which we computed the measures. We found

the same trend as seen in Fig 5, with both LZc and coalition entropy (ACE and SCE) increasing

as the level of randomness increases.

Secondly, we computed the three measures for simulated continuous data created with a

Kuramoto model (see Methods, Section ‘Kuramoto model’), a model known to display rich
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dynamics [37, 49]. Fig 6 shows the results for the Kuramoto simulations, plotting LZc, ACE

and SCE against the phase-lag parameter βext. In addition a measure of phase synchrony is

plotted (PhaseSync), being the mean ofCðiÞ
t over all observations t and channels i, as described

in the definition of SCE. This plot illustrates (i) the similarity of LZc and ACE, which are both

based on the diversity of the dynamics of amplitude fluctuations, and (ii) that SCE is a distinct

measure of complexity to LZc and ACE, by virtue of being based on diversity in synchrony pat-

terns. For all values of βext, fluctuations in the amplitude of each community propagate to dif-

ferent communities, and this leads to diversity in relative amplitude reflected in the high values

of LZc and ACE. In contrast, SCE is (i) low for small values of βext (large phase lag) since there

is little synchrony between communities, (ii) low for large values of βext (small phase lag) since

there is almost total synchrony between communities, (iii) high for intermediate values of βext
in which synchrony between communities is able to fluctuate. Also note that LZc and ACE

have a minimum at βext = 0.15 whereas SCE has a maximum there.

Broadband signal for whole cortex

Fig 7 shows the mean values across 10sec segments of LZc, SCE and ACE during wakeful rest

before sedation (WR), mild sedation (MS), LOC and shuffled data (in time domain shuffled

WR) for each subject, computed for 25 EEG channels automatically selected to be spread

evenly via k-medoids clustering across the whole cortex. For all subjects, the three measures

LZc, SCE and ACE score higher for WR than for LOC, nearly all with high effect size (Cohen’s

d> 0.8 for all measures and subjects except subject 1 for all measures and subject 3 for measure

SCE, compare with Table 1.) Values for MS typically lie between those for WR or LOC, but the

differences between MS vs. WR or LOC are less consistent than those between WR vs. LOC.

For all three measures a single threshold can be drawn that separates WR from LOC across all

subjects, as indicated by the cyan lines.

Fig 5. Complexity measures for increasingly regular activation/synchronymatrices.Given a random
binary matrix of activations (for ACE and LZc) or synchronies (for SCE), with increasing number of duplicated
channels, the complexity measures monotonically decrease with the number of equal channels. See text for
details.

doi:10.1371/journal.pone.0133532.g005
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Fig 7 further displays the mean scores of each measure—LZc, SCE and ACE—across the 7

subjects. By these mean scores, all three measures score higher for waking and mild sedation

states (WR, WRa, Ms), than for LOC (p< 0.01, Wilcoxon rank sum test corrected for false-dis-

covery rate using the Benjamini-Hochberg method). Also all three measures score higher for

WR and WRa than for MS, though only significantly so for LZc (p< 0.05, see Fig 7).

The scores for all three states of consciousness and all three measures lie within 25% of the

scores obtained for random input, see Fig 7. This proximity of the measures’ scores to 1 for

WR (as well as LOC) contrasts with the pattern of the overall lower PCI scores presented by

Casali et al for EEG input from propofol anaesthetized subjects (Fig 4a in [21]). There are how-

ever several differences between PCI and our measures, see, section ‘LZ measures’ S1 Docu-

ment. Notably, PCI is computed after ordering the channels according to their overall level of

activation following the TMS stimulation. This ordering reduces complexity. There is no analo-

gous step in the computation of LZc, ACE and SCE. By design, all channels are equally ‘active’

according to the thresholding procedure we use on the spontaneous data.

We compared the ability of the complexity measures to discriminate the different states of

consciousness with that of normalized spectral power bands and a simple correlation measure,

sumCov, which equals the mean of the absolute values of correlation coefficients between all

Fig 6. LZc, ACE and SCE for Kuramotomodel. The data were obtained by varying phase-lags for inter-
community interactions. A small value of βext corresponds to a large phase lag and leads to little inter-
community synchrony (as measured by phase synchrony, PhaseSync—indicated as green discs, see text for
its computation) whereas larger values of βext correspond to smaller phase lags and lead to greater inter-
community synchrony. See main text for details. LZc and ACE show similar dependence on βext whereas
SCE peaks where the former two have a minimum.

doi:10.1371/journal.pone.0133532.g006
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Fig 7. LZc, SCE and ACE computed as averages over multiple 10sec segments of EEG of the 7
subjects before and during anaesthesia. States shown are wakeful rest (WR) before propofol, mild
sedation (MS), LOC and wakeful rest emerging from propofol sedation (WRa, not shown for single subject
results). Measures are computed across 25 channels spread evenly across the whole cortex. The measures
score highest for shuffledWR data, and consistently across subjects higher for WR as opposed to LOC. Error
bars indicate standard error across segments, cyan horizontal lines are example thresholds for each of the
measures, separatingWR from LOC for all 7 subjects. For each single subject plot, the mean and standard
error across its 7 values per state is displayed in the narrow plot to its right, with the title ‘mean’. For these
mean values across subjects, significant differences between state pairs are shown by a double asterisk if
p < 0.01 and a single asterisk if p < 0.05 (Wilcoxon rank sum test, FDR corrected for multiple comparison).
See Table 1 for effect size comparison.

doi:10.1371/journal.pone.0133532.g007

Table 1. Effect size comparison per measure and state pair.

γ β α θ δ sumCov LZc SCE ACE

WR/WRa 1 4 2 0 1 6 4 3 0 6 1 0 2 4 1 0 7 0 0 6 1 1 6 0 0 6 1

WR/MS 4 2 1 0 0 7 6 1 0 7 0 0 2 2 3 0 3 4 4 3 0 1 6 0 2 5 0

WR/LOC 6 0 1 2 1 4 3 0 4 5 1 1 0 1 6 0 1 6 6 1 0 5 2 0 6 1 0

WRa/MS 5 2 0 0 2 5 3 3 1 5 2 0 1 3 3 0 5 2 2 5 0 1 6 0 2 5 0

WRa/LOC 6 0 1 4 1 2 1 1 5 4 1 2 0 1 6 0 2 5 6 1 0 6 1 0 6 1 0

MS/LOC 6 0 1 6 0 1 1 1 5 4 0 3 0 1 6 0 7 0 3 4 0 5 2 0 5 2 0

For each measure and state pair, the three numbers correspond to how many subjects out of 7 had higher

score for the left state with Cohen’s d > 0.8 (left digit), no substantial difference, d < 0.8, (middle) and

higher score for the right state with Cohen’s d > 0.8 (right). The results were obtained from applying the

measures to the broadband signal from 25 k-medoids chosen electrodes from the whole cortex. Here WRa

is wakeful rest emerging from propofol sedation.

doi:10.1371/journal.pone.0133532.t001
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channels. Normalized spectral power bands were obtained by fast Fourier transform of each

channel’s 10sec time series, then averaged over the 25 channels and grouped into frequency

intervals, normalized such that the summed power across all bands equals one. Frequency

bands are defined, following convention, as δ = 1–4Hz, θ = 4–8Hz, α = 8–13Hz, β = 13–30Hz,

γ = 30–70Hz. All results are summarized in Table 1. The compared states were WR, MS, WRa

(wakeful rest after propofol) and LOC.

We also assessed, via ROC curve analysis, the extent to which classification thresholds can

be applied to each measure across subjects to discriminate between state pairs (e.g. WR versus

LOC). Given the set of mean scores for each subject for a pair of states, one computes the ROC

curve for discriminating between the states by plotting for each possible classification threshold

the hit rate (y-axis) versus the false alarm rate (x-axis) when classifying a mean score as indicat-

ing the more conscious state when it exceeds the threshold. For example, in a comparison of

LZc between WR and LOC, for a given threshold C, the hit rate is the proportion of subjects for

which the mean LZc is greater than C during WR, and the false alarm rate is the proportion of

subjects for which the mean LZc is greater than C during LOC. An area under the ROC curve

(AROC) of 1 indicates that there exists a classification threshold for which for all 7 subjects the

mean score exceeds the threshold for the more conscious state and is sub-threshold for the less

conscious state. An AROC of 0 also indicates perfect discriminability between the states, but

with the measure scoring higher for the less conscious state, i.e. there exists a threshold for

which for all 7 subjects the mean score exceeds the threshold for the less conscious state and is

sub-threshold for the more conscious state. An AROC of 0.5 indicates that the measure has no

ability to discriminate between the states; for each threshold, the hit rate equals the false alarm

rate. For an interactive applet that illustrates ROC analysis see [50].

As shown in Fig 8, LZc, SCE and ACE give nearly perfect cross-subject discrimination

between LOC/WR and between LOC/MS, scoring lower for LOC than any other state. Dis-

crimination was weaker for MS/WR. In addition, normalized delta power and sumCov give

near perfect cross-subject discrimination between LOC/WR (delta also for LOC/MS, and sum-

Cov also for MS/WR), scoring low for WR and highest for LOC. Delta band power strongly

discriminating LOC/WR (see also section ‘Alternative measures’ in S1 Document and Table 1)

is in line with previous studies [36, 38, 39], reflecting the presence of slow-waves during

LOC [39].

Controlling for changes in power spectrum, effects of number of electrodes and segment

length. Importantly, to check whether changes in ACE, LZc and SCE reflected more than

mere changes to the power spectrum, we computed the measures normalised by their values

for phase-randomised surrogate data. Phase shuffling was performed by Fourier transforming,

and then applying inverse Fourier transform with the addition of an independent random

phase to each channel. When repeating the analysis displayed in Fig 7 no major changes in the

measures’ behaviour were found. (See section ‘Control for changes in power spectrum’ in S1

Document.)

Next, we tested dependence of the results on the number of electrodes across which the

measures were computed. Different numbers of electrodes were chosen equally distributed

across the whole cortex via k-medoids. We tested 5, 10, 50, and 100 electrodes in addition to

the 25 considered above, for the measures LZc, SCE and ACE, all computed from 10sec seg-

ments. The results are all broadly the same as for 25 electrodes (see section ‘Dependence on

channel number’ in S1 Document).

As a final control, the role of segment length was explored. Analysed across segments of

length other than 10sec, we found for LZc, SCE and ACE broadly identical results in almost all

cases for all tested segment lengths (0.2, 0.4, 0.8, 1.2, 2, 4, 6, 10 and 20 seconds). There was just

one subject, subject 1, for whom LZc, SCE and ACE were only significantly greater in WR than
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LOC for segments of length 2sec or more. We conclude that the discriminative power of the

measures is robust across a range of segment lengths. (See section ‘Dependence on segment

length’ in S1 Document).

Correlation between changes in different measures. We computed correlations between

all pairs of measures. The ratio of the score for WR and LOC was obtained for each subject and

measure and then used to compute the Pearson correlation coefficient across subjects, as well

as a 2-tailed p-value for that correlation. In other words, for each pair of measures we consid-

ered the correlation of measure1(LOC)/measure1(WR) and measure2(LOC)/measure2(WR)

across subjects. For the state pair WR/LOC all correlations with p> 0.05 were ignored and the

remainder are plotted in Fig 9, ordered by magnitude of the correlation. All pairs chosen from

the measures ACE, LZc, SCE correlated significantly, with Pearson correlation coefficient (r)

greater than 0.75 and p< 0.05. Beta power changes correlated strongly with changes to ACE,

even though beta sometimes increases and sometimes decreases during LOC (see Table 1). All

significant correlations were positive except between alpha and gamma power, which is flipped

for convenience in Fig 9 but indicated in red. Interestingly, change in delta power does not cor-

relate significantly with changes in any of the other 8 measures, confirming again that changes

in complexity do not simply reflect changes to the overall power spectrum.

Fig 8. Discriminative power across subjects of nine measures, as measured by area under the ROC
curve (AROC). Each symbol represents a state pair as indicated. The AROC is computed from the mean
scores for the 7 subjects, obtained from the broadband signal from 25 electrodes from the whole cortex. The
closer the AROC is to 0 or 1, the better the measure is at discriminating the given state-pair, close to 1
signifying that the measure tends to be greater for the more conscious state and close to 0 signifying that the
measure tends to be greater for the less conscious state. When the AROC is 0.5 there is no discriminative
power; hit rate equals false alarm rate for all classification thresholds. LZc, ACE and SCE have nearly
maximal discriminative power for state pairs LOC/MS and LOC/WR. The measure sumCov fails to
discriminate LOC/MS yet has strong (inverse) discriminative power for LOC/WR and MS/WR. Normalized
delta band power discriminates LOC/WR and LOC/MS strongly yet MS/WR poorly.

doi:10.1371/journal.pone.0133532.g008
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Grouping EEG into lobes

To assess whether changes in complexity during LOC occurred across the whole cortex, or

whether more local changes could be identified, we analysed the measures on each of the four

lobes separately. The electrodes were divided into four groups, each corresponding to one of

the four main anatomical lobes: temporal, occipital, frontal and parietal, see Fig 2. Within each

lobe, 25 channels were automatically chosen via k-medoids and from them the measures LZc,

SCE and ACE computed in the same way as for the whole cortex.

LZc and ACE scored consistently higher for WR than for LOC for all four lobes for all sub-

jects. This was with Cohen’s d> 0.8 for all lobes for all subjects, except subject 1, see Fig 10.

SCE scored higher for WR than for LOC for 6 out of the 7 subjects for each lobe, with Cohen’s

d> 0.8 for all subjects and lobes, except subject 1 for all lobes and except subject 3 for all lobes

other than the occipital lobe (see red subject labels in Fig 10). Thus the discriminative power of

the measures was similar when computed across a single lobe to when computed across the

whole cortex.

Frequency filtered whole cortex recordings

We also analysed the LZc, SCE and ACE measures on the whole cortex data restricted to differ-

ent frequency bands, using the same bands as before and also a high-pass filter, excluding all

frequencies below 1Hz. Butterworth filters were applied to restrict the signal to the respective

frequency bands prior to computing the complexity measures. The results for the 25 electrodes

—automatically chosen via k-medoids across the whole cortex—are summarized in Table 2.

The findings suggest that the elevated complexity in the WR state arises more from activity

in low and high frequency bands (delta, beta, gamma) than from intermediate frequency bands

(theta, alpha), and that complexity is not just a property of the low frequency components of

the spectrum.

Fig 9. Pearson correlations betweenmeasures. Each black triangle indicates the positive correlation for
the given measure pair listed in increasing order along the x-axis. The correlation was computed across
subjects for the ratio of WR/LOC. Each correlation of all possible pairs of 9 measures was tested for
significance and only those with 2-tailed p-value smaller than 0.05 are plotted. The red triangle indicates
negative correlation. All 3 pairs out of ACE, LZc, SCE correlate significantly. There is no significant correlation
of delta power with any other of the 9 measures for the state pair WR/LOC.

doi:10.1371/journal.pone.0133532.g009
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Discussion

We have analysed three different complexity measures on spontaneous EEG data from subjects

undergoing propofol-induced general anaesthesia: Lempel-Ziv complexity (LZc), synchrony

coalition entropy (SCE) and amplitude coalition entropy (ACE). All three of these measures

robustly distinguished loss-of-consciousness (LOC) from wakeful resting (WR) on the broad-

band signal, giving higher mean values for WR as compared to LOC across subjects, a range of

segment lengths, and number and location of electrodes (individual lobes versus whole cortex).

On analyses restricted to specific frequency bands, the discriminative power of the complexity

measures was highest for low and high frequency bands (delta, beta, gamma), and lower for

intermediate bands (theta, alpha). The measures ACE and LZc also had some ability to dis-

criminate mild sedation (MS) fromWR.

We combined several approaches to verify that LZc, SCE and ACE capture more than just

spectral changes between the states. First, we found that re-normalizing the measures by values

obtained after phase randomization did not affect the results (see section ‘Control for changes

Fig 10. Analysis of 25 k-medoids chosen electrodes for each of four lobes. Blue star is WR, red
diamond is LOC. The red error bars indicate standard error. LZc and ACE score for all subjects higher for WR
as opposed to LOC, SCE does so for 6/7 subjects. The measures behave similarly for different brain regions.
If the effect size Cohen’s d < 0.8 for the scores of a given subject, the subject’s label is printed in red.

doi:10.1371/journal.pone.0133532.g010

Table 2. Effect size comparison per measure and frequency band for WR/LOC.

delta theta alpha beta gamma > 1Hz

LZc 5 2 0 1 4 2 5 2 0 5 2 0 6 1 0 5 2 0

SCE 6 1 0 3 3 1 4 2 1 7 0 0 6 0 1 6 1 0

ACE 7 0 0 1 4 2 4 3 0 6 1 0 7 0 0 5 2 0

For each measure and frequency-band-filtered input, the three numbers display how many subjects out of

7 had higher score for WR than LOC with Cohen’s d > 0.8 (left digit), no substantial difference, d < 0.8,

between WR and LOC (middle), and lower values in WR when compared to LOC with Cohen’s d > 0.8

(right). High-pass-filtered input data are labelled by > 1Hz.

doi:10.1371/journal.pone.0133532.t002
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in power spectrum’ in S1 Document). In addition, when comparing the discriminative power

(as measured by AROC) of the three complexity measures with that of normalized spectral

power (on the non-randomized data) we found that normalized delta power discriminated

between the states WR and LOC as well as the three complexity measures did, but it could not

discriminate between MS and WR (see Figs 8, 7 and S3 Fig in S1 Document and Table 1),

unlike LZc. Further, all three complexity measures tend to behave monotonically with respect

to depth of sedation (see Fig 7), unlike delta or gamma power (see S3 Fig in S1 Document).

Normalized spectral power in other bands all had weaker discriminative power for WR/LOC.

Finally, we did not see significant correlations between the change in delta power and changes

to any of the complexity measures, amongst the 7 subjects (Fig 9).

The consistency of our findings across the four cortical lobes, over different numbers of

channels, segment lengths, or normalization (spectral-profile preserving or not) shows that the

decrease in spontaneous EEG complexity during general anaesthesia is very robustly measur-

able. In ongoing work we are exploring the behaviour of these measures on a finer spatial scale

to see at what level, if any, regional differences can be detected.

What exactly have we measured? All the complexity measures we have considered are com-

puted from binary matrices of activations (LZc, ACE) or synchronies (SCE). Each of the mea-

sures quantifies the level of randomness in such a matrix. We verified explicitly that if the

matrix is a random matrix with some time-series identical, then all the measures decrease

monotonically with the number of identical time-series (see Fig 5). LZc counts the number of

distinct patterns in the concatenated observations, or equivalently computes how incompress-

ible the matrix is, while ACE and SCE are based on the average surprise (entropy) of a single n

× 1 observation drawn at random from the matrix (n being the number of time series). Thus,

the measures quantify the degree of randomness of a matrix in slightly different ways, diverging

slightly for intermediate levels of randomness, but under normalization, all tend to zero in the

limit of an infinite matrix with every time-series the same, and all score one in the limit of an

infinite matrix in which each entry is independent and has equal chance of being one and zero.

The entropic brain hypothesis of Carhart-Harris et al [51] states that there is correlation

between the degree of overall randomness (entropy, differentiation) in brain dynamics and

‘vividness of cognition’, locating brain states such as coma, anaesthesia and deep sleep at rela-

tively low entropy, wakeful rest at intermediate entropy and REM sleep and psychedelic states

at relatively high entropy [51]. In support of this, simple randomness measures applicable to a

single time series, such as approximate entropy [52] and permutation entropy [31], have been

found to decrease during anaesthesia and sleep [27, 28, 32, 34]. Our results are consistent with

these findings as well as with theories of consciousness based more explicitly on some concep-

tualisation of ‘complexity’ [13]. It is clear that our three measures are capturing differentiation

in the sense of signal diversity: if all regions were to behave identically, then amplitude and syn-

chrony coalitions would not vary over time (ACE and SCE would score low), and there would

be few distinct patterns in the binary matrices (LZc would score low).

To what extent can we say that the measures reflect complexity, in the sense of co-existing

differentiation and integration amongst the EEG signals [3]? Regarding integration, variations

over time to the set of active or synchronous channels could arise in the absence of causal inter-

actions; for instance, each channel could be exhibiting its own individual chaotic dynamics,

and be evolving in isolation. Thus the measures LZc, SCE and ACE would clearly not in general

for any system capture integration. However, structural constraints mitigate against fully ran-

dom activity in the context of the thalamocortical system. Given that most cortical regions

tend in general to receive strong driving input from sub-cortical regions [53], it would seem

that diverse activity across EEG channels is likely to require a certain amount of functional
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integration [18, 21, 36]. Thus LZc, SCE and ACE, when applied to multi-dimensional EEG

recordings of brain activity, may cautiously be considered to also correlate with integration in

EEG dynamics, and therefore to track complexity in the sense of simultaneous differentiation

and integration.

Our simulation with the Kuramoto model demonstrated that SCE, with its analysis of phase

(as opposed to amplitude) synchrony, can exhibit different behaviour from LZc and ACE (see

Fig 6). We varied a parameter that controls the overall level of synchrony, and found that SCE

peaked strongly at an intermediate level of overall synchrony (as one would expect), while LZc

and ACE actually exhibited a small dip where SCE peaked. This simulation, together with the

slightly different results for the three measures when applied to EEG (see Fig 7), demonstrate

that at least two distinct ‘flavours’ of complexity were decreasing in the spontaneous EEG dur-

ing anaesthesia. In further work we will conduct additional simulations to examine more

closely situations in which these three measures converge and diverge.

Our results complement those of Casali et al [21] who measured Lempel-Ziv complexity of

the EEG response to transcranial magnetic stimulation (TMS). In their paradigm, high levels of

Lempel-Ziv complexity corresponded to conjoined differentiation and integration by virtue

that a high score could only be obtained when the neuronal activity in response to the magnetic

perturbation spreads far (integration) and evolves in a non-stereotypical way (differentiation).

Their variant measure, called the Perturbational Complexity Index (PCI), also scored consis-

tently higher for WR than for propofol anaesthetized subjects (LOC) [21], in addition to also

scoring relatively low values for other unconscious states, namely, non-rapid eye movement

sleep and vegetative state.

In summary, we have demonstrated a correlation between level of sedation and three dis-

tinct complexity measures during propofol-induced general anaesthesia. Testing the measures

on data from other manipulations of conscious level will build up a more complete indication

of the specificity and sensitivity of these measures to the level of consciousness associated with

diverse states, and also whether they can act synergistically with other indices [36]. Since we

did not find any complexity measure to correlate significantly with delta power, we expect the

complexity measures to combine synergistically with a coarse analysis of the power spectrum.

This would be in line with recent work by Sitt et al. [36] analysing auditory evoked potentials

in EEG from traumatic brain injury patients. They combined spectral measures with measures

of the complexity of a single time-series to achieve greater discriminative power (as measured

by area under the ROC curve in classifying the states of traumatic brain injury patients).

Other theory-based indices that could be explored in conjunction with the complexity mea-

sures described here include ‘causal density’ [13] and various versions of integrated informa-

tion (as measured by the quantity ‘phi’ [14]), integration measures based on long-range

functional connectivity such as weighted symbolic mutual information [54], integration mea-

sures based on microstate properties across channels of spontaneous EEG activity, as recently

applied to classify disorders of consciousness patients by Fingelkurts et al [7], and global

graph-theoretic measures such as ‘efficiency’ of connectivity graphs [55]. Moreover, the com-

putation of the LZc and ACE measures based on a simplification of the continuous EEG to a

binary signal necessarily discards some information content from the signals analyzed. It is

possible that utilising a transformation of the continuous signal into a repertoire of ‘symbols’,

as in [54], could increase discriminative power.

There are now a number of candidate ‘neural correlates of consciousness’ [56]. We have

added to the list multi-dimensional complexity of spontaneous EEG. Our measures derive

from theory and thus are ‘explanatory correlates’ [57], are quick and easy to compute, and do

not involve the need to stimulate or perturb the brain.
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Supporting Information

S1 Document. Supplementary material. This document contains a more detailed discussion

of the Lempel-Ziv compression variants as well as results for control analysis as desribed in the

text.

(PDF)

S1 Code. Python Script.With this python script the complexity measures LZc, SCE and ACE

can be computed from continuous multidimensional time series.

(ZIP)
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