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1. Introduction

Lattice QCD simulations necessarily take place in a finite volume. This gives unphysical

effects that must be compensated for. For example, using periodic boundary conditions removes the

actual boundary in order to eliminate boundary effects but introduces conditions on the momenta

available in the simulation. At a lattice size of 5 fm this means that the lowest lying non-zero

momentum is

p(1)≈ 250 GeV. (1.1)

Depending on the process under study this can be considered large, and furthermore there are

situations where being able to continuously vary momenta is advantageous. Examples include

simulations for the charge radius of the pion [1], hadronic vacuum polarization for µ g-2 [2] and Kl3

decays close to zero momentum which is relevant for determination of Vus [3]. Twisted boundary

conditions, which are introduced in section 2, is a way of continuously varying momenta in lattice

QCD [4, 5, 6].

In this talk we investigate some effects of twisted boundary conditions using continuum SU(3)

Chiral Perturbation Theory in finite volume at one loop [7, 8, 9, 10]. In particular we show how

Ward identities are satisfied in a nontrivial way and how this relates to meson masses. Full results

for all calculations will not be presented since they are already available in [11]. We focus instead

on the principal differences between the case of periodic boundary conditions and twisted boundary

conditions using results for π+ to illustrate. See also [12] for discussions on some of the issues

covered here.

2. Twisted boundary conditions

Twisted boundary conditions are defined through the relation

φ(xi +L) = φ(xi)exp(iθ i). (2.1)

where we have assumed that the field is confined to a cube where all sides are of equal length L

and with i running over spatial dimensions. Expanding both sides in Fourier modes gives

∫

d piφ(pi)exp(ipi(xi +L)) =

∫

d piφ(pi)exp(i(pixi +θ))⇒ pi = pi(ni) =
2π
L

ni +
θ i

L
, n ∈ (Z).

(2.2)

By varying the twist angle, θ, it is possible to vary the momentum of the field continuously. There

are two more important observations we want to point out. First, twisted boundary conditions break

the cubic symmetry of the lattice which means that e.g. form-factors are not as constrained. Second,

available momentum states are no longer symmetric around zero. This has the consequence that

tadpole integrals are no longer zero and, more generally, that there are new terms in loop integrals

which reflects the loss of cubic symmetry. These two related observations were the starting point

of our calculations.
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2.1 Twist for quarks

The Dirac term in the QCD lagrangian is

L = q̄(i6D−m)q (2.3)

where q̄ and q are Dirac spinors and also vectors in flavour space, D is the covariant derivative in

QCD and m is the flavour diagonal mass matrix. We now define twisted boundary conditions for

each quark taste separately as

q f (x
i +L) = exp(iθ i

f )q f (x
i). (2.4)

This definition makes it clear that each taste and direction can have its own twist angle θ i
f . To make

contact with methods developed for periodic boundary conditions it is practical to undo the twist

of the quarks using a field redefinition [5]. This redefinition can be seen as a local U(n)V taste

transformation for n flavours, using only the Cartan subalgebra. It is however not to be confused

with a gauge transformation in color space. Collecting the twist angles for the flavour f in a three

vector ~θ f we define

q̃ f (x) = q f (x)exp

(

−i~θ f ·
~x

L

)

. (2.5)

The field q̃ satisfies periodic boundary conditions

q̃(xi +L) = q̃(xi). (2.6)

The lagrangian for the field q̃ is then

L = ¯̃q(i6D+ i
6Θ
L
−m)q (2.7)

where we’ve collected the twist angles in a flavour diagonal matrix Θµ where the entries are four

vectors θµ
f = (0,~θ f ). We can now interpret the term ¯̃qi6Θ/Lq̃ as coming from a constant background

field. Note that it interacts differently with the different tastes since it is proportional to the twist

angles. Note that the quarks, q̃, have momenta~k = 2π
L
~n.

2.2 Twist for mesons

A meson with the flavour structure q̄′q has the twist angle

φq̄′q(x
i +L) = exp(i(θ i

q −θ i
q′))φq̄′q(x

i)≡ exp(iθ i
q̄′q)φq̄′q(x

i). (2.8)

We will use the three- and four-vector notation for meson twists as we did above for the quarks

and we will label the mesons φq̄′q with π±, .... Note that even though the flavour diagonal mesons

have twist angle zero, they are affected through mixing in the cases where twisted boundary con-

ditions break isospin symmetry. The broken isospin symmetry affects the decay constants at NLO

while the effect for the masses is NNLO [13]. For charged particles charge conjugation is broken.

This happens since particle and anti-particle have opposite twist angles. A particle with spatial

momentum ~p corresponds to an anti-particle with spatial momentum −~p.

3



Masses, decay constants and em form-factors with twisted boundary conditions Johan Relefors

2.3 Calculating Feynman diagrams with twisted boundary conditions

We will now introduce the integral notation used in the rest of the talk, for a more complete

treatment see [14, 15, 11]. We label tadpole integrals with A according to

A{ ,µ ,µν}(m2,n) =
1

i

∫

ddk

(2π)d

{1,kµ ,kµν}
(k2 −m2)n

(2.9)

and two propagator integrals with B according to

B{ ,µ ,µν}(m2
1,m

2
2,n1,n2) =

1

i

∫

ddk

(2π)d

{1,kµ ,kµν}
(k2 −m2

1)
n1((q− p)2 −m2

2)
n2
. (2.10)

When spatial momenta are quantized, the spatial part of loop integrals are turned into sums

over spatial momenta as

∫

ddkφ

(2π)d
→

∫

V

ddkφ

(2π)d
=

∫

dd−3kφ

(2π)d−3

1

L3 ∑
~n∈Z3,~k=(2π~n+~θφ)/L

. (2.11)

In [5] it is explained how all propagators in a Feynman diagram end up with allowed momenta.

The sum of course modifies the numerics of each integral but also explicitly breaks cubic

invariance. This means that the finite volume parts of loop integrals, labeled by AV and BV , do not

decompose into Lorentz structures in the usual way. Most notably

Aµ(m2
φ,n) =

1

i

∫

ddk

(2π)d

kµ

(k2 −m2
φ)

n
6= 0. (2.12)

so that the odd tadpole integral is non-zero even though there is no Lorentz structure available. This

happens due to the fact that momenta are not symmetric around zero so that the usual cancellation

does not occur. Other decompositions that we use in our results are, using B{ ,µ ,µν}(m2
1,m

2
2,1,1) =

B{ ,µ ,µν}(m1
1,m

2
2),

BV µ(m2
1,m

2
2) = qµBV

1 (m
2
1,m

2
2,q)+B

V µ
2 (m2

1,m
2
2,q)

BV µν (m2
1,m

2
2) = qµqν BV

21(m
2
1,m

2
2,q)+gµν BV

22(m
2
1,m

2
2,q)+B

V µν
23 (m2

1,m
2
2,q)

(2.13)

For the untwisted case the integral B
V µ
2 = 0 while B

V µν
23 is zero in infinite volume. Note that the

integrals on the right hand side depend on the components of q, not only on q2 as would be the case

in infinite volume. Note that all integrals containing twisted mesons depend on twist angles in the

finite volume results. It is therefore important to specify whether there is a π+ or a π− in a loop

and similarly for other particle anti-particle pairs.

When presenting our results we will use the notation

∆V X = X(V )−X(∞) (2.14)

where X is the object under discussion. We call ∆V X the finite volume correction.
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3. Masses

In order to discuss masses, we first need to define what we mean by mass. Our definition is

m2 = E2 −~p2 (3.1)

for fixed spatial momentum ~p. This will result in a momentum dependent mass m = m(~p) due to

the broken cubic symmetry. Our definition should be contrasted with the definition [12]

m2 = E2 − (~p+~K)2, (3.2)

where ~K is a NLO correction to ~p which removes the momentum dependence. The two definitions

differ simply by moving around parts of the loop corrections. Note that the shift in momentum is

not universal [11]. With this we mean that, if we define the decay constant as

〈

0|AM
µ |M(p)

〉

= i
√

2FM

(

~pµ +~K′
µ

)

, (3.3)

in order to absorb the momentum dependence of the decay constant we would need to renormalize

the momentum differently, that is ~K′ 6= ~K. Note also that it is not possible to find any ~K such that

the electromagnetic form-factor can be written as a single f+ with rescaled momentum.

Now that we have defined mass, we quote the one loop result for the pion mass to illustrate the

differences that come up when using twisted boundary conditions;

∆Vm2
π± =

±pµ

F2
0

[−2AV
µ(m

2
π+)−AV

µ(m
2
K+)+AV

µ(m
2
K0)]

+
m2

π
F2

0

(

−1

2
AV (m2

π0)+
1

6
AV (m2

η )

)

. (3.4)

The factor ±pµ in the first row introduces momentum dependence to the mass. All integrals in the

first row vanish as the twist angles go to zero. Note that the mass shifts for a π+ with momenta ~p

and a π− with momenta −~p are the same which is consistent with that charge conjugation should

be defined with a minus sign for momenta. The corrections for flavour neutral mesons remain

momentum independent.

4. Electromagentic form-factor and Ward identities

We define the electromagnetic form-factor by

〈

M′(p′)| jI
µ |M(p)

〉

= fIMM′µ

= fIMM′+(pµ + p′µ)+ fIMM′−(pµ − p′µ)+hIMM′µ . (4.1)

where M and M′ are mesons and jµ is the electromagnetic current. We split up the form-factor into

three parts with different momentum dependence. The split is not unique but comes naturally when

calculating the finite volume corrections. As long as we only look at the electromagnetic current,
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the Ward identity ensures that fIMM′− and hIMM′µ go to zero when the twist angles go to zero. For

the charged pions the one loop finite volume corrections are

∆V femπ±+ =
±1

F2
0

(

2HV (m2
π+ ,m2

π− ,q)+HV(m2
K+ ,m2

K− ,q)
)

∆V femπ+(π−)− =
p′ν (−pν )

F2
0

(

2BV
2ν (m

2
π+ ,m2

π− ,q)+BV
2ν (m

2
K+ ,m2

K− ,q)
)

∆Vhemπ±µ =
1

F2
0

(

2AV
µ(m

2
π+)+AV

µ(m
2
K+)−AV

µ(m
2
K0)

+q2BV
2µ(m

2
π+ ,m2

π− ,q)+
q2

2
BV

2µ(m
2
K+ ,m2

K− ,q)

∓ (p+ p′)ν (2BV
23µν (m

2
π+ ,m2

π− ,q)+BV
23µν (m

2
K+ ,m2

K− ,q)
)

)

, (4.2)

where, apart from the integrals defined in section 2.3, we have used a generalization of H found

in [16, 17]

HV (m2
1,m

2
2,q) =

1

4
AV (m2

1)+
1

4
AV (m2

2)−BV
22(m

2
1,m

2
2,q). (4.3)

The Ward identity

(pµ − p′µ) fIMM′µ = 0 (4.4)

is still satisfied. This does take some extra care as we show below. Expanding fIMM′µ we get

0 = qµ
〈

M′(p′)| jI
µ |M(p)

〉

= fIMM′+(p2 − p′2)+ fIMM′−q2 +hIMM′µqµ (4.5)

where qµ = (pµ − p′µ). In the infinite volume case for M = M′ we always have (p2 − p′2) = 0 on

shell to all orders. In the case of twisted boundary conditions this is no longer true. Instead we

have, using π+ as an example,

(

p2 − p′2
)

NLO
=

pµ − p′µ

F2
0

[−2AV
µ(m

2
π+)−AV

µ(m
2
K+)+AV

µ(m
2
K0)] (4.6)

which gives a non-zero contribution when multiplied with the leading order part of fIMM′+. This

contribution cancels parts of hIMM′µqµ . The reminaing terms cancel between fIMM′−q2 and hIMM′µqµ

using some integral identities [11].

An issue which is not solved by using twisted boundary conditions is that for M = M′ there is

no way to continuously vary the momentum in the current since pi − pi′ = 2π
L
(ni − ni′). In order

to address this case it has been proposed in [18] that broken isospin symmetry should be used to

relate matrix elements through

〈

π+(p′)|ūγµu|π+(p)
〉

=− 1√
2

〈

π0(p′)|d̄γµu|π+(p)
〉

. (4.7)

Note that in this way contributions from the s̄γµs part of the current are missed.

We now split the form-factor as

fµ =
(

1+ f ∞
+ +∆V f+

)

(p+ p′)µ +∆V f−qµ +∆V hµ =− 1√
2

fd̄uπ+π0µ . (4.8)
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Figure 1: Left: µ = 0 Right: µ = 1. One loop corrections to f+. Plotted are the infinite volume correction,

f ∞
+ (q

2), the finite volume correction, ∆V f+, and the full finite volume correction, ∆V f µ = ∆V f+(p+ p′)µ +

∆V f−qµ +∆V hµ . The one loop finite volume corrections are of similar size as the infinite volume one loop

corrections.

where we have separated out the lowest order value of 1. In Fig. 1 we plot the time and space

components of the fifferent parts of f+ as well as the full finite volume correction in a volume with

size mπL= 2. In order to look only at the loop contribution we have set Lr
9 = 0. The renormalization

scale is set to µ = 0.77 GeV and we have used the following input constants

mπ = 139.5 MeV , mK = 495 MeV , m2
η =

4

3
m2

K −
1

3
m2

π, Fπ = 92.2 MeV , mπL= 2 . (4.9)

The momentum exchange q2 is varied by changing the twist angle on the u-quark. From Fig. 1 it is

clear that the finite volume loop correction is of a similar size as the infinite volume loop correction.

5. Decay constants

Similar to the case of the electromagnetic form-factor, the decay constant also has a different

momentum dependence with twisted boundary conditions than with periodic boundary conditions.

We define the (axial-vector) decay constant in finite volume as

〈

0|AM
µ |M(p)

〉

= i
√

2FM pµ + i
√

2FV
Mµ , (5.1)

where M(p) is a meson and with the corresponding axial-vector decay constant AM
µ = q̄γµγ5(λ M/

√
2)q.

We also define a pseudo-scalar decay constant

〈

0|PM|M(p)
〉

=
GM√

2
(5.2)

where PM = q̄iγ5(λ M/
√

2)q is the pseudo-scalar current corresponding to the meson M. For flavour

charged mesons composed of q̄q′ the two matrix elements satisfy the Ward identity

∂ µ 〈0|AM
µ |M(p)

〉

= (mq +mq′)
〈

0|PM|M(p)
〉

(5.3)
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Figure 2: The relative size of the finite volume correction to the decay constant of π+ plotted against mπL

for various twist angles on the u-quark. One the left we have plotted ∆V FM/Fπ and on the right we have

plotted FV
Mx/(Fπmπ).

which leads to

p2FM + pµFV
Mµ =

1

2
(mq +mq′)GM . (5.4)

When checking this Ward identity, it is important to use the correct momentum dependent mass.

The explicit expressions for π± decay are given by

∆VFπ± =
1

F0

(

1

2
AV (m2

π+)+
1

2
AV (m2

π0)+
1

4
AV (m2

K+)+
1

4
AV (m2

K0)

)

,

FV
π±µ =± 1

F0

(

2AV
µ(m

2
π+)+AV

µ(m
2
K+)−AV

µ(m
2
K0)

)

,

∆VGV
π± =

G0

F2
0

(

1

2
AV (m2

π+)+
1

4
AV (m2

K+)+
1

4
AV (m2

K0)+
1

6
AV (m2

η )

)

. (5.5)

The finite volume corrections to π+ are plotted in Fig. 2.

As a final note on decay constants we note that due to the isospin breaking effect of twisted

boundary conditions there is mixing in the decay of the flavour neutral mesons. We will not go into

the details here but refer to [11] for the one loop results and [13] for how to treat mixing.

6. Conclusions and outlook

In this talk we have presented parts of our work on twisted boundary conditions using SU(3)

ChPT. The starting point is the observation that the odd tadpole integral is no longer zero when

twisted boundary conditions are used. We note also that the broken lattice symmetry means that

extra care is needed when defining quantities such as form-factors.

More specifically, we have given an introduction to twisted boundary conditions and how

computations are affected. We have also presented results for mass, electromagnetic form-factor
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and decay constant for π±. Finally we illustrated how the relevant Ward identities are satisfied. The

procedure for checking Ward identities can be summarized as be careful and do things correctly!

The size of the effects of twisted boundary conditions can be considered small in many cases,

but depending on lattice size and the precision desired they can be non-negligible.

We are now working on the one loop corrections to Kl3 decay in partially twisted partially

quenched staggered chiral perturbation theory, relevant for determining the Vus mixing angle [19].
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