

Department of Computer Science http://www.cs.cornell.edu/johannes





- Customer web site trails
- Podcasts
- Blogs
- Email • Closed caption

(B) ---

• Print, film, optical, and magnetic storage: 5 Exabytes (EB) of new information in 2002, doubled in the last three years [How much Information 2003, UC Berkeley]

















### **Project Requirements**

- Data
  - 14 TB every 2 weeks
  - Shipped on USB-2 disk drives
  - Need to archive raw data 5+ years
    Need to make data products available to the astronomy
  - research community
- Processing
  - Extremely processor intensive
  - Find new pulsars --- and other interesting phenomena

[Calimlim, Cordes, Demers, Gehrke, Lifka;

(B) --

۵ 🕲

http://arecibo.tc.cornell.edu]

**Driving Factors: Analysis Capabilities** 

Data mining is the exploration and analysis of large quantities of data in order to discover valid, novel, potentially useful, and ultimately understandable patterns in data.

Example pattern (Census Bureau Data): If (relationship = husband), then (gender = male). 99.6%

### Driving Factors: Connectivity and Bandwidth

- Metcalf's law (network usefulness increases squared with the number of users)
- Gilder's law (bandwidth doubles every 6 months)

SIGKDD 2006 Tutorial, August 2006

(B) carro

(B) c...

.

### **Concerns About Privacy**

Recent example:

"Last week AOL did another stupid thing, but at least it was in the name of science...."

[Annalee Newitz, AlterNet, August 15, 2006]

SIGKDD 2006 Tutorial, August 2006

## A Face Is Exposed for AOL Searcher No. 4417749 [New York Times, August 9, 2006]

No. 4417749 conducted hundreds of searches over a three-month period on topics ranging from "numb fingers" to "60 single men" to "dog that urinates on everything."
 And search by search, click by click, the identity of AOL user No. 4417749 became easier to discern. There are queries for "landscapers in Lilburn, Ga," several people with the last name Arnold and "homes sold in shadow lake subdivision gwinnett county georgia."

It did not take much investigating to follow that data trail to Thelma Arnold, a 62-year-old widow who lives in Lilburn, Ga., frequently researches her friends' medical ailments and loves her three dogs. "Those are my searches," she said, after a reporter read part of the list to her.

...

### A Face Is Exposed for AOL Searcher No. 4417749 [New York Times, August 9, 2006] Ms. Arnold says she loves online research, but the disclosure of her searches has left her disillusioned. In response, she plans to drop her AOL subscription. "We all have a right to privacy," she said. "Nobody should have found this all out."

SIGKDD 2006 Tutorial, August 2006

Constit











- Ideally, we want an algorithm that discloses only the query result, and only to the requesting party. (In practice, we need some extra disclosure.)
- How do we design algorithms that compute queries while preserving data privacy?

SIGKDD 2006 Tutorial, August 2006

(B) come

• How do we measure privacy (this extra disclosure)?

















### **Disclosure Limitations**

- Ideally, we want a solution that discloses as much statistical information as possible while preserving privacy of the individuals who contributed data.
- How do we design algorithms that allow the "largest" set of queries that can be disclosed while preserving data privacy?
- How do we measure disclosure?

SIGKDD 2006 Tutorial, August 2006

(B) ----

7

### This Tutorial: Statistical Methods

- Privacy-preserving data analysis
- Privacy-preserving data publishing

### Goal:

• Rather than talk about everything superficially, but nothing in-depth, make hard choices

SIGKDD 2006 Tutorial, August 2006

Const

(B) c...

Caveats:

• Not a comprehensive survey  $\ensuremath{\boldsymbol{\otimes}}$ 

### What is Left Out?

- Work on secure multi-party computation (secure join, secure intersection, homomorphic encryption, certificate revocation, etc.)
- Architectural and language issues (Hippocratic databases, P3P, etc.)
- Disclosure control (statistical databases, auditing, database queries, etc.)
- Privacy through distributed data mining

### Resources

• See excellent tutorials by Rakesh Agrawal and Chris Clifton; keynote talk by Srikant Ramakrishnan at this conference.



### The Problem

- How to randomize data such that
  - we can build a good data mining model (utility)
  - while preserving privacy at the record level (privacy)?

SIGKDD 2006 Tutorial, August 2006

® ----



### Motivation: A Social Survey

- Measures opinions, attitudes, behavior
- Problem: Questions of a sensitive nature
  - Examples: sexuality, incriminating questions, embarrassing questions, threatening questions, controversial issues, etc.
  - The "non-cooperative" group leads to errors in surveys and inaccurate data

SIGKDD 2006 Tutorial, August 2006

(B) -----

• Even though privacy is guaranteed, skepticism prevails



### **Tutorial Outline**

- Untrusted data collector
  - Randomized response [W65]
  - The search for a good privacy definition

SIGKDD 2006 Tutorial, August 2006

- Interval privacy [AS00]
- Mutual information [AA01]
- ( $\alpha$ , $\beta$ ) privacy breach [EGS03]
- Comments
- Trusted data collector

(B) c....

### Interval Privacy [AS00]

[Agrawal and Srikant; SIGMOD 2000]

Idea: Clients share randomized version of their data.

Intuition: Randomized response.

### Randomization:

• For a numerical attribute value x, share value z=x+y, where y is drawn from some known distribution

SIGKDD 2006 Tutorial, August 2006

(B) come





### Interval Privacy: Example

- Add a random value between -30 and +30 to age.
- If randomized value is 60
  - We know with 90% confidence that age is between 33 and 87.
- Interval width is the amount of privacy.
  - Example:
    - Interval width 54 with 90% confidence
    - Interval width 60 with 100% confidence

SIGKDD 2006 Tutorial, August 2006

(B) Canad

15













| Reconstruction: Iterative Algorithm                                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------|
| f <sub>x</sub> <sup>0</sup> := Uniform density<br>j := 0 // Iteration number<br>repeat                                                    |
| $f_{X}^{j+1}(a) := \frac{1}{n} \sum_{i=1}^{n} \frac{f_{Y}((x_{i}+y_{i})-a)f_{X}^{j}(a)}{\int_{-}^{n} f_{Y}((x_{i}+y_{i})-a)f_{X}^{j}(a)}$ |
| until (stopping criterion met)                                                                                                            |
| <ul> <li>Other approach:</li> <li>Assume parametric distribution</li> </ul>                                                               |
| <ul> <li>Perform MLE of distribution parameters through the<br/>EM Algorithm [AA01]</li> </ul>                                            |
| SIGKDD 2006 Tutorial, August 2006                                                                                                         |











- A random variable distributed uniformly between [0,1] has half as much privacy as if it were distributed in [0,2]
- In general: If  $f_B(x)=2f_A(2x)$  then B offers half as much privacy as A
  - Think of A as B stretched out at twice the length

SIGKDD 2006 Tutorial, August 2006

(B) com

(B) ---

(B) ---

• Need a privacy measure that captures this intuition



- Differential entropy h(X):  $h(X) = -\int_{\Omega X} f_X(x) \log f_X(x) dx$
- Examples:
  - X is uniformly distributed between 0 and 1: h(X)=0. • X is uniformly distributed between 0 and a:  $h(X) = \log_2(a)$ .
- Random variables with less uncertainty than U[0,1] have negative differential entropy
   Random variables with more uncertainty than U[0,1] have positive differential entropy

SIGKDD 2006 Tutorial, August 2006

**Proposed Measure** 

• Propose  $\Pi(X)=2^{h(X)}$  as measure of privacy for attribute X

- Examples:
- Uniform U between 0 and 1:  $\Pi(U)=2^{\log_2(1)}=2^0=1$  Uniform U between 0 and a:  $\Pi(U)=2^{\log_2(a)}=a$
- In general, II(A) denotes the length of an interval over which a uniformly distributed random variable has as much uncertainty as A.
- Example:
  - $\Pi(X)=2$ : X has as much privacy as a random variable distributed uniformly in an interval of length 2

### **Conditional Privacy**

• Conditional privacy takes the additional information in perturbed values into account:

 $h(X \mid Z) = -\int_{\Omega X, Z} f_{X, Z}(x, z) \log f_{X \mid Z = z}(x) dx dz$ 

• Average conditional privacy of X given Z:  $\Pi(X|Z)=2^{h(X|Z)}$ 

SIGKDD 2006 Tutorial, August 2006

(B) com







SIGKDD 2006 Tutorial, August 2006

Caveat: Privacy Preserved Only On Average Example:

- Example:  $f_x(x) = 0.5, 0 \le x \le 1$   $f_x(x) = 0.5, 4 \le x \le 5$   $f_y(x) = 0, \text{ otherwise}$  Uniform noise Y in [0,1] Assume sensitive property: "X<= 0.01." (prior probability: 0.5%) If Z in [-1, -0.99], the posterior probability P[X <= 0.01 | Z = Z] = 1. However, Z in [-1, -0.99] is unlikely (only one in 100,000 records)  $\rightarrow$  not much privacy loss
- Caveat:
  - Every time this occurs the property "X <= 0.01" is fully disclosed.</li>
     The mutual information, being an average measure, does not notice this rare disclosure.

SIGKDD 2006 Tutorial, August 2006



- Untrusted data collector
  - Randomized response [W65]
  - The search for a good privacy definition

SIGKDD 2006 Tutorial, August 2006

- Interval privacy [AS00]
- Mutual information [AA01]
- $(\alpha,\beta)$  privacy breach [EGS03]
- Comments
- Trusted data collector

(B) ----

(B) c...



Theorem:

• If randomization operator **R** is at most γamplifying, and if: B 1 a γ

$$\alpha < \frac{\beta}{\alpha} \cdot \frac{1-\alpha}{1-\beta}$$

• Then, revealing R(X) to the server will never cause an  $\alpha$ -to- $\beta$  privacy breach.

SIGKDD 2006 Tutorial, August 2006

(B) -----





Constit



### The Unbiased Estimators

• Given randomized partial supports, we can estimate original partial supports:

$$\vec{s}_{est} = Q \cdot \vec{s}'$$
, where  $Q = P^{-1}$ 

• Covariance matrix for this estimator:

$$\operatorname{Cov} \vec{s}_{\mathsf{est}} = \frac{1}{|T|} \sum_{l=0}^{k} s_l \cdot Q D[l] Q^T,$$

where 
$$D[I]_{i,j} = P_{i,l} \cdot \delta_{i=j} - P_{i,l} \cdot P_{j,l}$$
  
ite it, substitute  $s_l$  with  $(s_{est})_l$ .

**(B)** ---

To estimate it, substitute s<sub>l</sub> with (s<sub>est</sub>)<sub>l</sub>.
 Special case: estimators for support and its variance

32







- Untrusted data collector
  - Randomized response [W65]
  - The search for a good privacy definition

SIGKDD 2006 Tutorial, August 2006

- Interval privacy [AS00]
- Mutual information [AA01]
- ( $\alpha$ , $\beta$ ) privacy breach [EGS03]
- Comments
- Trusted data collector

(B) card



### Extensions: $(s,\alpha,\beta)$ Privacy Breach [AST05]

[Agrawal, Srikant, Thomas; SIGMOD 2005]

- Consider the following class of randomization operators:
  - Each attribute value is retained with probability p and replaced with probability (1-p) with a value selected from a replacing distribution

### Example: Uniform perturbation

• Replacing distribution is the uniform distribution on the domain

SIGKDD 2006 Tutorial, August 2006

🛞 c...

(B) ---

### $(s,\alpha,\beta)$ Privacy Breach (Contd.)

- Consider the following probabilities:
  - $P_f[X \text{ in } S] = p_S$ , where  $P_f$  is the a priori distribution •  $P_g[Y \text{ in } S] = m_S$ , where  $P_g$  is the replacing distribution.
- Define the *relative a priori probability* of event S as p<sub>s</sub>/m<sub>s</sub>.
- Intuition: How frequent is S in its a priori distribution compared to the replacing distribution?





( $\mathbf{s},\alpha,\beta$ ) Privacy Breach (Contd.)

• Theorem [AST05]: Uniform perturbation applied to a single column is secure against a  $(s, \alpha, \beta)$  privacy breach if

$$s < \frac{(\beta - \alpha)(1 - p)}{(1 - \beta)p}$$

(Recall: p is probability not to pick from randomizing distribution)

SIGKDD 2006 Tutorial, August 2006

🛞 c...







### • Observation:

- Original data could be correlated.
- Noise is not correlated.
- Similar observation by Kargupta and Datta [ICDM 2003]

SIGKDD 2006 Tutorial, August 2006

Const









### What Happened?

Original data:

- Correlated.
- If we remove half the attributes, the actual information loss might be much smaller
- Noise:
- Uncorrelated
- Variance evenly distributed across attributes
- If we remove half the attributes, the actual loss in noise should be 50%

SIGKDD 2006 Tutorial, August 2006

**(B)** ---



SIGKDD 2006 Tutorial, August 2006

(B) com









### **Disclosure Limitations**

- Ideally, we want a solution that discloses as much statistical information as possible while preserving privacy of the individuals who contributed data.
- How do we design algorithms that compute the "largest" set of queries that can be disclosed while preserving data privacy?

SIGKDD 2006 Tutorial, August 2006

(B) come

(B) --

(B) c...

• How do we measure privacy?

### Goals

- Safe from attackers who try to learn customers' identities or sensitive information
- Useful for a wide range of statistical analyses
- Easy for users to analyze with standard statistical methods
  - Just load the published dataset into your favorite analysis tool

[Reiter, Chance 17(3), 2004]

### Why is Disclosure Bad?

- Violation of laws and thus subject to legal action
- Lose the trust of the public (no future participants)
- Data of dubious quality (since participants are afraid that their privacy is threatened)

### [Reiter, Chance 17(3), 2004]

|              |       |     |             | 1       |
|--------------|-------|-----|-------------|---------|
| SSN          | Zip   | Age | Nationality | Disease |
| 631-35-1210  | 13053 | 28  | Russian     | Heart   |
| 051-34-1430  | 13068 | 29  | American    | Heart   |
| 120-30-1243  | 13068 | 21  | Japanese    | Viral   |
| 070-97-2432  | 13053 | 23  | American    | Viral   |
| 238-50-0890  | 14853 | 50  | Indian      | Cancer  |
| 265-04-1275  | 14853 | 55  | Russian     | Heart   |
| 574-22-0242  | 14850 | 47  | American    | Viral   |
| 388-32-1539  | 14850 | 59  | American    | Viral   |
| 005-24-3424  | 13053 | 31  | American    | Cancer  |
| 248-223-2956 | 13053 | 37  | Indian      | Cancer  |
| 221-22-9713  | 13068 | 36  | Japanese    | Cancer  |
| 615-84-1924  | 13068 | 32  | American    | Cancer  |



|       |     | •           |         |                                         |
|-------|-----|-------------|---------|-----------------------------------------|
| Zip   | Age | Nationality | Disease | Medical Pecords of a                    |
| 13053 | 28  | Russian     | Heart   | hospital near Ithaca                    |
| 13068 | 29  | American    | Heart   | serving patients from                   |
| 13068 | 21  | Japanese    | Viral   | <ul> <li>Freeville (13068)</li> </ul>   |
| 13053 | 23  | American    | Viral   | <ul> <li>Dryden (13053)</li> </ul>      |
| 14853 | 50  | Indian      | Cancer  | <ul> <li>Ithaca (14850, 1485</li> </ul> |
| 14853 | 55  | Russian     | Heart   | • Iulaca (17050, 1705                   |
| 14850 | 47  | American    | Viral   |                                         |
| 14850 | 59  | American    | Viral   |                                         |
| 13053 | 31  | American    | Cancer  |                                         |
| 13053 | 37  | Indian      | Cancer  |                                         |
| 13068 | 36  | Japanese    | Cancer  |                                         |
| 13068 | 32  | American    | Cancer  |                                         |











| Zip   | Age | Nationality | Disease | Base Table:                         |
|-------|-----|-------------|---------|-------------------------------------|
| 13053 | 28  | Russian     | Heart   | Medical Records of a                |
| 13068 | 29  | American    | Heart   | hospital near Ithaca                |
| 13068 | 21  | Japanese    | Viral   | Serving patients from               |
| 13053 | 23  | American    | Viral   | Dryden (13053), and                 |
| 14853 | 50  | Indian      | Cancer  | Ithaca (14850, 14853                |
| 14853 | 55  | Russian     | Heart   |                                     |
| 14850 | 47  | American    | Viral   | <ul> <li>The combination</li> </ul> |
| 14850 | 59  | American    | Viral   | {Zip, Age, Nationality              |
| 13053 | 31  | American    | Cancer  | identifier                          |
| 13053 | 37  | Indian      | Cancer  | Disease is the                      |
| 13068 | 36  | Japanese    | Cancer  | sensitive attribute                 |
| 13068 | 32  | American    | Cancer  |                                     |



### K-Anonymity [Sweeney02]

- Generalize, modify, or distort quasi-identifier values so that no individual is uniquely identifiable from a group of *k*
- In SQL, table T is k-anonymous if each SELECT COUNT(\*) FROM T GROUP BY Quasi-Identifier is ≥ k
- Parameter k indicates the "degree" of anonymity

```
SIGKDD 2006 Tutorial, August 2006
```

(B) ---

### K-Anonymity

• There are at least k tuples sharing the same values for each combination of the quasi-identifiers.

SIGKDD 2006 Tutorial, August 2006

(B) come

- Techniques
  - Generalizing non-sensitive attributes
  - Tuple Suppression
  - Data Swapping
  - Randomization













• Generalization Property: If T is k-anonymous with respect to a set of attributes, then it is kanonymous with respect to any generalization of these attributes.

### Hospital Patients

| 1/21/76         Male         5371*         Flu           1/21/76         Male         5370*         Broken Arm           2/28/76         Male         5370*         Bronchitis           4/13/86         Female         5371*         Hepatitis           4/13/86         Female         5370*         Sprained Anklee           2/28/76         Female         5370*         Hang Nail | DOB     | Sex    | Zipcode | Disease        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|---------|----------------|
| 1/21/76         Male         5370*         Broken Arm           2/28/76         Male         5370*         Bronchitis           4/13/86         Female         5371*         Hepatitis           4/13/86         Female         5370*         Sprained Anklee           2/28/86         Female         5370*         Hang Nail                                                          | 1/21/76 | Male   | 5371*   | Flu            |
| 2/28/76         Male         5370*         Bronchitis           4/13/86         Female         5371*         Hepatitis           4/13/86         Female         5370*         Sprained Ankle           2/28/86         Female         5370*         Hang Nail                                                                                                                           | 1/21/76 | Male   | 5370*   | Broken Arm     |
| 4/13/86         Female         5371*         Hepatitis           4/13/86         Female         5370*         Sprained Ankle           2/28/86         Female         5370*         Hang Nail                                                                                                                                                                                           | 2/28/76 | Male   | 5370*   | Bronchitis     |
| 4/13/86         Female         5370*         Sprained Ankle           2/28/86         Female         5370*         Hang Nail                                                                                                                                                                                                                                                            | 4/13/86 | Female | 5371*   | Hepatitis      |
| 2/28/86 Female 5370* Hang Nail                                                                                                                                                                                                                                                                                                                                                          | 4/13/86 | Female | 5370*   | Sprained Ankle |
|                                                                                                                                                                                                                                                                                                                                                                                         | 2/28/86 | Female | 5370*   | Hang Nail      |
|                                                                                                                                                                                                                                                                                                                                                                                         |         |        |         |                |

### Some Simple Observations

- Generalization Property
- Rollup Property: If attribute set P is a generalization of Q, counts grouped by P can be computed directly from the counts grouped by Q.

| DOB     | Sex    | Zipcode | Disease        |
|---------|--------|---------|----------------|
| 1/21/76 | Male   | 5371*   | Flu            |
| 1/21/76 | Male   | 5370*   | Broken Arm     |
| 2/28/76 | Male   | 5370*   | Bronchitis     |
| 4/13/86 | Female | 5371*   | Hepatitis      |
| 4/13/86 | Female | 5370*   | Sprained Ankle |
| 2/28/86 | Female | 5370*   | Hang Nail      |

SIGKDD 2006 Tutorial, August 2006

### Some Simple Observations

- Generalization Property
- Rollup Property
- Subset Property: If T is k-anonymous with respect to attribute set Q, then T is k-anonymous with respect to  $P \subseteq Q$ .

### Hospital Patients

| DOB     | Sex        | Zipcode       | Disease        |
|---------|------------|---------------|----------------|
| 1/21/76 | Male       | 537**         | Flu            |
| 1/21/76 | Male       | 537**         | Broken Arm     |
| 2/28/76 | Male       | 537**         | Bronchitis     |
| 4/13/86 | Female     | 537**         | Hepatitis      |
| 4/13/86 | Female     | 537**         | Sprained Ankle |
| 2/28/86 | Female     | 537**         | Hang Nail      |
| S       | SIGKDD 200 | 6 Tutorial, A | ugust 2006     |

| Some Simple Observations                                                                                          |                   |
|-------------------------------------------------------------------------------------------------------------------|-------------------|
| <ul> <li>Generalization Property</li> <li>Rollup Property</li> <li>Subset Property → Frequent Itemsets</li> </ul> | 9                 |
|                                                                                                                   |                   |
| SIGVED 2006 Tuberol August 2006                                                                                   | Consel University |





### **Basic Incognito Algorithm**

- Finds all k-anonymous full-domain generalizations
- Begins by checking k-anonymity with respect to single-attribute subsets of quasi-identifier. Then iteratively checks larger subsets. (*Subset Property*)
- Each iteration has two phases:
  - Breadth-first search (*Rollup Property*)
  - Candidate graph construction

SIGKDD 2006 Tutorial, August 2006

(B) --





SIGKDD 2006 Tutorial, August 2006

Constitu



| Example | Micro | odata     | a                       |         |                    |
|---------|-------|-----------|-------------------------|---------|--------------------|
|         | Zip   | Age       | Nationality             | Disease |                    |
|         | 13053 | 28        | Russian                 | Heart   |                    |
|         | 13068 | 29        | American                | Heart   |                    |
|         | 13068 | 21        | Japanese                | Viral   |                    |
|         | 13053 | 23        | American                | Viral   |                    |
|         | 14853 | 50        | Indian                  | Cancer  |                    |
|         | 14853 | 55        | Russian                 | Heart   |                    |
|         | 14850 | 47        | American                | Viral   |                    |
|         | 14850 | 59        | American                | Viral   |                    |
|         | 13053 | 31        | American                | Cancer  |                    |
|         | 13053 | 37        | Indian                  | Cancer  |                    |
|         | 13068 | 36        | Japanese                | Cancer  |                    |
|         | 13068 | 32        | American                | Cancer  |                    |
|         | SI    | GKDD 2006 | 6 Tutorial, August 2006 |         | Constit University |



| Zip   | Age   | Nationality | Diseas |
|-------|-------|-------------|--------|
| 130** | <30   | *           | Heart  |
| 130** | <30   | *           | Heart  |
| 130** | <30   | *           | Viral  |
| 130** | <30   | *           | Viral  |
| 1485* | >40   | *           | Cancer |
| 1485* | >40   | *           | Heart  |
| 1485* | >40   | *           | Viral  |
| 1485* | >40   | *           | Viral  |
| 130** | 30-40 | *           | Cancer |
| 130** | 30-40 | *           | Cancer |
| 130** | 30-40 | *           | Cancer |
| 130** | 30-40 | *           | Cancer |



### Attacks on K-Anonymity [Ohrn, Ohno-Machado; Artif Intell Med. 15(3), 1999] [Machanavajjhala, Gehrke, Kifer, Venkitasubramaniam; ICDE 2006] • K-Anonymity does not protect against some simple attacks

| Hon   | noge  | eneity Atta | ack              |                                             |
|-------|-------|-------------|------------------|---------------------------------------------|
| Zip   | Age   | Nationality | Disease          | <ul> <li>Alice's neighbor Bob is</li> </ul> |
| 130** | <30   | *           | Heart            | in the hospital.                            |
| 130** | <30   | *           | Heart            | <ul> <li>Alice knows Bob is 35</li> </ul>   |
| 130** | <30   | *           | Viral            | vears old and is from                       |
| 130** | <30   | *           | Viral            | Dryden (13053)                              |
| 1485* | >40   | *           | Cancer           | Diyden (15055).                             |
| 1485* | >40   | *           | Heart            |                                             |
| 1485* | >40   | *           | Viral            | <ul> <li>Alice learns that Bob</li> </ul>   |
| 1485* | >40   | *           | Viral            | has cancer.                                 |
| 130** | 30-40 | *           | Cancer           |                                             |
| 130** | 30-40 | *           | Cancer           |                                             |
| 130** | 30-40 | *           | Cancer           |                                             |
| 130** | 30-40 | *           | Cancer           | Alice                                       |
|       |       | SIGKDD 2    | 2006 Tutorial, / | August 2006                                 |

SIGKDD 2006 Tutorial, August 2006

🛞 Constit



| kgro  | und Knov          | wledge                               | Attack                                                       |
|-------|-------------------|--------------------------------------|--------------------------------------------------------------|
| Age   | Occupation        | Disease                              |                                                              |
| <30   | *                 | Heart                                |                                                              |
| <30   | *                 | Heart                                |                                                              |
| <30   | *                 | Viral                                |                                                              |
| <30   | *                 | Viral                                | Allee                                                        |
| >40   | *                 | Cancer                               | <ul> <li>Alice's friend Umeko is in the<br/>table</li> </ul> |
| >40   | *                 | Heart                                | <ul> <li>Alice knows Umeko is 24, a</li> </ul>               |
| >40   | *                 | Viral                                | Japanese, living in Freeville                                |
| >40   | *                 | Viral                                | (13068)                                                      |
| 30-40 | *                 | Cancer                               | Japanese have extremely low                                  |
| 30-40 | *                 | Cancer                               | incidence of heart disease                                   |
| 30-40 | *                 | Cancer                               | Alice learns Umeko                                           |
| 30-40 | *                 | Cancer                               | has a viral infection                                        |
|       | Age           <30 | Age         Occupation           <30 | Age         Occupation         Disease           <30         |



# Data Publishing Desiderata Need to defend against attacks based on background knowledge Need to permit efficient sanitization algorithms Guarantee understood by a lay person



SIGKDD 2006 Tutorial, August 2006

(B) ---



### Privacy Definition (1)

- Positive Disclosure: Posterior Belief >  $1-\delta$
- Negative Disclosure: Posterior Belief <  $\delta$

### BUT:

- Not all positive disclosures are bad
  OK to disclose Bob is healthy
- Not all negative disclosures are bad
   OK to disclose Bob does not have Ebola

### Privacy Definition (2)

• Bayes-optimal privacy: After publishing we have Posterior belief ~ prior belief

SIGKDD 2006 Tutorial, August 2006

🛞 canal

(B) ---

- Example instantiation: α-to-β privacy breach definition
   Prior Belief < α and posterior Belief > β OR
   Prior Belief >1- α and posterior Belief <1-β</li>
- Automatically eliminates homogeneity attack
   Homogeneity → Posterior belief = 1

SIGKDD 2006 Tutorial, August 2006

# Bayes-Optimal Privacy– Drawbacks Insufficient knowledge Nobody knows the complete joint distribution Adversary's knowledge unknown Data publisher does not know how much the adversary knows Omputational intractability Checking for every (q,s) pair ...













| 3-D   | )iver: | se Microo   | data           |                                                   |
|-------|--------|-------------|----------------|---------------------------------------------------|
| Zip   | Age    | Nationality | Disease        | <ul> <li>Bob is 35 years old</li> </ul>           |
| 1306* | <=40   | *           | Heart          | and is from Dryden                                |
| 1306* | <=40   | *           | Viral          | (13053)                                           |
| 1306* | <=40   | *           | Cancer         | (19099).                                          |
| 1306* | <=40   | *           | Cancer         |                                                   |
| 1485* | >40    | *           | Cancer         | • Umeko is 24, a                                  |
| 1485* | >40    | *           | Heart          | Japanese from                                     |
| 1485* | >40    | *           | Viral          | Freeville (13068)                                 |
| 1485* | >40    | *           | Viral          | <ul> <li>Japanese have</li> </ul>                 |
| 1305* | <=40   | *           | Heart          | <i>extremely low</i><br><i>incidence</i> of heart |
| 1305* | <=40   | *           | Viral          |                                                   |
| 1305* | <=40   | *           | Cancer         | disease                                           |
| 1305* | <=40   | *           | Cancer         |                                                   |
|       |        | SIGKDD      | 2006 Tutorial, | Condi Detendry<br>August 2006                     |



# L-Diversity Revisited

- L -Diversity: Every group has at least L *well represented* groups
- <u>Note</u>: L-diversity does not protect against adversaries having arbitrary background knowledge.

| Q          | S        |
|------------|----------|
| <b>q</b> * | S        |
| <b>q</b> * | <i>.</i> |
| <b>q</b> * | ×Z       |
| <b>q</b> * | 85       |
| <b>q</b> * | 84       |

(B) ---

(B) ---

• <u>But</u>: L-diversity increases the bar.

### L-Diversity: Summary

- Defends against background knowledge attacks and homogeneity attacks
  - L-Diversity ensures diversity
  - Gives guarantees against "unknown" background knowledge

SIGKDD 2006 Tutorial, August 2006

- Can model don't care values ("person is healthy")
- Guarantee understood by a lay person
- "At least L different values"
- Permits efficient sanitization algorithms
  - Bayes-optimal definition is not monotone
- L-Diversity and (c,k)-recursive L-Diversity are monotone
  Experiments show that little utility is lost compared to k-
- Experiments show that little utility is lost compared to kanonymity



[Wong, Li, Fu, and Wang; KDD 2006] Defends against homogeneity attacks

- Dataset is α-deassociative for a value s: Relative frequency of s within its group is <= α.</li>
- ( $\alpha$ ,k)-anonymity: Dataset is k-anonymous and  $\alpha$ -deassociative for all values in the domain of a sensitive attribute

SIGKDD 2006 Tutorial, August 2006

🛞 canal

(B) c...

(B) ---

### What About Other Knowledge?

• If Carol and David are both sick and if Carol has the flu, then David also has the flu:  $t_{Carol}[Disease] = Influenza \rightarrow t_{David}[Disease] = Influenza$ 

- Other types of knowledge?
- Language for background knowledge?
- Complexity, guarding against worst-case disclosure?

SIGKDD 2006 Tutorial, August 2006

### The Curse of Dimensionality [A05]

[Aggarwal; VLDB 2005]

- Curse of dimensionality
- Formal analysis that shows with increasing dimensionality all information in the data is lost in order to achieve k-anonymity



- M(S): Maximum Euclidean distance between any pair of points in S
- M(D): Maximum Euclidean distance between any pair of points in whole database S
- Relative condensation loss L(S) through k-anonymization L(S) = M(S)/M(D)
- <u>Theorem [A05]</u>: For any set S of points to be kanonymous, the relative condensation loss goes to 1 with increasing dimensionality:

 $\lim_{d\to\infty} E[M(S)/M(D)] = 1$ SIGKDD 2006 Tutorial, August 2006

Condit

(B) com

(B) com

### Protection Against An Adversary

[Aggarwal, Pei, and Zhang; KDD 2006]

• Problem: Any attribute might be sensitive; need to defend against inference attacks based on rules learned from the data

• Example: [Type = Manager and DEP = Toy] → Salary > 100k; Confidence of rule: 100% Simple suppression of private values insufficient.

• Approach: Make strong rules weaker

SIGKDD 2006 Tutorial, August 2006

### **Open Problems**

- Tradeoff of utility versus privacy
   See Kifer et al, SIGMOD 2006, Levefre et al, KDD 2006, Xu et al., KDD 2006
- Re-publication
- Theory of learning from summaries
- Multi-round protocols
- Formalization of classes of background knowledge
- Location privacy



### Thanks

Rakesh Agrawal, Chris Clifton, Wenliang Du, Cynthia Dwork, Alexandre Evfimievski, Ashwin Machanavajjhala, Daniel Kifer, Lucja Kot, Kristen Lefevre, David Martin, Kobbi Nissim, Muthuramakrishnan Venkitasubramaniam, Ramakrishnan Srikant, Walker White

For an annotated list of references for all the topics see (soon :-) <u>http://www.cs.cornell.edu/database/privacy</u>

SIGKDD 2006 Tutorial, August 2006

(B) c.....

Questions? johannes@cs.cornell.edu.