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Chapter 1

Introduction and

background material

1.1 Introduction

I would probably never have worked on finite Markov chains if I had not met
Persi Diaconis. These notes are based on our joint work and owe a lot to his
broad knowledge of the subject although the presentation of the material would
have been quite different if he had given these lectures.

The aim of these notes is to show how functional analysis techniques and ge-
ometric ideas can be helpful in studying finite Markov chains from a quantitative
point of view.

A Markov chain will be viewed as a Markov operator K acting on functions
defined on the state space. The action of K on the spaces ℓp(π) where π is the
stationary measure of K will be used as an important tool. In particular, the
Hilbert space ℓ2(π) and the Dirichlet form

E(f, f) =
1

2

∑

x,y

|f(x) − f(y)|2K(x, y)π(x)

associated to K will play crucial roles. Functional inequalities such as Poincaré
inequalities, Sobolev and Nash inequalities, or Logarithmic Sobolev inequalities
will be used to study the behavior of the chain.

There is a natural graph structure associated to any finite Markov chain
K. The geometry of this graph and the combinatorics of paths enter the game
as tools to prove functional inequalities such as Poincaré or Nash inequalities
and also to study the behavior of different chains through comparison of their
Dirichlet forms.

The potential reader should be aware that these notes contain no probabilistic
argument. Coupling and strong stationary times are two powerful techniques
that have also been used to study Markov chains. They form a set of techniques
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6 CHAPTER 1. INTRODUCTION AND BACKGROUND MATERIAL

that are very different in spirit from the one presented here. See, e.g., [1, 19].
Diaconis’ book [17] contains a chapter on these techniques. David Aldous and
Jim Fill are writing a book on finite Markov chains [3] that contains many
wonderful things.

The tools and ideas presented in these notes have emerged recently as useful
techniques to obtain quantitative convergence results for complex finite Markov
chains. I have tried to illustrate these techniques by natural, simple but non
trivial examples. More complex (and more interesting) examples require too
much additional specific material to be treated in these notes. Here are a few
references containing compelling examples:

– For eigenvalue estimates using path techniques, see [35, 41, 53, 72].
– For comparison techniques, see [23, 24, 30]
– For other geometric techniques, see [21, 38, 39, 43, 60].

Acknowledgements: Many thanks to Michel Benaim, Sergei Bobkov, Persi
Diaconis, Susan Holmes, Michel Ledoux, Pascal Lezaud and Laurent Miclo for
their help. Thanks also to David Aldous, Jim Fill, Mark Jerrum, Alistair Sinclair
for useful discussions and comments over the years.

1.1.1 My own introduction to finite Markov chains

Finite Markov chains provide nice exercises in linear algebra and elementary
probability theory. For instance, they can serve to illustrate diagonalization
or triangularization in linear algebra and the notion of conditional probability
or stopping times in probability. That is often how the subject is known to
professional mathematicians.

The ultimate results then appear to be the classification of the states and,
in the ergodic case, the existence of an invariant measure and the convergence
of the chain towards its invariant measure at an exponentiel rate (the Perron-
Frobenius theorem). Indeed, this set of results describes well the asymptotic
behavior of the chain.

I used to think that way, until I heard Persi Diaconis give a couple of talks
on card shuffling and other examples.

How many times do you have to shuffle a deck of cards so that the
deck is well mixed?

The fact that shuffling many, many times does mix (the Perron-Frobenius The-
orem) is reassuring but does not at all answer the question above.

Around the same time I started to read a paper by David Aldous [1] on the
subject because a friend of mine, a student at MIT, was asking me questions
about it. I was working on analysis on Lie groups and random walk on finitely
generated, infinite group under the guidance of Nicolas Varopoulos. I had the
vague feeling that the techniques that Varopolous had taught me could also be
applied to random walks on finite groups. Of course, I had trouble deciding
whether this feeling was correct or not because, on a finite set, everything is
always true, any functional inequality is satisfied with appropriate constants.
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Consider an infinite group G, generated by a finite symmetric set S. The
associated random walk proceeds by picking an element s in S at random and
move from the current state x to xs. An important nontrivial result in random
walk theory is that the transient/recurrent behavior of these walks depends only
onG and not on the choosen generating set S. The proof proceeds by comparison
of Dirichlet forms. The Dirichlet form associated to S is

ES(f, f) =
1

2|S|
∑

g∈G,h∈S
|f(g) − f(gh)|2.

If S and T are two generating sets, one easily shows that there are constants
a,A > 0 such that

aES ≤ ET ≤ AES .
To prove these inequalities one writes the elements of S as finite products of
elements of T and vice versa. They can be used to show that the behavior of
finitely generated symmetric random walks on G, in many respects, depends
only on G, not on the generating set.

I felt that this should have a meaning on finite groups too although clearly,
on a finite group, different generating finite sets may produce different behaviors.

I went to see Persi Diaconis and we had the following conversation:

L: Do you have an example of finite group on which there are many different
walks of interest?
P: Yes, the symmetric group Sn!
L: Is there a walk that you really know well?
P: Yes there is. I know a lot about random transpositions.
L: Now, we need another walk that you do not know as well as you wish.
P: Take the generators τ = (1, 2) and c±1 = (1, . . . , n)±1.
L& P: Lets try it. Any transposition can be written as a product of τ and c±1 of
length at most 10n. Each of τ, c, c−1 is used at most 10n times to write a given
transposition. Hence, (after some computations) we get

ET ≤ 100n2 ES

where ET is the Dirichlet form for random transpositions and S = {τ, c, c−1}.
What can we do with this? Well, the first nontrivial eigenvalue of random trans-
positions is 1− 2/n by Fourier analysis. This yields a bound of order 1− 50/n3

for the walk based on the generating set S.
L: I have no idea whether this is good or not.
P: Well, I do not know how to get this result any other way (as we later realized
1− c/n3 is the right order of magnitude for the first nontrivial eigenvalue of the
walk based on S).
L: Do you have any other example? ....

This took place during the spring of 1991. The conversation is still going on
and these notes are based on it.
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1.1.2 Who cares?

There are many ways in which finite Markov chains appear as interesting or
useful objects. This section presents briefly some of the aspects that I find most
compelling.

Random walks on finite groups. I started working on finite Markov
chains by looking at random walks on finite groups. This is still one of my
favorite aspects of the subject. Given a finite group G and a generating set
S ⊂ G, define a Markov chain as follows. If the current state is g, pick s
in S uniformly at random and move to gs. For instance, take G = Sn and
S = {id} ∪ {(i, j) : 1 ≤ i < j ≤ n}. This yields the “random transpositions”
walk. Which generating sets of Sn are most efficient? Which sets yield random
walks that are slow to converge? How slow can it be? More generally, which
groups carry fast generating sets of small cardinality? How does the behavior of
random walks relate to the algebraic structure of the group? These are some of
the questions that one can ask in this context. These notes do not study finite
random walks on groups in detail except for a few examples. The book [17]
gives an introduction and develops tools from Fourier analysis and probability
theory. See also [42]. The survey paper [27] is devoted to random walks on
finite groups. It contains pointers to the literature and some open questions.
Many examples of walks on the symmetric group are treated by comparison with
random transpositions in [24]. M. Hildebrand [49] studies random transvections
in finite linear groups by Fourier analysis. The recent paper of D. Gluck [45]
contains results for some classical finite groups that are based on the classification
of simple finite groups. Walks on finite nilpotent groups are studied in [25, 26]
and in [74, 75, 76].

Markov Chain Monte Carlo. Markov chain Monte Carlo algorithms use
a Markov chain to draw from a given distribution π on a state space X or
to approximate π and compute quantities such as π(f) for certain functions
f . The Metropolis algorithm and its variants provide ways of constructing
Markov chains which have the desired distribution π as stationary measure. For
instance let Λ be a 100 by 100 square grid, X = {x : Λ → {±1}} and

π(x) = z(c)−1 exp



c


 ∑

i,j:i∼j
xixj + h

∑

i

xi







where z(c) is the unknown normalizing constant. This is the Gibbs measure of a
finite two-dimentional Ising model with inverse temperature c > 0 and external
field strength h. In this case the Metropolis chain proceed as follows. Pick a site
i ∈ Λ at random and propose the move x → xi where xi is obtained from x by
changing x(i) to −x(i). If π(xi)/π(x) ≥ 1 accept this move. If not, flip a coin
with probability of heads π(xi)/π(x). If the coin comes up heads, move to xi.
If the coins comes up tails, stay at x. It is not difficult to show that this chain
has stationary measure π as desired. It can then be used (in principle) to draw
from π (i.e., to produce typical configurations), or to estimate the normalizing
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constant z(c). Observe that running this chain implies computing π(xi)/π(x).
This is reasonable because the unknown normalizing constant disappears in this
ratio and the computation only involves looking at neighbors of the site i.

Application of the Metropolis algorithm are widespread. Diaconis recom-
mends looking at papers in the Journal of the Royal Statistical Society, Series
B, 55(3), (1993) for examples and pointers to the literature. Clearly, to validate
(from a theoretical point of view) the use of this type of algorithm one needs
to be able to answer the question: how many steps are sufficient (necessary) for
the chain to yield a good approximation of π? These chains and algorithms are
often used without any theoretical knowledge of how long they should be run.
Instead, the user most often relies on experimental knowledge, hoping for the
best.

Let us emphasize here the difficulties that one encounters in trying to produce
theoretical results that bear on applications. In order to be directly relevant to
applied work, theoretical results concerning finite Markov chains must not only
be quantitative but they must yield bounds that are close to be sharp. If the
bounds are not sharp enough, the potential user is likely to disregard them as
unreasonably conservative (and too expensive in running time). It turns out that
many finite Markov chains are very effective (i.e., are fast to reach stationarity)
for reasons that seem to defy naive analysis. A good example is given by the
Swendsen-Wang algorithm which is a popular sampling procedure for Ising con-
figuration according to the Gibbs distribution [77]. This algorithm appears to
work extremely well but there are no quantitative theoretical results to support
this experimental finding. A better understood example of this phenomenon is
given by random transpositions (and other walks) on the symmetric group. In
this case, a precise analysis can be obtained through the well developed repre-
sentation theory of the symmetric group. See [17].

Theoretical Computer Science. Much recent progress in quantitative
finite Markov chain theory is due to the Computer Science community. I refer
the reader to [54, 56, 71, 72] and also [31] for pointers to this literature. Computer
scientists are interested in classifying various combinatorial tasks according to
their complexity. For instance, given a bipartite connected graph on 2n vertices
with vertex set O ∪ I, #O = #I = n, and edges going from I to O, they ask
whether or not there exists a deterministic algorithm in polynomial time in n
for the following tasks:

(1) decide whether there exists a perfect matching in this graph

(2) count how many perfect matchings there are.

A perfect matching is a set of n edges such that each vertex appears once. It
turn out that the answer is yes for (1) and most probably no for (2) in a precise
sense, that is, (2) is an example of a # P-complete problem. See e.g., [72].

Using previous work of Broder, Mark Jerrum and Alistair Sinclair were able
to produce a stochastic algorithm which approximate the number of matchings
in polynomial time (for a large class of graphs). The main step of their proof
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consists in studying a finite Markov chain on perfect and near perfect matchings.
They need to show that this chain converges to stationarity in polynomial time.
They introduce paths and their combinatorics as a tool to solve this problem.
See [54, 72]. This technique will be discussed in detail in these notes.

Computer scientists have a host of problems of this type, including the cele-
brated problem of approximating the volume of a convex set in high dimension.
See [38, 39, 56, 60].

To conclude this section I would like to emphasize that although the present
notes only contain theoretical results these results are motivated by the question
obviously relevant to applied works:

How many steps are needed for a given finite Markov chain to be
close to equilibrium?

1.1.3 A simple open problem

I would like to finish this introduction with a simple example of a family of
Markov chains for which the asymptotic theory is trivial but satisfactory quan-
titative results are still lacking. This example was pointed out to me by M.
Jerrum.

Start with the hypercube X = {0, 1}n endowed with its natural graph struc-
ture where x and y are neighbors if and only if they differ at exactly one co-
ordinate, that is, |x − y| =

∑ |xi − yi| = 1. The simple random walk on this
graph can be analysed by commutative Fourier analysis on the group {0, 1}n
(or otherwise). The corresponding Markov operator has eigenvalues 1 − 2j/n,

j = 0, 1, . . . , n, each with multiplicity
(
n
j

)
. It can be shown that this walk

reaches approximate equilibrium after 1
4n log n many steps in a precise sense.

Now, fix a sequence a = (ai)
n
1 of non-negative numbers and b > 0. Consider

X (a, b) =
{
x ∈ {0, 1}n :

∑
aixi ≤ b

}
.

This is the hypercube chopped by a hyperplane. Consider the chain K = Ka,b

on this set defined by K(x, y) = 1/n if |x − y| = 1, K(x, y) = 0 if |x − y| > 1
and K(x, x) = 1 − n(x)/n where n(x) = na,b(x) is the number of y in X (a, b)
such that |x − y| = 1. This chain has the uniform distribution on X (a, b) as
stationary measure.

At this writing it is an open problem to prove that this chain is close to
stationarity after nO(1) many steps, uniformly over all choices of a, b. A partial
result when the set X (a, b) is large enough will be described in these notes. See
also [38].

1.2 The Perron-Frobenius Theorem

One possible approach for studying finite Markov chains is to reduce everything
to manipulations of finite-dimensional matrices. Kemeny and Snell [57] is a
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useful reference written in this spirit. From this point of view, the most basic
result concerning the asymptotic behavior of finite Markov chains is a theorem
in linear algebra, namely the celebrated Perron-Frobenius theorem.

1.2.1 Two proofs of the Perron-Frobenius theorem

A stochastic matrix is a square matrix with nonnegative entries whose rows all
sum to 1.

Theorem 1.2.1 Let M be an n-dimensional stochastic matrix. Assume that
there exists k such that Mk has all its entries positive. Then there exists a
row vector m = (mj)

n
1 with positive entries summing to 1 such that for each

1 ≤ i ≤ n,
lim
ℓ→∞

M ℓ
i,j = mj . (1.2.1)

Furthermore, m = (mi)
n
1 is the unique row vector such that

∑n
1 mi = 1 and

mM = m.

We start with the following Lemma.

Lemma 1.2.2 Let M be an n-dimensional stochastic matrix. Assume that for
each pair (i, j), 1 ≤ i, j ≤ n there exists k = k(i, j) such that Mk

i,j > 0. Then
there exists a unique row vector m = (mj)

n
1 with positive entries summing to

1 such that mM = m. Furthermore, 1 is a simple root of the characteristic
polynomial of M .

Proof: By hypothesis, the column vector 1 with all entries equal to 1 satisfies
M1 = 1. By linear algebra, the transpose M t of M also has 1 as an eigenvalue,
i.e., there exists a row vector v such that vM = v. We claim that |v| also satisfies
|v|M = |v|. Indeed, we have

∑
i |vi|Mi,j ≥ |vj |. If |v|M 6= |v|, there exists j0

such that
∑
i |vi|Mi,j0 > |vj0 |. Hence,

∑
i |vi| =

∑
j

∑
i |vi|Mi,j >

∑
j |vj |, a

contradiction. Set mj = vj/(
∑
i |vi|). The weak irreducibility hypothesis in the

lemma suffices to insure that there exists ℓ such that A = (I +M)ℓ has all its
entries positive. Now, mA = 2ℓm implies that m has positive entries.

Let u be such that uM = u. Since |u| is also an eigenvector its follows that
the vector u+ with entries u+

i = max{ui, 0} is either trivial or an eigenvector.
Hence, u+ is either trivial or equal to u (because it must have positive entries).
We thus obtain that each vector u 6= 0 satisfying uM = u has entries that are
either all positive or all negative. Now, if m,m′ are two normalized eigenvectors
with positive entries then m −m′ is either trivial or an eigenvector. If m −m′

is not trivial its entries must change sign, a contradiction. So, in fact, m = m′.
To see that 1 has geometric multiplicity one, let V be the space of column

vectors. The subspace V0 = {v :
∑
i vi = 0} is stable under M : MV0 ⊂ V0 and

V = R1 ⊕ V0. So either M − I is invertible on V0 or there is a 0 6= v ∈ V0

such that Mv = v. The second possibility must be ruled out because we have
shown that the entries of such a v would have constant sign. This ends the proof
of Lemma 1.2.2. We now complete the proof of Theorem 1.2.1 in two different
ways.



12 CHAPTER 1. INTRODUCTION AND BACKGROUND MATERIAL

Proof (1) of Theorem 1.2.1: Using the strong irreducibility hypothesis of
the theorem, let k be such that ∀ i, j Mk

i,j > 0. Let m = (mi)
n
1 be the row

vector constructed above and set M∞
i,j = mj so that M∞ is the matrix with all

rows equal to m. Observe that

MM∞ = M∞M = M∞ (1.2.2)

and that Mk
i,j ≥ cM∞

i,j with c = mini,j{Mk
i,j/M

∞
i,j} > 0. Consider the matrix

N =
1

1 − c

(
Mk − cM∞)

with the convention that N = 0 if c = 1 (in which case we must indeed have
Mk = M∞). If 0 < c < 1, N is a stochastic matrix and NM∞ = M∞N = M∞.
In all cases, the entries of (N−M∞)ℓ = N ℓ−M∞ are bounded by 1, in absolute
value, for all ℓ = 1, 2, . . .. Furthermore

Mk −M∞ = (1 − c)(N −M∞)

Mkℓ −M∞ = (Mk −M∞)ℓ = (1 − c)ℓ(N −M∞)ℓ.

Thus
|Mkℓ

i,j −M∞
i,j | ≤ (1 − c)ℓ.

Consider the norm ‖A‖∞ = maxi,j |Ai,j | on matrices. The function

ℓ→ ‖M ℓ −M∞‖∞

is nonincreasing because M ℓ+1 −M∞ = M(M ℓ −M∞) implies

(M ℓ+1 −M∞)i,j =
∑

s

Mi,s(M
ℓ −M∞)s,j

≤
(
∑

s

Mi,s

)
‖M ℓ −M∞‖∞ = ‖M ℓ −M∞‖∞.

Hence,
max
i,j

{
|M ℓ

i,j −mj |
}
≤ (1 − c)⌊ℓ/k⌋.

In particular limℓ→∞M ℓ
i,j = mj . This argument is pushed further in Section

1.2.3 below.

Proof (2) of Theorem 1.2.1: For any square matrix let

ρ(A) = max{|λ| : λ an eigenvalue of A}.

Observe that any norm ‖ · ‖ on matrices that is submultiplicative (i.e., ‖AB‖ ≤
‖A‖‖B‖) must satisfy ρ(A) ≤ ‖A‖.

Lemma 1.2.3 For any square matrix A and any ǫ > 0 there exists a submulti-
plicative matrix norm ‖ · ‖ such that ‖A‖ ≤ ρ(A) + ǫ.
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Proof: Let U be a unitary matrix such that A′ = UAU∗ with A′ upper-
triangular. Let D = D(t), t > 0, be the diagonal matrix with Di,i = ti. Then
A′′ = DA′D−1 is upper-triangular with A′′

i,j = t−(j−i)A′
i,j , j ≥ i. Note that, by

construction, the diagonal entries are the eigenvalues of A. Consider the matrix
norm (induced by the vector norm ‖v‖1 =

∑
|vi|)

‖B‖1 = max
j

∑

i

|Bi,j |.

Then ‖A′′‖1 = ρ(A) + O(t−1). Pick t > 0 large enough so that ‖A′′‖1 ≤ ρ + ǫ.
For U,D fixed as above, define a matrix norm by setting, for any matrix B,

‖B‖ = ‖DUBU∗D−1‖1 = ‖(UD)B(DU)−1)‖1.

This norm satisfies the conclusion of the lemma (observe that it depends very
much on A and ǫ).

Lemma 1.2.4 We have limℓ→∞ maxi,j A
ℓ
i,j = 0 if and only if ρ(A) < 1.

For each ǫ > 0, the submultiplicative norm of Lemma 1.2.3 satisfies

‖A‖ ≤ ρ(A) + ǫ.

If ρ(A) < 1, then we can pick ǫ > 0 so that ‖A‖ < 1. Then limℓ→∞ ‖Aℓ‖ ≤
limℓ→∞ ‖A‖k = 0. The desired conclusion follows from the fact that all norms
on a finite dimensional vector space are equivalent. Conversely, if

lim
ℓ→∞

(
max
i,j

Aℓi,j

)
= 0

then limℓ→∞ ‖Aℓ‖1 = 0. Since ‖ · ‖1 is multiplicative, ρ(A) ≤ ‖Aℓ‖1/ℓ
1 < 1 for ℓ

large enough.
Let us pause here to see how the above argument translates in quantitative

terms. Let ‖A‖∞ = maxi,j |Ai,j | and |||A|||2 =
∑
i,j |Ai,j |2. We want to bound

‖Aℓ‖∞ in terms of the norm ‖Aℓ‖ of Lemma 1.2.3.

Lemma 1.2.5 For any n×n matrix A and any ǫ > 0, we can choose the norm
‖ · ‖ of Lemma 1.2.3 so that

‖Aℓ‖∞ ≤ n1/2(1 + |||A|||/ǫ)n‖Aℓ‖.

Proof: With the notation of the proof of Lemma 1.2.3, we have

|A′
i,j | =

∑

s,t

Ui,sAs,tU j,t

≤
(
∑

s,t

|As,t|2
)1/2(∑

s,t

|Ui,s|2|Uj,t|2
)1/2

≤
(
∑

s,t

|As,t|2
)1/2

≤ |||A|||



14 CHAPTER 1. INTRODUCTION AND BACKGROUND MATERIAL

because U is unitary. It follows that

∑

i

|A′′
i,j | ≤ ρ(A) + |||A|||(t− 1)−1.

Hence, for t = 1 + |||A|||/ǫ, we get

‖A‖ = ‖A′′‖1 ≤ ρ(A) + ǫ

as desired. Now, for any ℓ, set B = Aℓ, B′ = (A′)ℓ, B′′ = (A′′)ℓ. Then ‖Aℓ‖ =
‖B′′‖1 and Aℓ = U∗B′U = U∗D−1B′′DU . The matrix B′ = D−1B′′D is upper-
triangular with coefficients B′

i,j = tj−iB′′
i,j for j ≥ i. This yields

‖Aℓ‖∞ ≤



∑

i,j:
i≤j

t2(j−i)|B′′
i,j |2




1/2

≤ n1/2(1 + |||A|||/ǫ)n‖B′′‖1

= n1/2(1 + |||A|||/ǫ)n‖Aℓ‖.

With this material at hand the following lemma suffices to finish the second
proof or the Perron-Frobenius theorem.

Lemma 1.2.6 Let M be a stochastic matrix satisfying the strong irreducibility
condition of Theorem 1.2.1. Let M∞

i,j = mj where m = (mj) is the unique
normalized row vector with positive entries such that mM = m. Then ρ(M −
M∞) < 1.

Proof: Let λ be an eigenvalue of M with left eigenvector v. Assume that
|λ| = 1. Then, again, |v| is a left eigenvector with eigenvalue 1. Let k be such
that Mk > 0. It follows that

|
∑

j

Mk
i,jvj | =

∑

j

Mk
i,j |vj |.

Since Mk
i,j > 0 for all j, this implies that vj = eiθ|vj | for some fixed θ. Hence

λ = 1. Let λ1 = 1 and λi, i = 2, . . . , n be the eigenvalues of M repeated
according to there geometric multiplicities. By Lemma 1.2.2, |λi| < 1 for i =
2, . . . , n. The eigenvalues of M∞ are 1 with eigenspace R1 and 0 with eigenspace
V0 = {v :

∑
i vi = 0}. By (1.2.2) it follows that the eigenvalues of M −M∞ are

0 = λ1 − 1 and λi = λi − 0, i = 2, . . . , n. Hence ρ(M −M∞) < 1.

1.2.2 Comments on the Perron-Frobenius theorem

Each of the two proofs of Theorem 1.2.1 outlined above provides existence of
A > 0 and 0 < ǫ < 1 such that

|M ℓ
i,j −mj | ≤ A(1 − ǫ)ℓ. (1.2.3)
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However, it is rather dishonest to state the conclusion (1.2.1) in this form without
a clear Warning:

the proof does not give a clue on how large A and how small ǫ can be.

Indeed, “Proof (1)” looks like a quantitative proof since it shows that

|M ℓ
i,j −mj | ≤ (1 − c)⌊ℓ/k⌋ (1.2.4)

whenever Mk ≥ cM∞. But, in general, it is hard to find explicit reasonable k
and c such that the condition Mk ≥ cM∞ is satisfied.

Example 1.2.1: Consider the random walk on Z/nZ, n = 2p+1, where, at each
step, we add 1 or substract 1 or do nothing each with probability 1/3. Then M
is an n× n matrix with Mi,j = 1/3 if |i− j| = 0, 1, M1,n = Mn,1 = 1/3, and all
the orther entries equal to zero. The matrix M∞ has all its entries equal to 1/n.
Obviously, Mp ≥ n 3−pM∞, hence |M ℓ

i,j − (1/n)| ≤ 2(1 − n3−p)⌊ℓ/p⌋. This is a
very poor estimate. It is quite typical of what can be obtained by using (1.2.4).

Still, there is an interesting conclusion to be drawn from (1.2.4). Let

k0 = inf{ℓ : M ℓ ≥ (1 − 1/e)M∞}

where the constant c = 1 − 1/e as been chosen for convenience. This k0 can
be interpreted as a measure of how long is takes for the chain to be close to
equilibrium in a crude sense. Then (1.2.4) says that this crude estimate suffices
to obtain the exponential decay with rate 1/k0

|M ℓ
i,j −mj | ≤ 3e−ℓ/k0

“Proof (2)” has the important theoretical advantage of indicating what is
the best exponential rate in (1.2.3). Namely, for any norm ‖ · ‖ on matrices, we
have

lim ‖M ℓ −M∞‖1/ℓ = ρ (1.2.5)

where

ρ = ρ(M −M∞) = max{|λ| : λ 6= 1, λ an eigenvalue of M}.

Comparing with (1.2.4) we discover that Mk ≥ cM∞ implies

ρ ≤ 1

k
log(1 − c).

Of course (1.2.5) shows that, for all ǫ > 0, there exists C(ǫ) such that

|M ℓ
i,j −mj | ≤ C(ǫ) (ρ+ ǫ)ℓ.
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The constant C(ǫ) can be large and is dificult to bound. Since |||M ℓ −M∞||| ≤
2n1/2 (in the notation of the proof of Lemma 1.2.5), Lemma 1.2.5 yields

|M ℓ
i,j −mj | ≤ n1/2

(
1 +

2n1/2

ǫ

)n
(ρ+ ǫ)ℓ. (1.2.6)

This is quantitative, but essentially useless. I am not sure what is the best pos-
sible universal estimate of this sort but I find the next example quite convincing
in showing that “Proof (2)” is not satisfactory from a quantitative point of view.

Example 1.2.2: Let X = {0, 1}n. Define a Markov chain with state space X
as follows. If the current state is x = (x1, . . . , xn) then move to y = (y1, . . . , yn)
where yi = xi+1 for i = 1, . . . , n − 1 and yn = x1 or yn = x1 + 1 (mod 2),
each with equal probability 1/2. It is not hard to verify that this chain is
irreducible. Let M denote the matrix of this chain for some ordering of the
state space. Then the left normalized eigenvector m with eigenvalue 1 is the
constant vector with mi = 2−n. Furthermore, a moment of thought shows that
Mn = M∞. Hence ρ = ρ(M −M∞) = 0. Now, maxi,j |Mn−1

i,j −mj | is of order

2−n. So, in this case, C(ε) of order (2ǫ)−n is certainly needed for the inequality
|M ℓ

i,j −mj | ≤ C(ǫ) (ρ+ ǫ)ℓ to be satisfied for all ℓ.

1.2.3 Further remarks on strong irreducibility

A n-dimensional stochastic matrix M is strongly irreducible if there exists an
integer k such that, for all i, j, Mk

i,j > 0. This is related to what is known as the
Doeblin condition. Say that M satisfies the Doeblin condition if there exist an
integer k, a positive c, and a probability measure q on {1, . . . , n} such that

(D) for all i ∈ {1, . . . , n}, Mk
i,j ≥ cqj .

Proof (1) of Theorem 1.2.1 is based on the fact that strong irreducibility
implies the Doeblin condition (D) with q = m (the stationary measure) and
some k, c > 0. The argument developed in this case yields the following well
known result.

Theorem 1.2.7 If M satisfies (D) for some k, c > 0 and a some probability q
then ∑

j

|M ℓ
i,j −mj | ≤ 2(1 − c)⌊ℓ/k⌋

for all integer ℓ. Here m = (mj)
n
1 is the vector appearing in Lemma 1.2.2, i.e.,

the stationary measure of M .

Proof: Using (1.2.1), observe that (D) implies mj ≥ cqj . Let M∞ be the
matrix with all rows equal to m, let Q be the matrix with all rows equal to q
and set

N =
1

1 − c

(
Mk − cQ

)
, N∞ =

1

1 − c
(M∞ − cQ) .
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These two matrices are stochatic. Furthermore

Mk −M∞ = (1 − c) (N −N∞)

and

Mkℓ −M∞ =
(
Mk −M∞)ℓ

= (1 − c)ℓ (N −N∞)
ℓ
.

Observe that (N −N∞)2 = (N −N∞)N because N∞ has constant columns so
that PN∞ = N∞ for any stochastic matrix P . It follows that (N − N∞)ℓ =
(N − N∞)N ℓ−1. If we set |||A|||1 = maxi

∑
j |Ai,j | for any matrix A and recall

that |||AB|||1 ≤ |||A|||1|||B|||1 we get

|||Mkℓ −M∞|||1 ≤ (1 − c)ℓ|||N −N∞|||1|||N ℓ−1|||1.

Since N is stochastic, we have |||N |||1 = 1. Also |||N −N∞|||1 ≤ 2. Hence

max
i

∑

j

|Mkℓ −M∞| ≤ 2(1 − c)ℓ.

This implies the stated result because ℓ→ |||M ℓ −M∞|||1 is nonincreasing.

1.3 Elementary functional analysis

This section introduces notation and concepts from elementary functional anal-
ysis such as operator norms, interpolation, and duality. This tools turn out to
be extremely useful in manipulating finite Markov chains.

1.3.1 Operator norms

Let A,B be two Banach spaces with norms ‖ · ‖A, ‖ · ‖B . Let K : A → B be a
linear operator. We set

‖K‖A→B = sup
f∈A:

‖f‖A≤1

{‖Kf‖B} = sup
f∈A:f 6=0

{‖Kf‖B
‖f‖A

}
.

If A∗, B∗ are the (topological) duals of A,B, the dual operator K∗ : B∗ → A∗

defined by K∗b∗(a) = b∗(Ka), a ∈ A, satisfies

‖K∗‖B∗→A∗ ≤ ‖K‖A→B .

In particular, if X is a countable set equipped with a positive measure π and
if A = ℓp(π) and B = ℓq(π) with

‖f‖p = ‖f‖ℓp(π) =

(
∑

x∈X
|f(x)|pπ(x)

)1/p

and ‖f‖∞ = sup
x∈X

|f(x)|,
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we write
‖K‖p→q = ‖K‖ℓp(π)→ℓq(π).

Let
〈f, g〉 = 〈f, g〉π =

∑

X
f(x)g(x)π(x)

be the scalar product on ℓ2(π). For 1 ≤ p <∞, this scalar product can be used
to identify ℓp(π)∗ with ℓq(π) where p, q are Hölder conjugate exponents, that is
1/p+ 1/q = 1. Furthermore, for all 1 ≤ p ≤ ∞, ℓq(π) norms ℓp(π). Namely,

‖f‖p = sup
g∈ℓq(π)
‖g‖q≤1

〈f, g〉π.

It follows that for any linear operator K : ℓp(π) → ℓr(π) with 1 ≤ p, r ≤ +∞,

‖K‖p→r = ‖K∗‖s→q

where 1/p+1/q = 1, 1/r+1/s = 1. Assume now that the operator K is defined
by

Kf(x) =
∑

y∈X
K(x, y)f(y)

for any finitely supported function f . Then the norm ‖K‖p→∞ is given by

‖K‖p→∞ = max
x∈X


∑

y∈X
|K(x, y)/π(y)|qπ(y)




1/q

(1.3.1)

where 1/p+ 1/q = 1. In particular,

‖K‖2→∞ = ‖K∗‖1→2 = max
x∈X


∑

y∈X
|K(x, y)/π(y)|2π(y)




1/2

(1.3.2)

and
‖K‖1→∞ = ‖K∗‖1→∞ = max

x,y∈X
{|K(x, y)/π(y)|} . (1.3.3)

For future reference we now recall the Riesz-Thorin interpolation theorem
(complex method). It is a basic tools in modern analysis. See, e.g., Theorem
1.3, page 179 in [73].

Theorem 1.3.1 Fix 1 ≤ pi, qi ≤ ∞, i = 1, 2, with p1 ≤ p2, q1 ≤ q2. Let K
be a linear operator acting on functions by Kf(x) =

∑
yK(x, y)f(y). For any

p such that p1 ≤ p ≤ p2 let θ be such that 1/p = θ/p1 + (1 − θ)/p2 and define
q ∈ [q1, q2] by 1/q = θ/q1 + (1 − θ)/q2. Then

‖K‖p→q ≤ ‖K‖θp1→q1‖K‖1−θ
p2→q2 .
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1.3.2 Hilbert space techniques

For simplicity we assume now that X is finite of cardinality n = |X | and work
on the (n-dimensional) Hilbert space ℓ2(π). An operator K : ℓ2(π) → ℓ2(π) is
self-adjoint if it satisfies

〈Kf, g〉π = 〈f,Kg〉π, i.e., K∗ = K.

Let K(x, y) be the kernel of the operator K. Then K∗ has kernel

K∗(x, y) = π(y)K(y, x)/π(x)

and it follows that K is selfadjoint if and only if

K(x, y) = π(y)K(y, x)/π(x).

Lemma 1.3.2 Assume that K is self-adjoint on ℓ2(π). Then K is diagonal-
izable in an orthonormal basis of ℓ2(π) and has real eigenvalues β0 ≥ β1 . . . ≥
βn−1. For any associated orthonormal basis (ψi)

n−1
0 of eigenfunctions, we have

K(x, y)/π(y) =
∑

i

βiψi(x)ψi(y). (1.3.4)

‖K(x, ·)/π(·)‖2
2 =

∑

i

β2
i |ψi(x)|2. (1.3.5)

∑

x∈X
‖K(x, ·)/π(·)‖2

2π(x) =
∑

i

β2
i . (1.3.6)

Proof: We only prove the set of equalities. Let z → 1x(z) be the function
which is equal to 1 at x and zero everywhere else. Then K(x, y) = K1y(x).

The function 1y has coordinates 〈1y, ψi〉π = ψi(y)π(y) in the orthonormal basis

(ψi)
n−1
0 . Hence K1y(x) = π(y)

∑
i βiψi(x)ψi(y). The second and third results

follow by using the fact that (ψi)
n−1
0 is orthonormal.

We now turn to an important tool known as the Courant-Fischer min-max
theorem. Let E be a (positive) Hermitian form on ℓ2(π). For any vector space
W ⊂ ℓ2(π), set

M(W ) = max
f∈W
f 6=0

{E(f, f)

‖f‖2
2

}
, m(W ) = min

f∈W

{E(f, f)

‖f‖2
2

}
.

Recall from linear algebra that there exists a unique Hermitian matrice A such
that E(f, f) = 〈Af, f〉π and that, by definition, the eigenvalues of E are the
eigenvalues of A. Furthermore, these are real.

Theorem 1.3.3 Let E be a quadratic form on ℓ2(π), with eigenvalues

λ0 ≤ λ1 ≤ . . . ≤ λn−1.

Then
λk = min

W⊂ℓ2(π):
dim(W )≥k+1

M(W ) = max
W⊂ℓ2(π):

dim(W⊥)≤k

m(W ). (1.3.7)
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For a proof, see [51], page 179-180. Clearly, the minimum of M(W ) with
dim(W ) ≥ k + 1 is obtained when W is the linear space spanned by the k + 1
first eigenvectors ψi associated with λi, i = 0, . . . , k. Similarly, the maximum
of m(W ) with dim(W⊥) ≤ k is attained when W is spanned by the ψi’s,
i = k, . . . , n. This result also holds in infinite dimension. It has the follow-
ing corollary.

Theorem 1.3.4 Let E , E ′ be two quadratic forms on different Hilbert spaces H,
H′ of dimension n ≤ n′. Assume that there exists a linear map f → f̃ from H
into H′ such that, for all f ∈ H,

E ′(f̃ , f̃) ≤ AE(f, f) and a‖f‖2
H ≤ ‖f̃‖2

H′ (1.3.8)

for some constants 0 < a,A <∞. Then

a

A
λ′ℓ ≤ λℓ for ℓ = 1, . . . , n− 1. (1.3.9)

Proof: Fix ℓ = 0, 1, . . . , n−1 and let ψi be orthonormal eigenvectors associated
to λi, i = 0, . . . , n− 1. Observe that the second condition in (1.3.8) implies that
f → f̃ is one to one. Let W ⊂ H be the vector space spanned by (ψi)

ℓ−1
0 , and let

W̃ ⊂ H′ be its image under the one to one map f → f̃ . Then W̃ has dimension
ℓ and by (3.7)

λ′ℓ ≤ M(W̃ ) = max
f∈W

{
E ′(f̃ , f̃)

‖f̃‖2
H′

}

≤ max
f∈W

{
AE(f, f)

a‖f‖2
H

}
=
Aλℓ
a
.

1.4 Notation for finite Markov chains

Let X be a finite space of cardinality |X | = n. Let K(x, y) be a Markov kernel
on X with associated Markov operator defined by

Kf(x) =
∑

y∈X
K(x, y)f(y).

That is, we assume that

K(x, y) ≥ 0 and
∑

y

K(x, y) = 1.

The operator Kℓ has a kernel Kℓ(x, y) which satisfies

Kℓ(x, y) =
∑

z∈X
Kℓ−1(x, z)K(z, y).
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Properly speaking, the Markov chain with initial distribution q associated with
K is the sequence of X -valued random variables (Xn)

∞
0 whose law Pq is deter-

mined by

∀ ℓ = 1, 2, . . . , Pq(Xi = xi, 1 ≤ i ≤ ℓ) = q(x0)K(x0, x1) · · ·K(xℓ−1, xℓ).

With this notation the probability measure Kℓ(x, ·) is the law of Xℓ for the
Markov chain started at x:

Px(Xℓ = y) = Kℓ(x, y).

However, this language will almost never be used in these notes.
The continuous time semigroup associated with K is defined by

Htf(x) = e−t(I−K) = e−t
∞∑

0

tiKif

i!
. (1.4.1)

Obviously, it has kernel

Ht(x, y) = e−t
∞∑

0

tiKi(x, y)

i!
.

Observe that this is indeed a semigroup of operators, that is,

Ht+s = HtHs

lim
t→0

Ht = I.

Furthermore, for any f , the function u(t, x) = Htf(x) solves

{
(∂t + (I −K))u(t, x) = 0 on (0,∞) ×X

u(0, x) = f(x).

Set Hx
t (y) = Ht(x, y). Then Hx

t (·) is a probability measure on X which repre-
sents the distribution a time t of the continuous Markov chain (Xt)t>0 associated
with K and started at x. This process can be described as follows. The moves
are those of the discrete time Markov chain with transition kernel K started at
x, but the jumps occur after independent Poison(1) waiting times. Thus, the
probability that there have been exactly i jumps at time t is e−t ti/i! and the
probability to be at y after exactly i jumps at time t is e−t tiKi(x, y)/i!.

The operators K,Ht also acts on measures. If µ is a measure then µK (resp.
µHt) is defined by setting

µK(f) = µ(Kf) (resp. µHt(f) = µ(Htf))

for all functions f . Thus

µK(x) =
∑

y

µ(y)K(y, x).
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Definition 1.4.1 A Markov kernel K on a finite set X is said to be irreducible
if for any x, y there exists j = j(x, y) such that Kj(x, y) > 0.

Assume that K is irreducible and let π be the unique stationary measure
for K, that is, the unique probability measure satisfying πK = π (see Lemma
1.2.2). We will use the notation

π(f) =
∑

x

f(x)π(x) and Varπ(f) =
∑

x

|f(x) − π(f)|2π(x).

We also set
π∗ = min

x∈X
{π(x)}. (1.4.2)

Throughout these notes we will work with the Hilbert space ℓ2(π) with scalar
product

〈f, g〉 =
∑

x∈X
f(x)g(x)π(x),

and with the space ℓp(π), 1 ≤ p ≤ ∞, with norm

‖f‖p =

(
∑

x∈X
|f(x)|pπ(x)

)1/p

, ‖f‖∞ = max
x∈X

{|f(x)|}.

In this context, it is natural and useful to consider the densities of the probability
measures Kℓ

x, H
x
t with respect to π which will be denoted by

kℓx(y) = kℓ(x, y) =
Kℓ(x, y)

π(y)

and

hxt (y) = ht(x, y) =
Hx
t (y)

π(y)
.

Observe that the semigroup property implies that, for all t, s > 0,

ht+s(x, y) =
∑

z

ht(x, z)hs(z, y)π(z).

The operator K (hence also Ht) is a contraction on each ℓp(π) (i.e., ‖Kf‖p ≤
‖f‖p). Indeed, by Jensen’s inequality, |Kf(x)|p ≤ K(|f |p)(x) and thus

‖Kf‖pp ≤
∑

x,y

K(x, y)|f(y)|pπ(x) =
∑

y

|f(y)|pπ(y) = ‖f‖pp.

The adjoint K∗ of K on ℓ2(π) has kernel

K∗(x, y) = π(y)K(y, x)/π(x).

Since π is the stationary measure of K, it follows that K∗ is a Markov operator.
The associated semigroup is H∗

t = e−t(I−K
∗) with kernel

H∗
t (x, y) = π(y)Ht(y, x)/π(x)
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and density
h∗t (x, y) = ht(y, x).

The Markov process associated with H∗
t is the time reversal of the process as-

sociated to Ht.
If a measure µ has density f with respect to π, that is, if µ(x) = f(x)π(x),

then µK (resp. µHt) has density K∗f (resp. H∗
t f) with respect to π. Thus

acting by K (resp. Ht) on a measure is equivalent to acting by K∗ (resp H∗
t ) on

its density with respect to π. In particular, the density ht(x, ·) of the measure
Hx
t with respect to π is H∗

t δx where δx = 1x/π(x). Indeed, the measure 1x has
density δx = 1x/π(x) with respect to π. Hence Hx

t = 1xHt has density

H∗
t δx(y) =

H∗
t (y, x)

π(x)
= h∗t (y, x) = ht(x, y)

with respect to π.
Recall the following classic definition.

Definition 1.4.2 A pair (K,π) where K is Markov kernel and π a positive
probability measure on X is reversible if

π(x)K(x, y) = π(y)K(y, x).

This is sometimes called the detailed balance condition.

If (K,π) is reversible then πK = π. Furthermore, (K,π) is reversible if and only
if K is self-adjoint on ℓ2(π).

1.4.1 Discrete time versus continuous time

These notes are written for continuous time finite Markov chains. The reason
of this choice is that it makes life easier from a technical point of view. This
will allow us hopefully to stay more focussed on the main ideas. This choice
however is not very satisfactory because in some respects (e.g., implementa-
tion of algorithms) discrete time chains are more natural. Furthermore, since
the continuous time chain is obtained as a function of the discrete time chain
through the formula Ht = e−t(I−K) it is often straightforward to transfer in-
formation from discrete time to continuous time whereas the converse can be
more difficult. Thus, let us emphasize that the techniques presented in these
lectures are not confined to continuous time and work well in discrete time.
Treatments of discrete time chains in the spirit of these notes can be found in
[23, 24, 25, 26, 27, 28, 29, 35, 41, 63].

For reversible chains, it is possible to relate precisely the behavior of Ht

to that of Kℓ through eigenvalues and eigenvectors as follows. Assuming that
(K,π) is reversible and |X | = n, let (λi)

n−1
0 be the eigenvalues of I − K in

non-decreasing order and let (ψi)
n−1
0 be an orthonormal basis of ℓ2(π) made of

real eigenfuntions associated to the eigenvalues (λi)
n−1
0 with ψ0 ≡ 1.

Lemma 1.4.3 If (K,π) is reversible, it satisfies
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(1) kℓ(x, y) =
n−1∑

0

(1 − λi)
ℓψi(x)ψi(y), ‖kℓx − 1‖2

2 =
n−1∑

1

(1 − λi)
2ℓ|ψi(x)|2.

(2) ht(x, y) =
n−1∑

0

e−tλiψi(x)ψi(y), ‖hxt − 1‖2
2 =

n−1∑

1

e−2tλi |ψi(x)|2.

This classic result follows from Lemma 1.3.2. The next corollary gives a useful
way of transferring information between discrete and continuous time. It sep-
arates the effects of the largest eigenvalue λn−1 from those of the rest of the
spectrum.

Corollary 1.4.4 Assume that (K,π) is reversible and set β− = max{0,−1 +
λn−1}. Then

(1) ‖hxt − 1‖2
2 ≤ 1

π(x)e
−t + ‖k[t/2]

x − 1‖2
2.

(2) ‖kNx − 1‖2
2 ≤ β2m

−
(
1 + ‖hxℓ − 1‖2

2

)
+ ‖hxN − 1‖2

2 for N = m+ ℓ+ 1.

Proof: For (1), use Lemma 1.4.3,

(1 − λi)
2ℓ = e2ℓ log(1−λi)

and the inequality log(1 − x) ≥ −2x for 0 ≤ x ≤ 1/2. For (2), observe that

k2ℓ+1(x, x) =
n−1∑

0

(1 − λi)
2ℓ+1|ψi(x)|2 ≥ 0.

This shows that

−
∑

i:λi>1

(1 − λi)
2ℓ+1|ψi(x)|2 ≤

∑

i:λi<1

(1 − λi)
2ℓ+1|ψi(x)|2.

Hence ∑

i:λi>1

(1 − λi)
2ℓ+2|ψi(x)|2 ≤

∑

i:λi<1

(1 − λi)
2ℓ|ψi(x)|2.

Now, for those λi that are smaller than 1, we have

(1 − λi)
2ℓ = e2ℓ log(1−λi) ≤ e−2ℓλi

so that ∑

i:λi<1

(1 − λi)
2ℓ|ψi(x)|2 ≤ ‖hxℓ ‖2

2

and ∑

i 6=0,λi<1

(1 − λi)
2ℓ|ψi(x)|2 ≤ ‖hxℓ − 1‖2

2.
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Putting these pieces together, we get for N = m+ ℓ+ 1,

‖kNx − 1‖2
2 =

n−1∑

1

(1 − λi)
2N |ψi(x)|2

=
∑

i:λi>1

(1 − λi)
2N |ψi(x)|2 +

∑

i 6=0:λi<1

(1 − λi)
2N |ψi(x)|2

≤ β2m
−

(
∑

i:λi>1

(1 − λi)
2ℓ+2|ψi(x)|2

)
+

∑

i 6=0:λi<1

(1 − λi)
2N |ψi(x)|2

≤ β2m
− ‖hxℓ ‖2

2 + ‖hxN − 1‖2
2

= β2m
−
(
1 + ‖hxℓ − 1‖2

2

)
+ ‖hxN − 1‖2

2.

Observe that, according to Corrolary 1.4.4, it is useful to have tools to bound
1 − λn−1 away from −1.

Corollary 1.4.4 says that the behavior of a discrete time chain and of its
associated continuous time chain can not be too different in the reversible case.
It is interesting to see that this fails to be satisfied for nonreversible chains.

Example 1.4.1: Consider the chain K on X = Z/mZ with m = n2 an odd
integer and

K(x, y) =

{
1/2 if y = x+ 1
1/2 if y = x+ n

.

On one hand, the discrete time chain takes order m2 ≈ n4 steps to be close to
stationarity. Indeed, there exists an affine bijection from X to X that send 1 to
1 and n to −1. On the other hand, one can show that the associated continuous
time process is close to stationarity after a time of order m = n2. See [25].

Lemma 1.4.3 is often hard to use directly because it involves both eigenvalues
and eigenvectors. To have a similar statement involving only eigenvalues one has
to work with the distance

|||f − g||| =

(
∑

x,y

|f(x, y) − g(x, y)|2π(x)π(y)

)1/2

between functions on X × X .

Lemma 1.4.5 If (K,π) is reversible, it satisfies

|||kℓ − 1|||2 =
n−1∑

1

(1 − λi)
2ℓ and |||ht − 1|||2 =

n−1∑

1

e−2tλi .

It is possible to bound |||kℓ−1||| using only β∗ = max{1−λ1,−1+λn−1} and
the eigenvalues λi such that λi < 1. It is natural to state this result in terms
of the eigenvalues βi = 1 − λi of K. Then β∗ = max{β1, |βn−1|} and λi < 1
corresponds to the condition βi > 0.
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Corollary 1.4.6 Assume that (K,π) is reversible. With the notation introduced
above we have, for N = m+ ℓ+ 1,

|||km − 1|||2 ≤ 2β2ℓ
∗


 ∑

i:0<βi≤1

β2m
i


 .

Proof: We have

∑

X
k2m+1(x, x)π(x) =

n−1∑

0

β2m+1
i ≥ 0.

Hence ∑

βi<0

β2m+2
i ≤

∑

βi>0

β2m
i .

It follows that

|||kN − 1||| =
n−1∑

1

β2m+2ℓ+2
i

≤ β2ℓ
∗

(
n−1∑

0

β2m+2
i

)
≤ 2β2ℓ

∗


 ∑

i:βi>0

β2m
i


 .



Chapter 2

Analytic tools

This chapter uses semigroup techniques to obtain quantitative estimates on the
convergence of continuous time finite Markov chain in terms of various functional
inequalities. The same ideas and techniques apply to discrete time but the details
are somewhat more tedious. See [28, 29, 35, 41, 63, 72].

2.1 Nothing but the spectral gap

2.1.1 The Dirichlet form

Classicaly, the notion of Dirichlet form is introduced in relation with reversible
Markov semigroups. The next definition coincides with the classical notion when
(K,π) is reversible.

Definition 2.1.1 The form

E(f, g) = ℜ(〈(I −K)f, g〉)

is called the Dirichlet form associated with Ht = e−t(I−K)

The notion of Dirichlet form will be one of our main technical tools.

Lemma 2.1.2 The Dirichlet form E satisfies E(f, f) = 〈(I − 1
2 (K +K∗))f, f〉,

E(f, f) =
1

2

∑

x,y

|f(x) − f(y)|2K(x, y)π(x) (2.1.1)

and
∂

∂t
‖Htf‖2

2 = −2 E(Htf,Htf). (2.1.2)

Proof: The first equality follows from 〈Kf, f〉 = 〈f,K∗f〉 = 〈K∗f, f〉. For the
second, observe that E(f, f) = ‖f‖2

2 −ℜ(〈Kf, f〉) and

1

2

∑

x,y

|f(x) − f(y)|2K(x, y)π(x)

27
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=
1

2

∑

x,y

(
|f(x)|2 + |f(y)|2 − 2ℜ(f(x)f(y))

)
K(x, y)π(x)

= ‖f‖2
2 −ℜ(〈Kf, f〉).

The third is calculus. In a sense, (2.1.2) is the definition of E as the Dirichlet
form of the semigroup Ht since

E(f, f) = − ∂t‖Htf‖2
2

∣∣
t=0

= − lim
t→0

1

t
〈(I −Ht)f, f〉.

Lemma 2.1.2 shows that the Dirichlet forms of Ht, H
∗
t and St = e−t(I−R)

whith R = 1
2 (K +K∗) are equal. Let us emphasize that equalities (2.1.1) and

(2.1.2) are crucial in most developments involving Dirichlet forms. Equality
(2.1.1) expresses the Dirichlet form as a sum of positive terms. It will allow
us to estimate E in geometric terms and to compare different Dirichlet forms.
Equality (2.1.2) is the key to translating functional inequalities such as Poincaré
or logarithmic Sobolev inequalities into statements about the behavior of the
semigroup Ht.

2.1.2 The spectral gap

This section introduces the notion of spectral gap and gives bounds on conver-
gence that depend only on the spectral gap and the stationary measure.

Definition 2.1.3 Let K be a Markov kernel with Dirichlet form E. The spectral
gap λ = λ(K) is defined by

λ = min

{ E(f, f)

Varπ(f)
; Varπ(f) 6= 0

}

Observe that λ is not, in general, an eigenvalue of (I−K). If K is self-adjoint on
ℓ2(π) (that is, if (K,π) is reversible) then λ is the smallest non zero eigenvalue
of I − K. In general λ is the smallest non zero eigenvalue of I − 1

2 (K + K∗).
Note also that the Dirichlet forms of K∗ and K satisfy

EK(f, f) = EK∗(f, f).

It follows that λ(K) = λ(K∗). Clearly, we also have

λ = min {E(f, f); ‖f‖2 = 1, π(f) = 0} .

Furthermore, if one wishes, one can impose that f be real in the definition of
λ. Indeed, let λr be the quantity obtained for real f . Then λr ≥ λ and, if
f = u+ iv with u, v real functions, then λrVarπ(f) = λr(Varπ(u) + Varπ(v)) ≤
E(v, v) + E(u, u) = E(f, f). Hence λr ≤ λ and finally λr = λ.

Lemma 2.1.4 Let K be a Markov kernel with spectral gap λ = λ(K). Then the
semigroup Ht = e−t(I−K) satisfies

∀ f ∈ ℓ2(π), ‖Htf − π(f)‖2
2 ≤ e−2λ t Varπ(f).
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Proof: Set u(t) = Varπ(Htf) = ‖Ht(f − π(f))‖2
2 = ‖Htf − π(f)‖2

2. Then

u′(t) = −2 E (Ht(f − π(f)),Ht(f − π(f))) ≤ −2λu(t).

It follows that
u(t) ≤ e−2λ tu(0)

which is the desired inequality because u(0) = Varπ(f).

As a corollary we obtain one of the simplest and most useful quantitative
results in finite Markov chain theory.

Corollary 2.1.5 Let K be a Markov kernel with spectral gap λ = λ(K). Then
the density hxt (·) = Hx

t (·)/π(·) satisfies

‖hxt − 1‖2 ≤
√

1/π(x) e−λ t.

It follows that
|Ht(x, y) − π(y)| ≤

√
π(y)/π(x) e−λ t.

Proof: Let H∗
t be the adjoint of Ht on ℓ2(π) (see Section 2.1.1). This is a

Markov semigroup with spectral gap λ(K∗) = λ(K). Set δx(y) = 1/π(x) if
y = x and δx(y) = 0 otherwise. Then

hxt (y) =
Hx
t (y)

π(y)
= H∗

t δx(y)

and, by Lemma 2.1.4 applied to K∗,

‖H∗
t δx − 1‖2

2 ≤ e−2λ tVarπ(δx).

Hence

‖hxt − 1‖2 ≤
√

1 − π(x)

π(x)
e−λ t ≤ 1√

π(x)
e−λ t.

Of course, the same result holds for H∗
t . Hence

|ht(x, y) − 1| =

∣∣∣∣∣
∑

z

(ht/2(x, z) − 1)(ht/2(z, y) − 1)π(z)

∣∣∣∣∣
≤ ‖hxt/2 − 1‖2‖h∗yt/2 − 1‖2

≤ 1√
π(x)π(y)

e−λ t.

Multiplying by π(y) yields the desired inequality. This ends the proof of Corol-
lary 2.1.5.

Definition 2.1.6 Let ω = ω(K) = min{ℜ(ζ) : ζ 6= 0 an eigenvalue of I −K}.

Let S denote the spectrum of I −K. Since Ht = e−t(I−K), the spectrum of Ht

is {e−tξ : ξ ∈ S}. It follows that the spectral radius of Ht −Eπ in ℓ2(π) is e−tω.
Using (1.2.5) we obtain the following result.
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Theorem 2.1.7 Let K be an irreducible Markov kernel. Then

∀ 1 ≤ p ≤ ∞, lim
t→∞

−1

t
log
(
max
x

‖hxt − 1‖p
)

= ω.

In particular, λ ≤ ω with equality if (K,π) is reversible. Furthermore, if we set

Tp = Tp(K, 1/e) = min
{
t > 0 : max

x
‖hxt − 1‖p ≤ 1/e

}
, (2.1.3)

and define π∗ as in (1.4.2) then, for 1 ≤ p ≤ 2,

1

ω
≤ Tp ≤

1

2λ

(
2 + log

1

π∗

)
,

whereas, for for 2 < p ≤ ∞,

1

ω
≤ Tp ≤

1

λ

(
1 + log

1

π∗

)
.

Example 2.1.1: Let X = {0, . . . , n}. Consider the Kernel K(x, y)) = 1/2
if y = x ± 1, (x, y) = (0, 0) or (n, n), and K(x, y) = 0 otherwise. This is a
symmetric kernel with uniform stationary distribution π ≡ 1/(n + 1). Feller
[40], page 436, gives the eigenvalues and eigenfunctions of K. For I −K, we get
the following:

λ0 = 0, ψ0(x) ≡ 1

λj = 1 − cos
πj

n+ 1
, ψj(x) =

√
2 cos(πj(x+ 1/2)/(n+ 1)) for j = 1, . . . , n.

Let Ht = e−t(I−K) and write (using cos(πx) ≤ 1 − 2x2 for 0 ≤ x ≤ 1)

|ht(x, y) − 1| =

∣∣∣∣∣∣

n∑

j=1

ψj(x)ψj(y)e
−t(1−cos(πj/(n+1)))

∣∣∣∣∣∣

≤ 2
n∑

j=1

e−2tj2/(n+1)2

≤ 2e−2t/(n+1)2
(
1 +

√
(n+ 1)2/2t

)
.

To obtain the last inequality, use

n∑

2

e−2tj2/(n+1)2 ≤
∫ ∞

1

e−2ts2/(n+1)2ds =
n+ 1√

2t

∫ ∞

√
2t

n+1

e−u
2

du

and
2√
π

∫ ∞

z

e−u
2

du =
2e−z

2

√
π

∫ ∞

z

e−(u−z)2−2(u−z)zdu ≤ e−z
2

.
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In particular,

max
x,y

|h2t(x, y) − 1| = max
x

‖hxt − 1‖2
2 ≤ 2e−c for t =

1

4
(n+ 1)2(1 + c)

and T2(K, 1/e) ≤ 3(n+ 1)2/4. Also, ω = λ = 1 − cos π
n+1 ≤ π2/(n+ 1)2. Hence

in this case, the lower bound for T2(K, 1/e) given by Theorem 2.1.6 is of the
right order of magnitude whereas the upper bound

T2 ≤ 1

2λ

(
2 + log

1

π∗

)
≤ 1

4
(n+ 1)2(2 + log(n+ 1))

is off by a factor of log(n+ 1).

Example 2.1.2: Let X = {0, 1}n and K(x, y) = 0 unless |x−y| =
∑
i |xi−yi| =

1 in which case K(x, y) = 1/n. Viewing X as an Abelian group it is not hard to
see that the characters

χy : x→ (−1)y.x, y ∈ {0, 1}n

where x.y =
∑
i xiyi, form an orthonormal basis of ℓ2(π), π ≡ 2−n. Also

Kχy(x) =
∑

z

K(x, z)χy(z)

=

(
1

n

∑

i

(−1)ei.y

)
χy(x) =

n− 2|y|
n

χy(x).

This shows that χy is an eigenfunction of I − K with eigenvalue 2|y|/n where

|y| is the number of 1’s in y. Thus the eigenvalue 2j/n has multiplicity
(
n
j

)

0 ≤ j ≤ n. This information leads to the bound

‖hxt − 1‖2
2 =

n∑

1

(
n

j

)
e−4tj/n

≤
n∑

1

nj

j!
e−4tj/n

≤ ene
−4t/n − 1.

Hence

‖hxt − 1‖2
2 ≤ e1−c for t =

1

4
n (logn + c) , c > 0.

It follows that T2(K, 1/e) ≤ 1
4n(2 + logn). Also, ‖hxt − 1‖2

2 ≥ ne−4t/n hence
T2 = T2(K, 1/e) ≥ 1

4n(1 + logn). In this case, the lower bound

T2 ≥ 1

λ
=

1

ω
=

2

n

is off by a factor of logn whereas the upper bound

T2 ≤ 1

2λ

(
2 + log

1

π∗

)
=
n

(
2 + n).

is off by a factor of n/ log n.
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2.1.3 Chernoff bounds and central limit theorems

It is well established that ergodic Markov chains satisfy large deviation bounds
of Chernoff’s type for

Pq

(
1

t

∫ t

0

f(Xs)ds− π(f) > γ

)

as well as central limit theorems to the effect that
∣∣∣∣Pq

(∫ t

0

f(Xs)ds− tπ(f) ≤ σt1/2γ

)
− Φ(γ)

∣∣∣∣→ 0

where Φ(γ) is the cumulative Gaussian distribution and σ is an appropriate
number depending on f and K (the asymptotic variance).

The classical treatment of these problems leads to results having a strong
asymptotic flavor. Turning these results into quantitative bounds is rather frus-
trating even in the context of finite Markov chains.

Some progress has been made recently in this direction. This short section
presents without any detail two of the main results obtained by Pascal Lezaud
[59] and Brad Mann [61] in their Ph.D. theses respectively at Toulouse and
Harvard universities.

The work of Lezaud clarifies previous results of Gillman [44] and Dinwoodie
[36, 37] on quantitative Chernoff bounds for finite Markov chains. A typical
result is as follows (there are also discrete time versions).

Theorem 2.1.8 Let (K,π) be a finite irreducible Markov chain. Let q denote
the initial distribution and Pq be the law of the associated continuous time process
(Xt)t>0. Then, for all functions f such that π(f) = 0 and ‖f‖∞ ≤ 1,

Pq

(
1

t

∫ t

0

f(Xs)ds > γ

)
≤ ‖q/π‖2 exp

(
−γ

2λt

10

)
.

Concerning the Berrry-Essen central limit theorem, we quote a continuous
time version of one of Brad Mann’s result which has been obtained by Pascal
Lezeaud.

Theorem 2.1.9 Let (K,π) be a finite irreducible reversible Markov chain. Let
q denote the initial distribution and Pq be the law of the associated continuous
time process (Xt)t>0. Then, for t > 0, −∞ < γ < ∞ and for all functions f
such that π(f) = 0 and ‖f‖∞ ≤ 1,

∣∣∣∣Pq

(
1

σ
√
t

∫ t

0

f(Xs)ds ≤ γ

)
− Φ(γ)

∣∣∣∣ ≤
100‖q/π‖2‖f‖2

2

λ2 σ3 t1/2

where

σ2 = lim
t→∞

1

t
Varπ

(∫ t

0

f(Xs)ds

)
.

See [41, 61, 59, 28] for details and examples. There are non-reversible and/or dis-
crete time versions of the last theorem. Mann’s Thesis contains a nice discussion
of the history of the subject and many references.
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2.2 Hypercontractivity

This section introduces the notions of logarithmic Sobolev constant and of hyper-
contractivity and shows how they enter convergence bounds. A very informative
account of the development of hypercontractivity and logarithmic Sobolev in-
equalities can be found in L. Gross survey paper [47]. See also [7, 8, 15, 16, 46].
The paper [29] develops applications of these notions to finite Markov chains.

2.2.1 The log-Sobolev constant

The definition of the logarithmic Sobolev constant α is similar to that of the
spectral gap λ where the variance has been replaced by

L(f) =
∑

x∈X
|f(x)|2 log

( |f(x)|2
‖f‖2

2

)
π(x).

Observe that L(f) is nonnegative. This follows from Jensen’s inequality applied
to the convex function φ(t) = t2 log t2. Furthermore L(f) = 0 if and only if f is
constant.

Definition 2.2.1 Let K be an irreducible Markov chain with stationary measure
π. The logarithmic constant α = α(K) is defined by

α = min

{E(f, f)

L(f)
;L(f) 6= 0

}
.

It follows from the definition that α is the largest constant c such that the
logarithmic Sobolev inequality

cL(f) ≤ E(f, f)

holds for all functions f . Observe that one can restrict f to be real nonnegative
in the definition of α since L(f) = L(|f |) and E(|f |, |f |) ≤ E(f, f).

To get a feel for this notion we prove the following result.

Lemma 2.2.2 For any chain K the log-Sobolev constant α and the spectral gap
λ satisfy 2α ≤ λ.

Proof: We follow [67]. Let g be real and set f = 1 + εg and write, for ε small
enough

|f |2 log |f |2 = 2
(
1 + 2εg + ε2|g|2

)(
εg − ε2|g|2

2
+O(ε3)

)

= 2εg + 3ε2|g|2 +O(ε3)

and

|f |2 log ‖f‖2
2 =

(
1 + 2εg + ε2|g|2

) (
2επ(g) + ε2‖g‖2

2 − 2ε2(π(g))2 +O(ε3)
)

= 2επ(g) + 4ε2gπ(g) + ε2‖g‖2
2 − 2ε2(π(g))2 +O(ε3).
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Thus,

|f |2 log
|f |2
‖f‖2

2

= 2ε(g − π(g)) + ε2
(
3|g|2 − ‖g‖2

2 − 4gπ(g) + 2(π(g))2
)

+O(ǫ3)

and

L(f) = 2ε2
(
‖g‖2 − (π(g))2

)
+O(ε3)

= 2ε2Var(g) +O(ε3).

To finish the proof, observe that E(f, f) = ε2E(g, g), multiply by ε−2, use the
variational characterizations of α and λ, and let ε tend to zero.

It is not completely obvious from the definition that α(K) > 0 for any finite
irreducible Markov chain. The next result, adapted from [65, 66, 67], yields a
proof of this fact.

Theorem 2.2.3 Let K be an irreducible Markov chain with stationary measure
π. Let α be its logarithmic Sobolev constant and λ its spectral gap. Then either
α = λ/2 or there exists a positive non-constant function u which is solution of

2u log u− 2u log ‖u‖2 −
1

α
(I −K)u = 0, (2.2.1)

and such that α = E(u, u)/L(u). In particular α > 0.

Proof: Looking for a minimizer of E(f, f)/L(f), we can restrict ourselves to
non-negative functions satisfying π(f) = 1. Now, either there exists a non-
constant non-negative minimizer (call it u), or the minimum is attained at the
constant function 1 where E(1, 1) = L(1) = 0. In this second case, the proof of
Lemma 2.2.2 shows that we must have α = λ/2 since, for any function g 6≡ 0
satisfying π(g) = 0,

lim
ε→0

E(1 + εg, 1 + εg)

L(1 + εg)
= lim
ε→0

ε2E(g, g)

2ε2Varπ(g)
≥ λ

2
.

Hence, either α = λ/2 or there must exist a non-constant non-negative function
u which minimizes E(f, f)/L(f). It is not hard to show that any minimizer of
E(f, f)/L(f) must satisfy (2.2.1). Finally, if u ≥ 0 is not constant and satisfies
(2.2.1) then u must be positive. Indeed, if it vanishes at x ∈ X then Ku(x) = 0
and u must vanishe at all points y such that K(x, y) > 0. By irreducibility, this
would imply u ≡ 0, a contradiction.

2.2.2 Hypercontractivity, α, and ergodicity

We now recall the main result relating log-Sobolev inequalities to the so-called
hypercontractivity of the semigroup Ht. For a history of this result see Gross’
survey [47]. See also [7, 8, 16, 46]. A proof can also be found in [29].
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Theorem 2.2.4 Let (K,π) be a finite Markov chain with log-Sobolev constant
α.

1. Assume that there exists β > 0 such that ‖Ht‖2→q ≤ 1 for all t > 0 and
2 ≤ q < +∞ satisfying e4βt ≥ q − 1. Then βL(f) ≤ E(f, f) for all f and
thus α ≥ β.

2. Assume that (K,π) is reversible. Then ‖Ht‖2→q ≤ 1 for all t > 0 and all
2 ≤ q < +∞ satisfying e4αt ≥ q − 1.

3. For non-reversible chains, we still have ‖Ht‖2→q ≤ 1 for all t > 0 and all
2 ≤ q < +∞ satisfying e2αt ≥ q − 1.

We will not prove this result but only comment on the different statements.
First let us assume that (K,π) is reversible. The first two statements show that
α can also be characterized as the largest β such that

‖Ht‖2→q ≤ 1 for all t > 0 and all 2 ≤ q < +∞ satisfying e4βt ≥ q − 1. (2.2.2)

Recall that Ht is always a contraction on ℓ2(π) and that, in fact, ‖Ht‖2→2 = 1
for all t > 0. Also, (1.3.2) and (1.3.5) easily show that ‖Ht‖2→∞ > 1 for all
t > 0 and tends to 1 as t tends to infinity. Thus, even in the finite setting, it is
rather surprising that for each 2 < q < ∞ there exists a finite tq > 0 such that
‖Ht‖2→q ≤ 1 for t ≥ tq. The fact that such a tq exists follows from Theorem
2.2.3 and Theorem 2.2.4(2).

Statements 2 and 3 in Theorem 2.2.4 are the keys of the following theorem
which describes how α enters quantitative bounds on convergence to stationarity.

Theorem 2.2.5 Let (K,π) be a finite Markov chain. Then, for ε, θ, σ ≥ 0 and
t = ε+ θ + σ,

‖hxt − 1‖2 ≤





‖hxε‖
2/(1+e4αθ)
2 e−λσ if (K,π) is revesible

‖hxε‖
2/(1+e2αθ)
2 e−λσ in general.

(2.2.3)

In particular,
‖hxt − 1‖2 ≤ e1−c (2.2.4)

for all c ≥ 0 and

t =

{
(4α)−1 log+ log(1/π(x)) + λ−1 c for reversible chains

(2α)−1 log+ log(1/π(x)) + λ−1 c in general

where log+ t = max{0, log t}.

Proof: We treat the general case. The improvement for reversible chains
follows from Theorem 2.2.4(2). For θ > 0, set q(θ) = 1 + e2αθ. The third
statement of Theorem 2.2.4(3) gives ‖Hθ‖2→q(θ) ≤ 1. By duality, it follows
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that ‖H∗
θ ‖q′(θ)→2 ≤ 1 where q′(θ) is the Hölder conjugate of q(θ) defined by

1/q′(θ) + 1/q(θ) = 1. Write

‖hxε+θ+σ − 1‖2 = ‖(H∗
θ+σ − π)hxε‖2 ≤ ‖H∗

θh
x
ε‖2‖H∗

σ − π‖2→2

≤ ‖hxε‖q′(θ)‖H∗
θ ‖q′(θ)→2‖H∗

σ − π‖2→2 = ‖hxε‖
2/q(θ)
2 e−λσ.

Here we have used 1 ≤ q′ ≤ 2 and the Hölder inequality

‖f‖q′ ≤ ‖f‖1−2/q
1 ‖f‖2/q

2

with f = hxε , ‖hxε‖1 = 1 to obtain the last inequality.
Consider the function δx defined by δx(x) = 1/π(x) and δx(y) = 0 for x 6= y

and observe that hx0 = δx, ‖hx0‖2 = ‖δx‖2 ≤ 1/π(x)1/2. Hence, for t = θ + σ,

‖hxt − 1‖2 ≤
(

1

π(x)

)1/(1+e2αθ)

e−λσ.

Assuming π(x) < 1/e and choosing

θ =
1

2α
log log

1

π(x)
, σ =

c

λ

we obtain ‖ht − 1‖2 ≤ e1−c which is the desired inequality. When π(x) ≥ 1/e,
simply use θ = 0.

Corollary 2.2.6 Let (K,π) be a finite Markov chain. Then
∣∣∣∣
Ht(x, y)

π(y)
− 1

∣∣∣∣ = |ht(x, y) − 1| ≤ e2−c (2.2.5)

for all c > 0 and

t =

{
(4α)−1

(
log+ log(1/π(x)) + log+ log(1/π(y))

)
+ λ−1 c (reversible)

(2α)−1
(
log+ log(1/π(x)) + log+ log(1/π(y))

)
+ λ−1 c (general).

Proof: Use Theorem 2.2.5 for both Ht and H∗
t together with

|ht+s(x, y) − 1| ≤ ‖hxt − 1‖2‖h∗ys − 1‖2.

The next result must be compared with Theorem 2.1.7.

Corollary 2.2.7 Let (K,π) be a finite reversible Markov chain. For 1 ≤ p ≤ ∞,
let Tp be defined by (2.1.3). Then, for 1 ≤ p ≤ 2,

1

2α
≤ Tp ≤

1

4α

(
4 + log+ log

1

π∗

)

and for 2 < p ≤ ∞,

1

2α
≤ Tp ≤

1

2α

(
3 + log+ log

1

π∗

)

where π∗ = minx π(x) as in (1.4.2). Similar upper bounds holds in the non-
reversible case (simply multiply the right-hand side by 2).
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This result shows that α is closely related to the quantity we want to bound,
namely the “time to equilbrium” T2 (more generally Tp) of the chain (K,π).
The natural question now is:

can one compute or estimate the constant α?

Unfortunately, the present answer is that it seems to be a very difficult problem
to estimate α. To illustrate this point we now present what, in some sense, is
the only example of finite Markov chain for which α is known explicitely.

Example 2.2.1: Let X = {0, 1} be the two point space. Fix 0 < θ ≤ 1/2.
Consider the Markov kernel K = Kθ given by K(0, 0) = K(1, 0) = θ, K(0, 1) =
K(1, 1) = 1 − θ. The chain Kθ is reversible with respect to πθ where πθ(0) =
(1 − θ), πθ(1) = θ.

Theorem 2.2.8 The log-Sobolev constant of the chain (Kθ, πθ) on X = {0, 1}
is given by

αθ =
1 − 2θ

log[(1 − θ)/θ]

with α1/2 = 1/2.

Proof: The case θ = 1/2 is due to Aline Bonami [10] and is well known since
the work of L. Gross [46]. The case θ < 1/2 has only been worked out recently
in [29] and independently in [48]. The present elegant proof is due to Sergei
Bobkov. He kindly authorized me to include his argument in these notes.

First, linearize the problem by observing that

L(f) = sup
{
〈f2, g〉 : g 6= 0, ‖eg‖1 = 1

}
.

Hence
α = inf {α(g) : g 6= 0, ‖eg‖1 = 1}

with

α(g) = inf

{Eθ(f, f)

〈f2, g〉 : f 6= 0

}

where Eθ is the Dirichlet form Eθ(f, f) = θ(1− θ)|f(0)− f(1)|2. This is valid for
any Markov chain.

We now return to the two point space. Fix g 6= 0 and set g(0) = b, g(1) = a
with θea + (1 − θ)eb = 1. Observe that this implies ab < 0. To find αθ(g) we
can assume f > 0, f(0) =

√
x, f(1) =

√
y = 1 with x > 0. Then

αθ(g) = inf
x>0

{
θ(1 − θ)(

√
x − 1)2

θxa+ (1 − θ)b

}
.

One easily checks that the infimum is attained for x = [(1− θ)b/θa]2. Therefore

αθ(g) =
θ

b
+

1 − θ

a
.
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It follows that

αθ = inf

{
θ

b
+

1 − θ

a
: θea + (1 − θ)eb = 1

}
.

We set
t = ea, s = eb

and

h(t) =
θ

log s
+

1 − θ

log t
with θt+ (1 − θ)s = 1,

so that
αθ = inf {h(t) : t ∈ (0, 1) ∪ (1, 1/θ)} .

By Taylor expansion at t = 1,

h(t) =
1

2
+

2θ − 1

12(1 − θ)
(t− 1) +

θ3 + (1 − θ)3

24(1 − θ)2
(t− 1)2 +O((t− 1)3).

So, we extend h as a continuous function on [0, 1/θ] by setting

h(0) = −θ/ log(1 − θ), h(1) = 1/2, h(1/θ) = −(1 − θ)/ log θ.

Observe that h(1) is not a local minimum if θ 6= 1/2. We have

h′(t) =
θ2

(1 − θ)s[log s]2
− (1 − θ)

t[log t]2
.

This shows that neither h(0) nor h(1/θ) are minima of h since h′(0) = −∞,
h′(1/θ) = +∞.

Let us solve h′(t) = 0 and show that this equation has a unique solution in
(0, 1/θ). The condition h′(t) = 0 is equivalent to (recall that (log s)(log t) < 0)

{
θ
√
t log t = −(1 − θ)

√
s log s

θt+ (1 − θ)s = 1
.

Since θt + (1 − θ)s = 1, we have θ = (1 − s)/(t − s), 1 − θ = (1 − t)/(s − t).
Hence h′(t) = 0 implies s = t = 1 or

√
t log t

1 − t
=

√
s log s

1 − s
.

The function t → v(t) =
√
t log t
1−t satisfies v(0) = v(+∞) = 0, v(1) = −1 and

v(1/t) = v(t). It is decreasing on (0, 1) and increasing on (1,+∞). It follows
that h′(t) = 0 implies that either s = t = 1 or t = 1/s = (1 − θ)/θ (because
θt+(1−θ)s = 1). If θ 6= 1/2 then h′(1) 6= 0, the equation h′(t) = 0 has a unique
solution t = (1 − θ)/θ and

min
t∈(0,1/θ)

h(t) = h((1 − θ)/θ) =
1 − 2θ

log[(1 − θ)/θ]
.
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If θ = 1/2, then h′(1) = 0 and 1 is the only solution of h′(t) = 0 so that
mint∈(0,2) h(t) = h(1) = 1/2 in this case. This proves Theorem 2.2.8.

Example 2.2.2: Using Theorems 2.2.3 and 2.2.8, one obtains the following
result.

Theorem 2.2.9 Let π be a positive probability measure on X . Let K(x, y) =
π(y). Then the log-Sobolev constant of (K,π) is given by

α =
1 − 2π∗

log[(1 − π∗)/π∗]

where π∗ = minX π.

Proof: Theorem 2.2.3 shows that any non trivial minimizer must take only two
values. The desired result then follows from Theorem 2.2.8. See [29] for details.
THeorem 2.2.9 yields a sharp universal lower bound on α in terms of λ.

Corollary 2.2.10 The log-Sobolev constant α and the spectral gap λ of any
finite Markov chain K with stationary measure π satisfy

α ≥ 1 − 2π∗
log[(1 − π∗)/π∗]

λ.

Proof: The variance Varπ(f) is nothing else than the Dirichlet form of the
chain considered in Theorem 2.2.9. Hence

1 − 2π∗
log[(1 − π∗)/π∗]

Lπ(f) ≤ Varπ(f) ≤ 1

λ
EK,π(f, f).

The desired result follows.

2.2.3 Some tools for bounding α from below

The following two results are extremely useful in providing examples of chains
where α can be either computed or bounded from below. Lemma 2.2.11 com-
putes the log-Sobolev constant of products chains. This important result is due
(in greater generality) to I Segal and to W. Faris, see [47]. Lemma 2.2.12 is a
comparison result.

Lemma 2.2.11 Let (Ki, πi), i = 1, . . . , d, be Markov chains on finite sets Xi
with spectral gaps λi and log-Sobolev constants αi. Fix µ = (µi)

d
1 such that

µi > 0 and
∑
µi = 1. Then the product chain (K,π) on X =

∏d
1 Xi with Kernel

Kµ(x, y) = K(x, y)

=
d∑

1

µiδ(x1, y1) . . . δ(xi−1, yy−1)Ki(xi, yi)δ(xi+1, yi+1) . . . δ(xd, yd)
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(where δ(x, y) vanishes for x 6= y and δ(x, x) = 1) and stationary measure

π =
⊗d

1 πi satisfies

λ = min
i
{µiλi} , α = min

i
{µiαi}.

Proof: Let Ei denote the Dirichlet form associated to Ki, then the product
chain K has Dirichlet form

E(f, f) =
d∑

1

µi


 ∑

xj :j 6=i
Ei(f, f)(xi)πi(xi)




where xi is the sequence (x1, . . . , xd) with xi omitted, πi =
⊗

ℓ:ℓ 6=i πℓ and

Ei(f, f)(xi) = Ei(f(x1, . . . , xd), f(x1, . . . , xd)) has the obvious meaning: Ei acts
on the ith coordinate whereas the other coordinates are fixed. It is enough to
prove the Theorem when d = 2. We only prove the statement for α. The
proof for λ is similar. Let f : X1 × X2 → R be a nonnegative function and set

F (x2) =
(∑

x1
f(x1, x2)

2π1(x1)
)1/2

. Write

L(f) =
∑

x1,x2

|f(x1, x2)|2 log
f(x1, x2)

2

‖f‖2
2,π

π(x1, x2)

=
∑

x2

|F (x2)|2 log
F (x2)

2

‖F‖2
2,π2

π2(x2)

+
∑

x1,x2

|f(x1, x2)|2 log
f(x1, x2)

2

F (x2)2
π(x1, x2)

≤ [µ2α2]
−1µ2E2(F, F ) + [µ1α1]

−1
∑

x2

µ1E1(f(·, x2), f(·, x2))π2(x2).

Now, the triangle inequality

|F (x2) − F (y2)| = | ‖f(·, x2)‖2,π1
− ‖f(·, y2)‖2,π1

|
≤ ‖f(·, x2) − f(·, y2)‖2,π1

implies that

E2(F, F ) ≤
∑

x1

E2(f(x1, ·), f(x1, ·))π1(x1).

Hence

L(f) ≤ [µ2α2]
−1
∑

x1

µ2E2(f(x1, ·), f(x1, ·))π1(x1)

+[µ1α1]
−1
∑

x2

µ1E1(f(·, x2), f(·, x2))π2(x2)
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which yields
L(f) ≤ max

i
{1/[µiαi]}E(f, f).

This shows that α ≥ mini[µiαi]. Testing on functions that depend only on one
of the two variables shows that α = mini[µiαi].

Example 2.2.3: Fix 0 < θ < 1. Take each Xi = {0, 1}, µi = 1/d, Ki = Kθ as
in Theorem 2.2.8. We obtain a chain on X = {0, 1}d which proceeds as follows.
If the current state is x, we pick a coordinate, say i, uniformly at random. If
xi = 0 we change it to 1 with probability 1− θ and do nothing with probability
θ. If xi = 1 we change it to 0 with probability θ and do nothing with pobability
1 − θ. According to Lemma 2.2.11, this chain has spectral gap λ = 1/d and
log-Sobolev constant

α =
1 − 2θ

d log[(1 − θ)/θ]
.

Observe that the function F (t) : t → c(1 − θ − t) with c = (θ(1 − θ))−1/2 is an
eigenfunction of Ki (for each i) with eigenvalue 0 = 1−λ satisfying ‖Fi‖2 = 1. It
follows that the eigenvalues of I−K are the numbers j/d each with multiplicity(
d
j

)
. The corresponding orthonormal eigenfunctions are

FI : (x)d1 →
∏

i∈I
Fi(x)

where I ⊂ {1, . . . , d}, Fi(x) = F (xi) and #I = j. The product structure of the
chain K yields

‖hxt − 1‖2
2 = h2t(x, x) − 1 =

d∏

1

(1 + |Fi(x)|2e−2t/d)d − 1.

For instance,

‖h0

t − 1‖2
2 =

(
1 +

1 − θ

θ
e−2t/d

)d
− 1

≤ (1 − θ)d

θ
e−2t/de

(1−θ)d
θ e−2t/d

.

In particular

‖h0

t − 1‖2 ≤ e
1
2−c for t =

d

2
(log[(1 − θ)d/θ] + 2c) , c > 0.

Hence

T2(Kθ, 1/e) ≤
d

2
(3 + log[(1 − θ)d/θ]) , c > 0.

Also, we have

‖h0

t − 1‖2
2 ≥ (1 − θ)d

θ
e−2t/d
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which shows that the upper bound obtained above is sharp and that

T2(K, 1/e) ≥
d

2
(2 + log[(1 − θ)d/θ]) .

It is instructive to compare these precise results with the upper bound which
follows from Theorem 2.2.5. In the present case this theorem yields

‖h0

t − 1‖2 ≤ e1−c for t =
d

2

(
1

2(1 − 2θ)

(
log

1 − θ

θ

)
log d + 2c

)
.

For any fixed θ < 1/2, this is slightly off, but of the right order of magnitude.
For θ = 1/2 this simplifies to

‖h0

t − 1‖2 ≤ e1−c for t =
d

2
(log d + 2c)

which is very close to the sharp result described above. In this case, the upper
bound

T2 = T2(K1/2, 1/e) ≤
1

4α

(
4 + log+ log

1

π∗

)
≤ d

2
(4 + log d)

of Corollary 2.2.7 compares well with the lower bound

T2 ≥ d

2
(2 + log d).

Example 2.2.4: Consider now |x| =
∑d

1 xi, that is, the number of 1’s in
the chain in the preceding example, as random variable taking values in X0 =
{0, . . . , d}. Clearly, this defines a Markov chain on X0 with stationary measure

π0(j) = θj(1 − θ)d−j
(
d

j

)

and kernel

K0(i, j) =





0 if |i− j| > 1
(1 − θ)(1 − i/d) if j = i+ 1

θi/d if j = i− 1
(1 − θ)i/d+ θ(1 − i/d) if i = j.

All the eigenvalues of I − K0 are also eigenvalues of I − K. It follows that
λ0 ≥ 1/d. Furthermore, the function F : i → c0[d(1 − θ) − i] with c0 = (dθ(1 −
θ))−1/2 is an eigenfunction with eigenvalue 1/d and ‖F‖2 = 1. Hence, λ0 = 1/d.
Concerning α0, all we can say is that

α0 ≥ 1 − 2θ

d log[(1 − θ)/θ]
.

When θ = 1/2 this inequality and Lemma 2.2.2 show that α0 = 1/(2d) = λ/2.

The next result allows comparison of the spectral gaps and log-Sobolev con-
stants of two chains defined on different state spaces.
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Lemma 2.2.12 Let (K,π), (K ′, π′) be two Markov chains defined respectively
on the finite sets X and X ′. Assume that there exists a linear map

ℓ2(X , π) → ℓ2(X ′, π′) : f → f̃

and constants A,B, a > 0 such that, for all f ∈ ℓ2(X , π)

E ′(f̃ , f̃) ≤ AE(f, f) and aVarπ(f) ≤ Varπ′(f̃) +BE(f, f)

then
aλ′

A+Bλ′
≤ λ .

Similarly, if

E ′(f̃ , f̃) ≤ AE(f, f) and aLπ(f) ≤ Lπ′(f̃) +BE(f, f),

then
aα′

A+Bα′ ≤ α.

In particular, if X = X ′, E ′ ≤ AE and aπ ≤ π′, then

aλ′

A
≤ λ,

aα′

A
≤ α.

Proof: The two first assertions follow from the variational definitions of λ and
α. For instance, for λ we have

aVarπ(f) ≤ Varπ′(f̃) +BE(f, f)

≤ 1

λ′
E ′(f̃ , f̃) +BE(f, f)

≤
(
A

λ′
+B

)
E(f, f).

The desired inequality follows.
To prove the last assertion, use aπ ≤ π′ and the formula

Varπ(f) = min
c∈R

∑

x

|f(x) − c|2π(x)

to see that aVarπ(f) ≤ Varπ′(f). The inequality between log-Sobolev constants
follows from ξ log ξ − ξ log ζ − ξ + ζ ≥ 0 for all ξ, ζ > 0 and

Lπ(f) =
∑

x

(
|f(x)|2 log |f(x)|2 − |f(x)|2 log ‖f‖2

2 − |f(x)|2 + ‖f‖2
2

)
π(x)

= min
c>0

∑

x

(
|f(x)|2 log |f(x)|2 − |f(x)|2 log c− |f(x)|2 + c

)
π(x).

This useful observation is due to Holley and Stroock [50].
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Example 2.2.5: Let X = {0, 1}n and set |x− y| =
∑
i |xi − yi|. Let τ : X → X

be the map defined by τ(x) = y where yi = xi−1, 1 < i ≤ n, y1 = xn. Consider
the chain

K(x, y) =





1/(n+ 1) if |x− y| = 1
1/(n+ 1) if y = τ(x)

0 oherwise.

It is not hard to check that the uniform distribution π ≡ 2−n is the stationary
measure of K. Observe that K is neither reversible nor an invariant chain on
the group {0, 1}n. We will study this chain by comparison with the classic chain
K ′ whose kernel vanishes if |x− y| 6= 1 and is equal to 1/n if |x− y| = 1. These
two chains have the same stationary measure π ≡ 2−n. Obviously the Dirichlet
forms E ′ and E satisfy

E ′ ≤ n+ 1

n
E(f, f).

Applying Lemma 2.2.12, and using the known values λ′ = 2/n, α′ = 1/n of the
spectral gap and log Sobolev constant of the chain K ′, we get

λ ≥ 2

n+ 1
, α ≥ 1

n+ 1
.

To obtain upper bounds, we use the test function f =
∑
i(xi − 1/2). This has

π(f) = 0. Also

E(f, f) =
n

n+ 1
E ′(f, f) =

n

n+ 1

2

n
Varπ(f).

The first equality follows from the fact that f(τ(x)) = f(x). The second follows
from the fact that f is an eigenvalue of I − K ′ associated with the eigenvalue
2/n (in fact, one can check that f is an eigenfunction of K itself). Hence
λ ≤ 2/(n+ 1). This implies

λ =
2

n+ 1
, α =

1

n+ 1
.

Applying Theorem 2.2.5 we get

‖hxt − 1‖2 ≤ e1−c for t =
n+ 1

4
(2c+ logn) , c > 0.

The test function f used above has ‖f‖∞ = n/2 and ‖f‖2
2 = n/4 and is an

eigenfunction associated with λ. Hence

max
x

‖hxt − 1‖2 = ‖Ht − π‖2→∞ ≥ ‖Htf‖∞
‖f‖2

= n1/2e−2t/(n+1).

This proves the sharpness of our upper bound. A lower bound in ℓ1 can be ob-
tained by observing that the number of 1’s in x, that is |x|, evolves has a Markov
chain on {0, . . . , n} which is essentially the classic Ehrenfest’s urn Markov chain.
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This example generalizes easily as follows. The permutaion τ can be replaced
by any other permutation without affecting the analysis presented above. We
can also pick at random among several permutations of the coordinates. This
will simply change the factor of comparison between E and E ′.

We end this section with a result that bounds α in terms of maxx ‖hxt −1‖2 =
‖Ht − π‖2→∞. See [29] for a proof. Similar results can be found in [8, 16]

Theorem 2.2.13 Assume that (K,π) is reversible. Fix 2 < q ≤ +∞ and as-
sume that tq,Mq satisfy ‖Htq − π‖2→q ≤Mq. Then

α ≥
(1 − 2

q )λ

2(λtq + logMq + q−2
q )

.

In particular, if q = ∞ and t is such that maxx ‖hxt − 1‖2 ≤M , we have

α ≥ λ

2(λt+ logM)
.

Example 2.2.6: Consider the nearest neighbor chainK on {0, . . . , n} with loops
at the ends. Then λ = 1 − cos π

n+1 . At the end of Section 2.1 it is proved that

‖Ht − π‖2
2→∞ = max

x
‖hxt − 1‖2

2 ≤ 2e−4t/(n+1)2
(
1 +

√
(n+ 1)2/4t

)
.

Thus, for t = 1
2 (n + 1)2, ‖Ht − π‖2→∞ ≤ 1. Using this and λ ≥ 2/(n + 1)2 in

Theorem 2.2.13 give

1

2(n+ 1)2
≤ α ≤ 1

2

(
1 − cos

π

n+ 1

)
=

π2

4(n+ 1)2
+O(1/n4).

The exact value of α is not known.

2.3 Nash inequalities

A Nash inequality for the finite Markov chain (K,π) is an inequality of the type

∀ f ∈ ℓ2(X , π), ‖f‖2(1+2/d)
2 ≤ C

(
E(f, f) +

1

T
‖f‖2

2

)
‖f‖4/d

1

where d,C, T are constants depending on K. The size of these constants is of
course crucial in our applications. This inequality implies (in fact, is equivalent
to)

Ht(x, y) ≤ B(d)π(y) (C/t)d/2 for 0 < t ≤ T

where B(d) depends only on d and d, C, T are as above. This is discussed in
detail in this section. Nash inequalities have received considerable attention in
recent years. I personally learned about them from Varopoulos [78]. Their use
is emphasized in [11]. Applications to finite Markov chains are presented in [28],
with many examples. See also [69]
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2.3.1 Nash’s argument for finite Markov chains I

Nash introduced his inequality in [64] to study the decay of the heat kernel
of certain parabolic equations in Euclidean space. His argument only uses the
formula 2.1.2 for the time derivative of u(t) = ‖Htf‖2

2 which reads u′(t) =
−2E(Htf,Ht). This formula shows that any functional inequality between the
ℓ2 norm of g and the Dirichlet form E(g, g) (for all g, thus g = Htf) can be
translated into a differential inequation involving u. Namely, assume that the
Dirichlet form E satisfies the inequality

∀ g, Varπ(g)
1+2/d ≤ CE(g, g)‖g‖4/d

1 .

Then fix f satisfying ‖f‖1 = 1 and set u(t) = ‖Ht(f −π(f))‖2
2 = Varπ(Htf). In

terms of u, the Nash’s inequality above gives

∀ t, u(t)1+2/d ≤ −C
2
u′(t),

since ‖f‖1 = 1 implies ‖Htf‖1 ≤ 1 for all t > 0. Setting v(t) = dC
4 u(t)

−2/d

this differential inequality implies v′(t) ≥ 1. Thus v(t) ≥ t (because v(0) ≥ 0).
Finally,

∀ t > 0, u(t) ≤
(
dC

4t

)d/2
.

Taking the supremum over all functions f with ‖f‖1 = 1 yields

∀ t, ‖Ht − π‖1→2 ≤
(
dC

4t

)d/4
.

The same applies to adjoint H∗
t and thus

∀ t > 0, ‖Ht − π‖2→∞ ≤
(
dC

4t

)d/4
.

Finally, using Ht − π = (Ht/2 − π)(Ht/2 − π), we get

∀ t > 0, ‖Ht − π‖1→∞ ≤
(
dC

2t

)d/2

which is the same as
|ht(x, y) − 1| ≤ (dC/2t)

d/2
.

Theorem 2.3.1 Assume that the finite Markov chain (K,π) satisfies

∀ g ∈ ℓ2(π), Varπ(g)
(1+2/d) ≤ CE(g, g)‖g‖4/d

1 . (2.3.1)

Then

∀ t > 0, ‖hxt − 1‖2 ≤
(
dC

4t

)d/4

and

∀ t > 0, |ht(x, y) − 1| ≤
(
dC

2t

)d/2
.
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Let us discuss what this says. First, the hypothesis 2.3.1 and Jensen’s inequality
imply ∀ g ∈ ℓ2(π), Varπ(g) ≤ CE(g, g). This is a Poincaré inequality and it
shows that λ ≥ 1/C. Thus, the conclusion of Theorem 2.3.1 must be compared
with

∀ t > 0, ‖hxt − 1‖2 ≤ π(x)−1/2e−t/C (2.3.2)

which follows from Corollary 2.1.5 when λ ≥ 1/C. This last inequality looks
better than the conclusion of Theorem 2.3.1 as it gives an exponential rate.
However, Theorem 2.3.1 gives ‖hxt − 1‖2 ≤ 1 for t = dC/4 whereas, for the same
t, the right hand side of (2.3.2) is equal to π(x)−1/2e−d/4. Thus, if d is small
and 1/π(x) large, the conclusion of Theorem 2.3.1 improves up on (2.3.2) at
least for relatively small value of t. Assume for instance that (2.3.1) holds with
C = A/λ where we think of A as a numerical constant. Then, for θ = dA/(4λ),
‖Hθ − π‖2→∞ = maxx ‖hxθ − 1‖2 ≤ 1. Hence, for t = s+ θ = s+ dA/(4λ)

‖hxt − 1‖2 ≤ ‖(Hs − π)(Hθ − π)‖2→∞

≤ ‖Hs − π‖2→2‖Hθ − π‖2→∞

≤ e−λs.

This yields

Corollary 2.3.2 If (K,π) satisfies (2.3.1) with some constants C, d > 0. Then
λ ≥ 1/C and

∀ t > 0, ‖hxt − 1‖2 ≤ min
{

(dC/4t)
d/4

, e−(t− dC
4 )λ
}
.

If (K,π) is reversible, then K is self-adjoint on ℓ2(π) and 1 − λ is the second
largest eigenvalue of K. Consider an eigenfunction ψ for the eigenvalue 1 − λ,
normalized so that max |ψ| = 1. Then,

max
x

‖Hx
t − π‖1 = max

‖f‖∞≤1
‖(Ht − π)f‖∞

≥ ‖(Ht − π)ψ‖∞
= e−tλ.

Hence

Corollary 2.3.3 Assume that (K,π) is a reversible Markov chain. Then

e−λt ≤ max
x

‖Hx
t − π‖1.

Furthermore, if (K,π) satisfies (2.3.1) with C = A/λ then

e−λt ≤ max
x

‖Hx
t − π‖1 ≤ 2 e−λt+

dA
4

for all t > 0.

This illustrates well the strength of Nash inequalities. They produce sharp
results in certain circumstances where the time needed to reach stationarity is
approximatively 1/λ.
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2.3.2 Nash’s argument for finite Markov chains II

We now presents a second version of Nash’s argument for finite Markov chains
which turns out to be often easier to use than Theorem 2.3.1 and Corollary 2.3.2.

Theorem 2.3.4 Assume that the finite Markov chain (K,π) satisfies

∀ g ∈ ℓ2(π), ‖g‖2(1+2/d)
2 ≤ C

{
E(g, g) +

1

T
‖g‖2

2

}
‖g‖4/d

1 . (2.3.3)

Then

∀ t ≤ T, ‖hxt ‖2 ≤ e

(
dC

4t

)d/4

and

∀ t ≤ T, ht(x, y) ≤ e

(
dC

2t

)d/2
.

The idea behind Theorem 2.3.4 is that Nash inequalities are most useful to
capture the behavior of the chain for relatively small time, i.e., time smaller
than T . In contrast with (2.3.1) the Nash inequality (2.3.3) implies no lower
bound on the spectral gap. This is an advantage as it allows (2.3.3) to reflect the
early behavior of the chain without taking into account the asymptotic behavior.
This is well illustrated by two examples that will be treated later in these notes.
Consider the natural chain on a square grid Gn of side length n and the natural
chain on the n-dog Dn obtained by gluing together two copies of Gn at one of
their corners. On one hand the spectral gap of Gn is of order 1/n2 whereas the
spectral gap of Dn is of order 1/[n2 logn] (these facts will be proved later on).
On the other hand, Gn and Dn both satisfy a Nash inequality of type (2.3.3) with
C and T of order n2. That is, the chains on Gn and Dn have similar behaviors
for t less than n2 whereas their asymptotic behavior as t goes to infinity are
different. This is not surprising since the local structure of these two graphs are
the same. For Dn a constant C of order n2 log n is necessary for an inequality
of type (2.3.1) to hold true.

Proof of Theorem 2.3.4: Fix f satisfying ‖f‖1 = 1 and set

u(t) = e−2t/T ‖Htf‖2
2.

Then

u′(t) = −2e−2t/T

(
E(Htf,Htf) +

1

T
‖Htf‖2

2

)
.

Thus, Nash’s argument yields

u(t) ≤
(
dC

4t

)d/2
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which implies

‖Ht‖1→2 ≤ et/T
(
dC

4t

)d/4
.

The announced results follow since

max
x

‖hxt ‖2 = ‖H∗
t ‖1→2 ≤ et/T

(
dC

4t

)d/4

by the same argument applied to H∗
t .

Corollary 2.3.5 Assume that (K,π) satisfies (2.3.3) and has spectral gap λ.
Then for all c ≥ 0 and all 0 < t0 ≤ T ,

‖hxt − 1‖2 ≤ e1−c

and
|h2t(x, y) − 1| ≤ e2−2c

for

t = t0 +
1

λ

(
d

4
log

(
dC

4t0

)
+ c

)
.

Proof: Write t = s+ t0 with t0 ≤ T and

‖hxt − 1‖2 ≤ ‖(Hs − π)Ht0‖2→∞

≤ ‖Hs − π‖2→2‖Ht0‖2→∞

≤ e(dC/4t0)
d/4 e−λs.

The result easily follows.

In practice, a “good” Nash inequality is (2.3.3) with a small value of d and
C ≈ T . Indeed, if (2.3.3) holds with, say d = 4 and C = T , then taking t0 = T
in Corollary 2.3.5 yields

‖hxt − 1‖2 ≤ e1−c for t = T + c/λ.

We now give a simple example that illustrates the strength of a good Nash
inequality.

Example 2.3.1: Consider the Markov chain on X = {−n, . . . , n} with Kernel
K(x, y) = 0 unless |x − y| = 1 or x = y = ±n in which cases K(x, y) = 1/2.
This is an irreducible chain which is reversible with respect to π ≡ (2n + 1)−1.
The Dirichlet form of this chain is given by

E(f, f) =
1

2n+ 1

n−1∑

−n
|f(i+ 1) − f(i)|2.

For any u, v ∈ X , and any function f , we have

|f(v) − f(u)| ≤
∑

i,i+1 between u,v

|f(i+ 1) − f(i)|.
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Hence, if f is not of constant sign,

‖f‖∞ ≤
n−1∑

−n
|f(i+ 1) − f(i)|.

To see this take u to be such that ‖f ||∞ = f(u) and v such that f(v)f(u) ≤ 0
so that |f(u) − f(v)| ≥ |f(u)|. Fix a function g such that π(g > 0) ≤ 1/2 and
π(g < 0) ≤ 1/2 (i.e., 0 is a median of g). Set f = sgn(g)|g|2. Then f changes
sign. Observe also that

|f(i+ 1) − f(i)| = |sgn(g(i+ 1))g(i+ 1)2 − sgn(g(i))g(i)2|
≤ |g(i+ 1) − g(i)|(|g(i+ 1)| + |g(i)|).

Hence

‖f‖∞ ≤
n−1∑

−n
|f(i+ 1) − f(i)|

≤
n−1∑

−n
|g(i+ 1) − g(i)|(|g(i+ 1)| + |g(i)|)

≤
(
n−1∑

−n
|g(i+ 1) − g(i)|2

)1/2(n−1∑

−n
(|g(i+ 1)| + |g(i)|)2

)1/2

≤ 21/2(2n+ 1)E(g, g)1/2‖g‖2.

That is
‖g‖2

∞ ≤ 21/2(2n+ 1)E(g, g)1/2‖g‖2.

It follows that

‖g‖4
2 ≤ ‖g‖2

∞‖g‖2
1

≤ 21/2(2n+ 1)E(g, g)1/2‖g‖2‖g‖1.

Hence for any g with median 0,

‖g‖6
2 ≤ 2(2n+ 1)2E(g, g)‖g‖4

1.

For any f with median c, we can apply the above to g = f − c to get

‖f − c‖6
2 ≤ 2(2n+ 1)2E(f, f)‖f − c‖4

1 ≤ 2(2n+ 1)2E(f, f)‖f‖4
1.

Hence
∀ f, Varπ(f)3 ≤ 2(2n+ 1)2E(f, f)‖f‖4

1.

This is a Nash inequality of type (2.3.1) with C = 2(2n + 1)2 and d = 1. It
implies that

λ ≥ 1

2(2n+ 1)2
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and, by Theorem 2.3.1 and Corollary 2.3.2

∀ t > 0, ‖hxt − 1‖2 ≤
(

(2n+ 1)2

2t

)1/4

and

∀ c > 0, ‖hxt − 1‖2 ≤ e−c with t =
1

2(2n+ 1)2
(4 + c).

The test function f(i) = sgn(i)|i| shows that

λ ≤ 12

(2n+ 1)2

(in fact λ = 1 − cos(π/(2n+ 1))). By Corollary 2.3.3 it follows that

e
− 12 t

(2n+1)2 ≤ max
X

‖hxt − 1‖1 ≤ 2e
− t

2(2n+1)2
+ 1

4 .

This shows that a time of order n2 is necessary and sufficient for approximate
equilibrium. This conclusion must be compare with

‖hxt − 1‖1 ≤
√

2n+ 1 e
− t

2(2n+1)2

which follows by using only the spectral gap estimate λ ≥ 1/(2(2n + 1)2) and
Corollary 2.1.5. This last inequality only shows that a time of order n2 log n is
sufficient for approximate equilibrium.

2.3.3 Nash inequalities and the log-Sobolev constant

Thanks to Theorem 2.2.13 and Nash’s argument it is possible to bound the
log-Sobolev constant α in terms of a Nash inequality.

Theorem 2.3.6 Let (K,π) be a finite reversible Markov chain.

1. Assume that (K,π) satisfies (2.3.1), that is,

∀ g ∈ ℓ2(π), Varπ(g)
(1+2/d) ≤ CE(g, g)‖g‖4/d

1 .

Then the log-Sobolev constant α of the chain is bounded below by

α ≥ 2

dC
.

2. Assume instead that (K,π) satisfies (2.3.3), that is,

∀ g ∈ ℓ2(π), ‖g‖2(1+2/d)
2 ≤ C

{
E(g, g) +

1

T
‖g‖2

2

}
‖g‖4/d

1 ,

and has spectral gap λ. Then the log-Sobolev constant α is bounded below
by

α ≥ λ

2
[
1 + λt0 + d

4 log
(
dC
4t0

)]

for any 0 < t0 ≤ T .
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Proof: For the first statement, observe that Theorem 2.3.1 gives ‖Ht−π‖2→∞ ≤
1 for t = dC/4. Pluging this into Theorem 2.2.13 yields α ≥ 2/(dC), as desired.

For the second inequality use Theorem 2.3.3 with t = t0 ≤ T and Theorem
2.2.13.

Example 2.3.2: Consider the Markov chain of Example 2.3.1 on X = {−n, . . . , n}
with Kernel K(x, y) = 0 unless |x − y| = 1 or x = y = ±n in which cases
K(x, y) = 1/2. We have proved that it satisfies the Nash inequality

∀ f, Varπ(f)3 ≤ 2(2n+ 1)2E(f, f)‖f‖4
1

of type (2.3.1) with C = 2(2n+ 1)2 and d = 1. Hence Theorem 2.3.6 yields

α ≥ 1

(2n+ 1)2
.

2.3.4 A converse to Nash’s argument

Carlen et al. [11] found that there is a converse to Nash’s argument. We now
present a version of their result.

Theorem 2.3.7 Assume that (K,π) is reversible and satisfies

∀ t ≤ T, ‖Ht‖1→2 ≤
(
C

t

)d/4
.

Then

∀ g ∈ ℓ2(π), ‖f‖2(1+2/d)
2 ≤ C ′

(
E(f, f) +

1

2T
‖f‖2

2

)
‖f‖4/d

1

with C ′ = 22(1+2/d)C.

Proof: Fix f with ‖f‖1 = 1 and write, for 0 < t ≤ T ,

‖f‖2
2 = ‖Htf‖2

2 −
∫ t

0

∂s‖Hsf‖2
2ds

= ‖Htf‖2
2 + 2

∫ t

0

E(Hsf,Hsf)ds

≤ (C/t)d/2 + 2tE(f, f).

The inequality uses the hypothesis (which implies ‖Htf‖2 ≤ (C/t)d/4 because
‖f‖1 ≤ 1) and the fact that t → E(Htf,Htf) is nonincreasing, a fact that uses
reversibility. This can be proved by writing

E(Htf,Htf) = ‖(I −K)1/2Htf‖2
2 ≤ ‖(I −K)1/2f‖2

2 = E(f, f).

It follows that

‖f‖2
2 ≤ (C/t)d/2 + 2t

(
E(f, f) +

1

2T
‖f‖2

2

)



2.3. NASH INEQUALITIES 53

for all t > 0. The right-hand side is a minimum for

dCd/2

2
t−(1+d/2) = 2

(
E(f, f) +

1

2T
‖f‖2

2

)

and the minimum is

[
(2/d)1/(1+2/d) + (d/2)1/(1+d/2)

] [
2C

(
E(f, f) +

1

2T
‖f‖2

2

)]1/(1+2/d)

.

This yields

‖f‖2(1+2/d)
2 ≤ B

(
E(f, f) +

1

2T
‖f‖2

2

)

with

B = 2C
[
(2/d)1/(1+2/d) + (d/2)1−1/(1+2/d)

]1+2/d

= 2C(1 + 2/d)(1 + d/2)2/d ≤ 22+2/dC.

2.3.5 Nash inequalities and higher eigenvalues

We have seen that a Poincaré inequality is equivalent to a lower bound on the
spectral gap λ (i.e., the smallest non-zero eigenvalue of I −K). It is interesting
to note that Nash inequalities imply bounds on higher eigenvalues. Compare
with [14].

Let (K,π) be a finite reversible Markov chain. Let 1 = λ0 ≤ λ1 ≤ . . . ≤ λn−1

be the eigenvalues of I −K and

N(s) = NK(s) = #{i ∈ {0, . . . , n− 1} : λi ≤ s}, s ≥ 0,

be the eigenvalue counting function. Thus, N is a step function with N(s) = 1
for 0 ≤ s < λ1 if (K,π) is irreducible. It is easy to relate the function N to the
trace of the semigroup Ht = e−t(I−K). Since (K,π) is reversible, we have

ζ(t) =
∑

x

ht(x, x)π(x) =
∑

x

‖hxt/2‖2
2π(x) =

n−1∑

i=0

e−tλi .

If λi ≤ 1/t then e−tλi ≥ e−1. Hence

N(1/t) ≤ eζ(t).

Now, it is clear that Theorems 2.3.1, 2.3.4 give upper bounds on ζ in terms of
Nash inequalities.

Theorem 2.3.8 Let (K,π) be a finite reversible Markov chain.
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1. Assume that (K,π) satisfies (2.3.1), that is,

∀ g ∈ ℓ2(π), Varπ(g)
(1+2/d) ≤ CE(g, g)‖g‖4/d

1 .

Then the counting function N satisfies

N(s) ≤ 1 + e(dCs/2)d/2

for all s ≥ 0.

2. Assume instead that (K,π) satisfies (2.3.3), that is,

∀ g ∈ ℓ2(π), ‖g‖2(1+2/d)
2 ≤ C

{
E(g, g) +

1

T
‖g‖2

2

}
‖g‖4/d

1 .

Then
N(s) ≤ e3(dCs/2)d/2

for all s ≥ 1/T .

Clearly, if M(s) is a continuous increasing function such that N(s) ≤ M(s),
s ≥ 1/T, then

λi = max{s : N(s) ≤ i} ≥M−1(i+ 1)

for all i > M(1/T ) − 1. Hence, we obtain

Corollary 2.3.9 Let (K,π) be a finite reversible Markov chain. Let 1 = λ0 ≤
λ1 ≤ . . . ≤ λn−1 be the eigenvalues of I −K.

1. Assume that (K,π) satisfies (2.3.1), that is,

∀ g ∈ ℓ2(π), Varπ(g)
(1+2/d) ≤ CE(g, g)‖g‖4/d

1 .

Then

λi ≥
2i2/d

e2/ddC

for all i ∈ 1, . . . , n− 1.

2. Assume instead that (K,π) satisfies (2.3.3), that is,

∀ g ∈ ℓ2(π), ‖g‖2(1+2/d)
2 ≤ C

{
E(g, g) +

1

T
‖g‖2

2

}
‖g‖4/d

1 .

Then

λi ≥
2(i+ 1)2/d

e6/ddC

for all i > e3(dC/(2T ))d/2 − 1.



2.3. NASH INEQUALITIES 55

Example 2.3.3: Assume that (K,π) is reversible, has spectral gap λ, and
satisfies the Nash inequality (2.3.1) with C = A/λ and some d, where we think
of A as a numerical constant (e.g., A = 100) and d as fixed. Then, the corollary
above says that

λi ≥ cλi2/d

for all 0 ≤ i ≤ n− 1 with c−1 = e2/ddA.

Example 2.3.4: For the natural graph structure on X = {−n, . . . , n}, we have
shown in Example 2.3.1 that the Nash inequality

Varπ(f)3 ≤ 2(2n+ 1)2E(f, f)‖f‖4
1

holds. Corollary 2.3.9 gives

λj ≥
(

j

e2(2n+ 1)

)2

.

In this case, all the eigenvalues are known. They are given by

λj = 1 − cos
πj

2n+ 1
, 0 ≤ j ≤ 2n.

This compares well with our lower bound.

Example 2.3.5: For a square grid on X = {0, . . . , n}2, we will show later
(Theorem 3.3.14) that

Varπ(f)2 ≤ 64(n+ 1)2E(f, f)‖f‖2
1.

From this and corollary 2.3.9 we deduce

λi ≥
i

e27(n+ 1)2

for all 0 ≤ i ≤ (n + 1)2 − 1. One can show that this lower bound is of the
right order of magnitude for all i, n. Indeed the eigenvalues of this chain are the
numbers

1 − 1

2

(
cos

πℓ

n+ 1
+ cos

πk

n+ 1

)
, ℓ, k ∈ {0, . . . , n}

which are distributed roughly like

ℓ2 + k2

(n+ 1)2
, ℓ, k ∈ {0, . . . , n}

and we have
#
{
(ℓ, k) ∈ {0, . . . , n}2 : ℓ2 + k2 ≤ j

}
≃ j.
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2.3.6 Nash and Sobolev inequalities

Nash inequalities are closely related to the better known Sobolev inequalities
(for some fixed d > 2)

‖f − π(f)‖2
2d/(d−2) ≤ CE(f, f), (2.3.4)

‖f‖2
2d/(d−2) ≤ C

{
E(f, f) +

1

T
‖f‖2

2

}
. (2.3.5)

Indeed, the Hölder inequality

‖f‖2(1+2/d)
2 ≤ ‖f‖2

2d/(d−2)‖f‖
4/d
1

shows that the Sobolev inequality (2.3.4) (resp. (2.3.5)) implies the Nash in-
equality (2.3.1) (resp. (2.3.3)) with the same constants d, C, T . The converse
is also true. (2.3.1) (resp. (2.3.3)) implies (2.3.4) (resp. (2.3.5)) with the same
d, T and a C that differ only by a numerical multiplicative factor for large d.
See [9].

We now give a complete argument showing that (2.3.1) implies (2.3.4), in
the spirit of [9]. The same type of argument works for (2.3.3)) implies (2.3.5).

For any function f ≥ 0 and any k, we set fk = (f − 2k)+ ∧ 2k where
(t)+ = max{0, t} and t∧s = min{t, s}. Thus, fk has support in {x : f(x) > 2k},
fk(x) = 2k if x ∈ {z : f(z) ≥ 2k+1} and fk = f − 2k on {x : 2k ≤ f ≤ 2k+1}.

Lemma 2.3.10 Let K be a finite Markov chain with stationary measure π.
With the above notation, for any function f ,

∑

k

E(|f |k, |f |k) ≤ 2E(f, f).

Proof: Since E(|f |, |f |) ≤ E(f, f), we can assume that f ≥ 0. We can also
assume that K(x, y)π(x) is symmetric (if not use 1

2 (K(x, y)π(x)+K(y, x)π(y))).
Observe that |fk(x) − fk(y)| ≤ |f(x) − f(y)| for all x, y. Write

E(fk, fk) =
∑

x,y
f(x)>f(y)

(fk(x) − fk(y))
2K(x, y)π(x).

Set
Bk = {x : 2k < f(x) ≤ 2k+1},
B−
k = {x : f(x) ≤ 2k},

B+
k = {x : 2k+1 < f(x)}.

Then

E(fk, fk) =
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22k
∑

x∈B
+
k

y∈B
−
k

K(x, y)π(x) +
∑

x∈Bk,y∈B
−
k+1

f(x)>f(y)

(fk(x) − fk(y))
2K(x, y)π(x)

≤ 22k
∑

x∈B
+
k

y∈B
−
k

K(x, y)π(x) +
∑

x∈Bk,y∈X
f(x)>f(y)

(f(x) − f(y))2K(x, y)π(x)

= A1(k) +A2(k).

We now bound
∑
k A1(k) and

∑
k A2(k) separately.

∑

k

A1(k) =
∑

x,y
f(x)>f(y)

∑

k:f(y)≤2k<f(x)/2

22k.

For x, y fixed, let k0 be the smallest integer such that f(y) ≤ 2k0 and k1 be the
largest integer such that 2k1 < f(x). Then

∑

k:f(y)≤2k<f(x)/2

22k =

k1−1∑

k=k0

4k =
1

3
(4k1 − 4k0) ≤ (f(x) − f(y))2.

The last inequality follows from the elementary inequality

a2 − b2 ≤ 3(a− b)2 if a ≥ 2b ≥ 0.

This shows that ∑

k

A1(k) ≤ E(f, f).

To finish the proof, note that

∑

k

A2(k) =
∑

k

∑

x∈Bk,y∈X
f(x)>f(y)

(f(x) − f(y))2K(x, y)π(x) = E(f, f).

Lemma 2.3.10 is a crucial tool for the proof of the following theorem.

Theorem 2.3.11 Assume that (K,π) satisfies the Nash inequality (2.3.1), that
is,

Varπ(g)
(1+2/d) ≤ CE(g, g)‖g‖4/d

1

for some d > 2 and all functions g. Then

‖g − π(g)‖2
2d/(d−2) ≤ B(d)CE(g, g)

where B(d) = 46+2d/(d−2).

Proof: Fix a function g and let c denote a median of g. Consider the functions
f± = (g − c)± where (t)± = max{0,±t}. By definition of a median, we have

π ({x : f±(x) = 0}) ≥ 1/2.
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For simplicity of notation, we set f = f+ or f−. For each k we define fk =
(f − 2k)+ ∧ 2k as in the proof of Lemma 2.3.10. Applying (2.3.1) to each fk and
setting πk = π(fk), we obtain

[
22(k−1)π(|fk − πk| ≥ 2k−1)

]1+2/d

≤ CE(fk, fk)
[
2kπ(f ≥ 2k)

]4/d
. (2.3.6)

Observe that
π({x : fk(x) = 0}) ≥ 1/2

and that, for any function h ≥ 0 such that π({x : h(x) = 0}) ≥ 1/2 we have

∀ s ≥ 0, ∀ a, π({h ≥ s}) ≤ 2π({|h− a| ≥ s/2}). (2.3.7)

Indeed, if a ≤ s/2 then π({|h − a| ≥ s/2}) ≥ π(h ≥ s) whereas if a ≥ s/2 then
π({|h − a| ≥ s/2}) ≥ π(h = 0) ≥ 1/2. Using (2.3.6) and (2.3.7) with h = fk,
a = πk we obtain

[
22(k−1)π(fk ≥ 2k)

]1+2/d

≤ 21+2/dCE(fk, fk)
[
2kπ(f ≥ 2k)

]4/d
.

Now, set q = 2d/(d − 2), bk = 2qkπ({f ≥ 2k}) and θ = d/(d + 2). The last
inequality (raised to the power θ) yields, after some algebra,

bk+1 ≤ 23+qCθE(fk, fk)
θ b

2(1−θ)
k .

By Hölder’s inequality

∑

k

bk =
∑

k

bk+1 ≤ 23+qCθ

(
∑

k

E(fk, fk)

)θ (∑

k

b2k

)1−θ

≤ 23+q+θCθE(f, f)θ

(
∑

k

bk

)2(1−θ)

.

It follows that

(
∑

k

bk

)2θ−1

≤ 23+q+θCθ

(
∑

k

E(fk, fk)

)θ
.

Furthermore 2θ − 1 = 2θ/q and

(2q − 1)
∑

k

bk =
∑

k

(2q(k+1) − 2qk)π({f ≥ 2k})

=
∑

k

(2q(k+1)π({2k ≤ g < 2k+1}) ≥ ‖f‖qq.

Hence
‖f‖2

q ≤ 21+(3+q)/θ(2q − 1)2/qCE(f, f).
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Recall that f = f+ or f− with f± = (g − c)±, c a median of g. Note also that
θ > 1/2 when d > 2. Adding the inequalities for f+ and f− we obtain

‖g − c‖2
q ≤ 2(‖f+‖2

q + ‖f−‖2
q) ≤ 45+qCE(g, g)

because E(f+, f+) + E(f−, f−) ≤ E(g, g). This easily implies that

‖g − π(g)‖2
q ≤ 46+qCE(g, g)

which is the desired inequality. The constant 46+q can be improved by using a
ρ-cutting, ρ > 1, instead of a dyadic cutting in the above argument. See [9].

2.4 Distances

This section discusses the issue of choosing a distance between probability dis-
tribution to study the convergence of finite Markov chains to their stationary
measure. From the asymptotic point of view, this choice does not matter much.
From a more quantitative point of view, it does matter sometimes but it often
happen that different choices lead to similar results. This is a phenomenon which
is not yet well understood. Many aspects of this question will not be considered
here.

2.4.1 Notation and inequalities

Let µ, π be two probability measures on a finite set X (we work with a finite X
but most of what is going to be said holds without any particlar assumption on
X ). We consider π has the reference measure. Total variation is arguably the
most natural distance between probability measures. It is defined by

‖µ− π‖TV = max
A⊂X

|µ(A) − π(A)| =
1

2

∑

x∈X
|µ(x) − π(x)|.

To see the second equality, use
∑
x(µ(x) − π(x)) = 0. Note also that

‖µ− π‖TV = max {|µ(f) − π(f)| : |f | ≤ 1}

where µ(f) =
∑
x f(x)µ(x). A well known result in Markov chain theory relates

total variation with the coupling technique. See, e.g., [4, 17] and the references
therein.

All the others metrics or metric type quantities that we will consider are
defined in terms of the density of µ with respect to π. Hence, set h = µ/π. The
ℓp distances

‖h− 1‖p =

(
∑

x∈X
|h(x) − 1|pπ(x)

)1/p

, ‖h− 1‖∞ = max
x∈X

|h(x) − 1|

are natural choices for the analyst and will be used throughout these notes. The
case p = 2 is of special interest as it brings in a useful Hilbert space structure.
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It is known to statisticians as the chi-square distance. The case p = 1 is nothing
else that total variation since

‖h− 1‖1 =
∑

x∈X
|h(x) − 1|π(x) =

∑

x∈X
|µ(x) − π(x)| = 2‖µ− π‖TV.

Jensen’s inequality yields a clear ordering between these distances since it implies

‖h− 1‖r ≤ ‖h− 1‖s for all 1 ≤ r ≤ s ≤ ∞.

If we view (as we may) µ, π as linear functionals µ, π : ℓp(π) → R, f →
µ(f), π(f), then

‖µ− π‖ℓp(π)→R = sup {|µ(f) − π(f)| : ‖f‖p ≤ 1} = ‖h− 1‖q

where q is given by 1/p+1/q = 1 (see also Section 1.3.1). Most of the quantitative
results described in these notes are stated in terms of the ℓ2 and ℓ∞ distances.

There are at least three more quantities that appear in the literature. The
Kullback-Leibler separation, or entropy, is defined by

Entπ(h) =
∑

x∈X
[h(x) log h(x)]π(x).

Observe that Entπ(h) ≥ 0 by Jensen inequality. The Hellinger distance is

‖µ− π‖H =
∑

x∈X

∣∣∣
√
h(x) − 1

∣∣∣
2

π(x) =
∑

x∈X

∣∣∣
√
µ(x) −

√
π(x)

∣∣∣
2

= 2

(
1 −

∑

x∈X

√
h(x)π(x)

)
.

It is not obvious why this distance should be of particular interest. However,
Kakutani proved the following. Consider an infinite sequence (Xi, πi) of prob-
ability spaces each of which carries a second probability measure µi = hiπi
which is absolutely continuous with respect to πi. Let X =

∏
i Xi, µ =

∏
i µi,

π =
∏
i πi. Kakutani’s theorem asserts that µ is absolutely continuous with

respect to π if and only if the product
∏
i

(∫
Xi

√
hi dπi

)
converges.

Finally Aldous and Diaconis [4] introduces the notion of separation distance

dsep(µ, π) = max
x∈X

{1 − h(x)}

in connection with strong stationary (or uniform) stopping times. See [4, 17, 19].
Observe the absence of absolute value in this definition.

The next lemma collects inequalities between the various distances intro-
duced above. These inequalities are all well known except possibly for the strange
looking lower bounds in (2.4.2) and (2.4.4). The only inequality that uses the
fact that X is discrete and finite is the upper bound in (2.4.1).
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Lemma 2.4.1 Let π and µ = hπ be two probability measures on a finite set X .

1. Set π∗ = minX π. For 1 ≤ r ≤ s ≤ ∞,

‖h− 1‖r ≤ ‖h− 1‖s ≤ π
1/s−1/r
∗ ‖h− 1‖r. (2.4.1)

Also (
‖h− 1‖2

2 − ‖h− 1‖3
3

)
≤ ‖h− 1‖1 ≤ ‖h− 1‖2. (2.4.2)

2. The Hellinger distance satisfies

1

4
‖h− 1‖2

1 ≤ ‖µ− π‖H ≤ 1

4
‖h− 1‖1 (2.4.3)

and
1

8

(
‖h− 1‖2

2 − ‖h− 1‖3
3

)
≤ ‖µ− π‖H ≤ ‖h− 1‖2

2 (2.4.4)

3. The entropy satisfies

1

2
‖h− 1‖2

1 ≤ Entπ(h) ≤
1

2

(
‖h− 1‖1 + ‖h− 1‖2

2

)
. (2.4.5)

4. The separation dsep(µ, π) satisfies

1

2
‖h− 1‖1 ≤ dsep(µ, π) ≤ ‖h− 1‖∞. (2.4.6)

Proof: The inequalities in (2.4.1) are well known (the first follows from Jensen’s
inequality). The inequalities in (2.4.6) are elementary.

The upper bound in (2.4.5) uses

∀ u > 0, (1 + u) log(1 + u) ≤ u+
1

2
u2

to bound the positive part of the entropy. The lower bound is more tricky. First,
observe that

∀ u > 0, 3(u− 1)2 ≤ (4 + 2u)(u log(u) − u+ 1).

Then take square roots and use Cauchy-Schwarz to obtain

3‖h− 1‖2
1 ≤ ‖4 + 2h‖1 ‖h log(h) − h+ 1‖1.

Finally observe that u log(u)− u+ 1 ≥ 0 for u ≥ 0. Hence ‖h log(h)− h+ 1‖1 =
Entπ(f) and

3‖h− 1‖2
1 ≤ 6Entπ(f)

which gives the desired inequality. In his Ph. D. thesis, F. Su noticed the
complementary bound

Entπ(h) ≤ log
(
1 + ‖h− 1‖2

2

)
.
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The upper bound in (2.4.3) follows from |√u−1|2 ≤ |√u−1|(√u+1) = |u−1|,
u ≥ 0. The lower bound in (2.4.3) uses |u−1| = |√u−1|(√u+1), u ≥ 0, Cauchy-
Schwarz, and ‖

√
h+ 1‖2

2 ≤ 4.
The upper bound in (2.4.4) follows from |√u − 1| ≤ |u − 1|, u ≥ 0. For the

lower bound note that

√
1 + u ≤

{
1 + 1

2u− 1
16u

2 for − 1 ≤ u ≤ 1

1 + 1
2u ≤ 1 + 1

2u− 1
16u

2 + 1
16u

3 for 1 ≤ u.

It follows that

∀ , u ≥ −1,
√

1 + u ≤ 1 +
1

2
u− 1

16
u2 +

1

16
|u|3.

Now, ‖µ− π‖H = 2(1 − ‖
√
h‖1) = 2(1 − ‖

√
1 + (h− 1)‖1). Hence

‖µ− π‖H ≥ 1

8
(‖h− 1‖2

2 − ‖h− 1‖3
3)).

Finally, the upper bound in (2.4.2) is a special case of (2.4.1). The lower
bound follows from the elementary inequality: ∀u ≥ −1, |u| ≥ 3

4u+ u2 − |u|3.
This ends the proof of Lemma 2.4.1.

2.4.2 The cutoff phenomenon and related questions

This Section describe briefly a surprising property appearing in number of exam-
ples of natural finite Markov chains where a careful study is possible. We refer
the reader to [4, 17] and the more recent [18] for further details and references.

Consider the following example of finite Markov chain. The state space
X = {0, 1}n is the set of all binary vectors of length n. At each step, we pick
a coordinate at random and flip it to its opposite. Hence, the kernel K of the
chain is K(x, y) = 0 unless |x− y| = 1 in which case K(x, y) = 1/n. This chain
is symmetric, irreducible but periodic. It has the uniform distribution π ≡ 2−n

as stationary measure. Let Ht = e−t
∑∞

0
ti

i!K
i be the associated continuous

time chain. Then, by the Perron-Frobenius theorem Ht(x, y) → 2−n as t tends
to infinity. This can be quantified very precisely.

Theorem 2.4.2 For the continuous time chain on the hypercube {0, 1}n de-
scribed above, let tn = 1

4n log n. Then for any ε > 0,

lim
n→∞

‖Hx
(1−ε)tn − 2−n‖TV = 1

whereas
lim
n→∞

‖Hx
(1+ε)tn

− 2−n‖TV = 0

In fact, a more precise description is feasible in this case. See [20, 18]. This
theorem exhibits a typical case of the so called cutoff phenomenon. For n large
enough, the graph of t→ y(t) = ‖Hx

t −2−n‖TV stays very close to the line y = 1
for a long time, namely for about tn = 1

4n log n. Then, it falls off rapidly to
a value close to 0. This fall-off phase is much shorter than tn. Reference [20]
describes the shape of the curve around the critical time tn.
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Definition 2.4.3 Let F = {(Xn,Kn, πn) : n = 1, 2, . . .} be an infinite family of
finite chains. Let Hn,t = e−t(I−Kn) be the corresponding continuous time chain.

1. One says that F presents a cutoff in total variation with critical time (tn)
∞
1

if tn → ∞ and
lim
n→∞

max
Xn

‖Hx
n,(1−ε)tn − πn‖TV = 1

and
lim
n→∞

max
Xn

‖Hx
n,(1+ε)tn

− πn‖TV = 0.

2. Let (tn, bn)
∞
1 such that tn, bn ≥ 0, tn → ∞, bn/tn → 0. One says that F

presents a cutoff of type (tn, bn)
∞
1 in total variation if for all real c

lim
n→∞

max
Xn

‖Hx
n,tn+bnc − πn‖TV = f(c)

with f(c) → 1 when c→ −∞ and f(c) → 0 when c→ ∞.

Clearly, 2 ⇒ 1. The ultimate cutoff result consists in a precise description of the
function f . In Theorem 2.4.2 there is in fact a (tn, bm)-cutoff with tn = 1

4n log n
and bn = n. See [20].

In practical terms, the cutoff phenomenon means the following: in order to
approximate the stationary distribution πn one should not stop the chain Hn,t

before t = tn and it is essentially useless to run the chain for more than tn. It
seems that the cutoff phenomenon is widespread among natural examples. See
[4, 18]. Nevertheless it is rather difficult to verify that a given family of chains
satisfy one or the other of the above two definitions. This motivates the following
weaker definition.

Definition 2.4.4 Let F = {(Xn,Kn, πn) : n = 1, 2, . . .} be an infinite family of
finite chains. Let Hn,t = e−t(I−Kn) be the corresponding continuous time chain.
Fix 1 ≤ p ≤ ∞.

1. One says that F presents a weak ℓp-cutoff with critical time (tn)
∞
1 if tn →

∞ and

lim
n→∞

max
Xn

‖hxn,tn − 1‖ℓp(πn) > 0 and lim
n→∞

max
Xn

‖hxn,(1+ε)tn − 1‖ℓp(πn) = 0.

2. Let (tn, bn)
∞
1 such that tn, bn ≥ 0, tn → ∞, bn/tn → 0. One says that F

presents a weak ℓp-cutoff of type (tn, bn)
∞
1 if for all c ≥ 0,

lim
n→∞

max
Xn

‖hxn,tn+cbn
− 1‖ℓp(πn) = f(c)

with f(0) > 0 and f(c) → 0 when c→ ∞.

The notion of weak cutoff extends readily to Hellinger distance or entropy. The
advantage of this definition is that it captures some of the spirit of the cutoff
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phenomenon without requiring a too precise understanding of what happens at
relatively small times.

Observe that a cutoff of type (tn, bn)
∞
1 is equivalent to a cutoff of type

(tn, abn)
∞
1 with a > 0 but that tn can not always be replaced by sn even if

tn ∼ sn.
Note also that if (tn)

∞
1 and (sn)

∞
1 are critical times for a family F (the same

for tn and sn) then limn→∞ tn/sn = 1. Indeed, for any ǫ > 0, we must have
(1 + ǫ)tn > sn and (1 + ǫ)sn > tn for n large enough.

Definition 2.4.5 Let (K,π) be a finite irreducible Markov chain. For 1 ≤ p ≤
∞ and ε > 0, define the parameter Tp(K, ε) = Tp(ε) by

Tp(ε) = inf{t > 0 : max
x

‖hxt − 1‖p ≤ ε}

where Ht = e−t(I−K) is the associated continuous time chain.

The next lemma shows that for reversible chains and 1 < p ≤ ∞ the different
Tp’s cannot be too different.

Lemma 2.4.6 Let (K,π) be a finite irreducible reversible Markov chain. Then,
for 2 ≤ p ≤ +∞ and ε > 0, we have

T2(K, ε) ≤ Tp(K, ε) ≤ T∞(K, ε) ≤ 2T2(K, ε
1/2).

Furthermore, for 1 < p ≤ 2 and mp = 1 + ⌈(2 − p)/[2(p− 1)]⌉,

Tp(K, ε) ≤ T2(K, ε) ≤ mp Tp(K, ε
1/mp).

Proof: The first assertion is easy and left as an exercise. For the second we
need to use the fact that

max
x

‖hxu+v − 1‖q ≤
(
max
x

‖hxu − 1‖r
)(

max
x

‖hxv − 1‖s
)

(2.4.7)

for all u, v > 0 and 1 ≤ q, r, s ≤ +∞ related by 1+1/q = 1/r+1/s. Fix 1 < p < 2
and an integer j. Set, for i = 1, . . . , j − 1, p1 = p, 1 + 1/pi+1 = 1/pi + 1/p, and
ui = it/j, vi = t/j. Applying (2.4.7) j − 1 times with q = pi+1, r = pi, s = p,
u = ui, v = vj , we get

max
X

‖hxt − 1‖pj
≤
(
max
X

‖hxt/j − 1‖p
)j
.

Now, pj = 1/p− (j − 1)(1 − 1/p). Thus pj ≥ 2 for

j ≥ 1 + (2 − p)/[2(p− 1)].

The desired result follows.
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Theorem 2.4.7 Fix 1 < p < ∞ and ε > 0. Let F = {(Xn,Kn, πn) : n =
1, 2, . . .} be an infinite family of finite chains. Let Hn,t = e−t(I−Kn) be the
corresponding continuous time chain. Let λn be the spectral gap of Kn and set
tn = Tp(Kn, ε). Assume that

lim
n→∞

λntn = ∞.

Then the family F presents a weak ℓp-cutoff of type (tn, 1/λn)
∞
1 .

Proof: By definition maxXn
‖hxn,tn − 1‖p = ε > 0. To obtain an upper bound

write

‖hxn,tn+s − 1‖p = ‖(H∗
n,s − πn)(h

x
n,tn − 1)‖p

≤ ‖hxn,tn − 1‖p ‖H∗
n,s − πn‖p→p

≤ ε ‖H∗
n,s − πn‖p→p.

By Theorem 2.1.4
‖H∗

n,s − πn‖2→2 ≤ e−sλn .

Also, ‖H∗
n,s − πn‖1→1 ≤ 2 and ‖H∗

n,s − πn‖∞→∞ ≤ 2. Hence, by interpolation,
(see Theorem 1.3.1)

‖H∗
n,s − πn‖p→p ≤ 4|1/2−1/p|e−sλn(1−2|1/2−1/p|).

It follows that

‖hxn,tn+c/λn
− 1‖p ≤ ε4|1/2−1/p|e−c(1−2|1/2−1/p|).

This proves the desired result since 1− 2|1/2− 1/p| > 0 when 1 < p <∞. This
also proves the following auxilliary result.

Lemma 2.4.8 Fix 1 < p < ∞. Let F = {(Xn,Kn, πn) : n = 1, 2, . . .} be an
infinite family of finite chains. Let λn be the spectral gap of Kn. If

lim
n→∞

λnTp(Kn, ε) → ∞

for some fixed ε > 0, then

lim
n→∞

Tp(Kn, ε)

Tp(Kn, η)
= 1.

for all η > 0.

For reversible chain we obtain a necessary and sufficient condition for weak ℓ2-
cutoff.

Theorem 2.4.9 Fix ε > 0. Let F = {(Xn,Kn, πn) : n = 1, 2, . . .} be an infinite
family of reversible finite chains. Let Hn,t = e−t(I−Kn) be the corresponding con-
tinuous time chain. Let λn be the spectral gap of Kn and set tn = T2(Kn, ε). A
necessary and sufficient condition for F to present a weak ℓ2-cutoff with critical
time tn is that

lim
n→∞

λntn = ∞. (2.4.8)

Furthermore, if (2.4.8) is satisfied then
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1. F presents a weak ℓ∞-cutoff of type (2tn, 1/λn)
∞
1 .

2. For each 1 < p ≤ ∞ and each η > 0, F presents a weak ℓp-cutoff of type
(Tp(Kn, η), 1/λn)

∞
1 .

Proof: We already now that (2.4.8) is sufficient to have a weak ℓ2-cutoff.
Conversely, if (2.4.8) does not hold there exists a > 0 and a subsequence n(i)
such that λn(i)tn(i) ≤ a. To simplify notation assume that this hold for all n.
Let φn be an eigenfunction of Kn such that ‖φn‖∞ = 1 and (I−Kn)φn = λnφn.
Then

max
Xn

‖hxn,t − 1‖2 ≥ ‖(Hx
n,t − πn)φn‖2 = e−tλn .

If follows that, for any η > 0,

max
Xn

‖hxn,(1+η)tn − 1‖2 ≥ e−(1+η)tnλn ≥ e−(1+η)a.

Hence
lim
n→∞

max
Xn

‖hxn,(1+η)tn − 1‖2 6→ 0

which shows that there is no weak ℓ2-cutoff.
To prove the assertion concerning the weak ℓ∞-cutoff simply observe that

max
Xn

‖hxn,t − 1‖∞ = max
Xn

‖hxn,t/2 − 1‖2
2.

Hence a weak ℓ2-cutoff of type (tn, bn)
∞
1 is equivalent to a weak ℓ∞-cutoff of

type (2tn, bn).
For the last assertion use Lemmas 2.4.6 and 2.4.8 to see that (2.4.8) implies

λnTp(K, η) → ∞ for any fixed η > 0. Then apply Theorem 2.4.7.

The following theorem is based on strong hypotheses that are difficult to
check. Nevertheless, it sheds some new light on the cutoff phenomenon.

Theorem 2.4.10 Fix ε > 0. Let F = {(Xn,Kn, πn) : n = 1, 2, . . .} be an infi-
nite family of reversible finite chains. Let Hn,t = e−t(I−Kn) be the corresponding
continuous time chain. Let λn be the spectral gap of Kn and set tn = T2(Kn, ε).
Let αn be the log-Sobolev constant of (Kn, πn). Set

An = max {‖φ‖∞ : ‖φ‖2 = 1,Knφ = (1 − λn)φ} .

Assume that the following conditions are satisfied.

(1) tnλn → ∞.

(2) infn {αn/λn} = c1 > 0.

(3) infn
{
An e

−λntn
}

= c2 > 0.

Then the family F presents a weak ℓp-cutoff with critical time (tn)
∞
1 for any

1 ≤ p <∞ and also in Hellinger distance.
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Proof: By Theorem 2.4.9 condition (1) implies a weak ℓp-cutoff of type

(Tp(Kn, η), λn)

for each 1 < p < ∞ and η > 0. The novelty in Theorem 2.4.10 is that it
covers the case p = 1 (and Hellinger distance) and that the critical time (tn)

∞
0

does not depend on 1 ≤ p < ∞. For the case p > 2, it suffices to prove that
Tp(Kn, ε) ≤ tn + c(p)/λn. Using symmetry, (2.2.2) and hypothesis (2), we get

‖hxn,tn+sn
− 1‖p ≤ ‖Hn,sn

‖2→p‖hxn,tn − 1‖2 ≤ ε

with sn = [log(p − 1)]/(4αn) ≤ [log(p − 1)]/(4c1λn), which yields the desired
inequality. Observe that condition (3) has not been used to treat the case 2 <
p <∞.

We now turn to the proof of the weak ℓ1-cutoff. Since

‖hn,t − 1‖1 ≤ ‖hn,t − 1‖2

it suffices to prove that
lim inf
n→∞

‖hn,tn − 1‖1 > 0.

To prove this, we use the lower bound in (2.4.2) and condition (3) above. Indeed,
for each n there exists a normalized eigenfunction φn and xn ∈ Xn such that
Knφn = (1 − λn)φn and ‖φn‖∞ = φn(xn) = An. It follows that

‖hxn

n,tn+s − 1‖2 = sup
‖ψ‖2≤1

{‖(Hn,tn+s − πn)ψ‖∞}

≥ An e
−λn(tn+s) ≥ c2 e

−λns.

Also, for σn = (log 2)/(4αn), we have

‖hxn,tn+σn+s − 1‖3 ≤ ‖hxn,tn+s − 1ψ‖2

≤ ‖hxn,tn − 1ψ‖2‖Hn,s − πn‖2→2

≤ ε e−λns.

Hence, since λnσn ≤ [log 2]/4c1,

‖hxn
n,tn+σn+s − 1‖1 ≥ ‖hxn

n,tn+σn+s − 1‖2
2 − ‖hxn

n,tn+σn+s − 1‖3
3

≥ c22 e
−2λn(σn+s) − ε3 e−3λns

≥
(
c22 e

−2λnσn − ε3 e−λns
)
e−2λns

≥
(
c3 − ε3 e−λns

)
e−2λns

where c3 = c222
−1/4c1 . For each fixed n, we now pick s = sn = λ−1

n log(c3/(2ε
3)).

Hence
‖hxn

n,tn − 1‖1 ≥ ‖hxn
n,tn+σn+sn

− 1‖1 ≥ c3/2.

The weak cutoff in Hellinger distance is proved the same way using (2.4.3) or
(2.4.4). Finally the case 1 < p < 2 follows from the results obtained for p = 2
and p = 1.
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Chapter 3

Geometric tools

This chapter uses adapted graph structures to study finite Markov chains. It
shows how paths on graphs and their combinatorics can be used to prove Poincaré
and Nash inequalities. Isoperimetric techniques are also considered. Path tech-
niques have been introduced by M. Jerrum and A. Sinclair in their study of a
stochastic algorithm that counts perfect matchings in a graph. See [72]. Paths
are also used in [79] in a somewhat different context (random walk on finitely
generated groups). They are used in [35] to prove Poincaré inequalities. The
underlying idea is classical in analysis and geometry. The simplest instance of
it is the following proof of a Poincaré inequality for the unit interval [0, 1]:

∫ 1

0

|f(s) −m|2ds ≤ 1

8

∫ 1

0

|f ′(s)|2ds

where m is the mean of f . Write f(s)−f(t) =
∫ s
t
f ′(u)du for any 0 ≤ t < s ≤ 1.

Hence, using the Cauchy-Schwarz inequality, |f(s)−f(t)|2 ≤ (s−t)
∫ s
t
|f ′(u)|2du.

It follows that

∫ 1

0

|f(s) −m|2ds =

∫ 1

0

∫ 1

0

|f(s) − f(t)|2dtds

≤
∫ 1

0

|f ′(u)|2
{∫ 1

0

∫ 1

0

(s− t)1t≤u≤s(u)dtds

}
du

=

∫ 1

0

|f ′(u)|2
{
u(1 − u)

2

}
du

≤ 1

8

∫ 1

0

|f ′(u)|2du.

The constant 1/8 obtained by this argument must be compared with the best
possible constant which is 1/π2.

This chapter develops and illustrates several versions of this technique in the
context of finite graphs.

69
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3.1 Adapted edge sets

Definition 3.1.1 Let K be an irreducible Markov chain on a finite set X . An
edge set A ⊂ X × X is say to be adapted to K if A is symmetric (that is
(x, y) ∈ A ⇒ (y, x) ∈ A), (X ,A) is connected, and

(x, y) ∈ A ⇒ K(x, y) +K(y, x) > 0.

In this case we also say that the graph (X ,A) is adapted.

Let K be an irreducible Markov kernel on X with stationary measure π. It is
convenient to introduce the following notation. For any e = (x, y) ∈ X ×X , set

df(e) = f(y) − f(x)

and define

Q(e) =
1

2
(K(x, y)π(x) +K(y, x)π(y)) .

We will sometimes view Q as a probability measure on X × X . Observe that,
by Definition 2.1.1 and (2.1.1), the Dirichlet form E of (K,π) satisfies

E(f, f) =
1

2

∑

e∈X×X
|df(e)|2Q(e).

Let A be an adapted edge set. A path γ in (X ,A) is a sequence of vertices
γ = (x0, . . . , xk) such that (xi−1, xi) ∈ A, i = 1, . . . , k. Equivalently, γ can
be viewed as a sequence of edges γ = (e1, . . . , ek) with ei = (xi−1, xi) ∈ A,
i = 1, . . . , k. The length of such a path γ is |γ| = k. Let Γ be the set of all paths
γ in (X ,A) which have no repeated edges (that is, such that ei 6= ej if i 6= j).
For each pair (x, y) ∈ X × X , set

Γ(x, y) = {γ = (x0, . . . , xk) ∈ Γ : x = x0, y = xk} .

3.2 Poincaré inequality

A Poincaré inequality is an inequality of the type

∀ f, Varπ(f) ≤ CE(f, f).

It follows from the definition 2.1.3 of the spectral gap λ that such an inequality
is equivalent to λ ≥ 1/C. In other words, the smallest constant C for which the
Poincaré inequality above holds is 1/λ. This section uses Poincaré inequality
and path combinatorics to bound λ from below. We start with the simplest
result of this type.
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Theorem 3.2.1 Let K be an irreducible chain with stationary measure π on a
finite set X . Let A be an adapted edge set. For each (x, y) ∈ X × X choose
exactly one path γ(x, y) in Γ(x, y). Then λ ≥ 1/A where

A = max
e∈A





1

Q(e)

∑

x,y∈X :
γ(x,y)∋e

|γ(x, y)|π(x)π(y)




.

Proof: For each (x, y) ∈ X × X , write

f(y) − f(x) =
∑

e∈γ(x,y)
df(e)

and, using Cauchy-Schwarz,

|f(y) − f(x)|2 ≤ |γ(x, y)|
∑

e∈γ(x,y)
|df(e)|2.

Multiply by 1
2π(x)π(y) and sum over all x, y to obtain

1

2

∑

x,y

|f(y) − f(x)|2π(x)π(y) ≤ 1

2

∑

x,y

|γ(x, y)|
∑

e∈γ(x,y)
|df(e)|2π(x)π(y).

The left-hand side is equal to Varπ(f) whereas the right-hand side becomes

1

2

∑

e∈A





1

Q(e)

∑

x,y:
γ(x,y)∋e

|γ(x, y)|π(x)π(y)



 |df(e)|2Q(e)

which is bounded by

max
e∈A





1

Q(e)

∑

x,y:
γ(x,y)∋e

|γ(x, y)|π(x)π(y)



 E(f, f).

This proves the Poincaré inequality

∀ f, Varπ(f) ≤ AE(f, f)

hence λ ≥ 1/A.

Example 3.2.1: Let X = {0, 1}n, π ≡ 2−n and K(x, y) = 0 unless |x−y| = 1 in
which case K(x, y) = 1/n. Consider the obvious adapted edge set A = {(x, y) :
|x − y| = 1}. To define a path γ(x, y) from x to y, view x, y as binary vectors
and change the coordinates of x one at a time from left to right to match the
coordinates of y. These paths have length at most n. Since 1/Q(e) = n 2n we
obtain in this case

A ≤ n2 2−n max
e∈A





∑

x,y:
γ(x,y)∋e

1





= n2 2−n max
e∈A

#{(x, y) : γ(x, y) ∋ e}.
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Hence every thing boils down to count, for each edge e ∈ A, how many paths
γ(x, y) use that edge. Let e = (u, v). Since e ∈ A, there exists a unique i such
that ui 6= vi. Furthermore, by construction, if γ(x, y) ∋ e we must have

x = (x1, . . . , xi−1, ui, ui+1, . . . , un)

y = ( v1, . . . , vi−1, vi, yi+1, . . . , yn).

It follows that i − 1 coordinates of x and n − i coordinates of y are unknown.
That is, #{(x, y) : γ(x, y) ∋ e} = 2n−1. Hence A ≤ n2/2 and Theorem 3.2.1
yields λ ≥ 2/n2. The right answer is λ = 2/n. The above computation is quite
typical of what has to be done to use Theorem 3.2.1. Observe in particular the
non trivial cancellation of the exponential factors.

Example 3.2.2: Keep X = {0, 1}n and consider the following moves: x→ τ(x)
where τ(x)i = xi−1 and x→ σ(x) where σ(x) = x+ (1, 0, . . . , 0). Let K(x, y) =
1/2 if y = τ(x) or y = σ(x) and K(x, y) = 0 otherwise. This chain has π ≡ 2−n

as stationary distribution. It is not reversible. Define γ(x, y) as follows. Use
τ to turn the coordinates around from right to left. Use σ to ajust xi to yi if
necessary as it passes in position 1. These paths have length at most 2n. Let
e = (u, v) be an edge, say v = σ(u). Pick an integer j, 0 ≤ j ≤ n − 1. Then,
if we assume that τ as been used exactly j times before e, then xi = ui−j for
j < i ≤ n, yi = vn−j+i for 1 ≤ i ≤ j and yj+1 = v1. Hence, there are 2n−1

ordered pair (x, y) such that e ∈ γ(x, y) appears after exactly j uses of τ . Since
there are n possible values of j, this shows that the constant A of Theorem 3.2.1
is bounded by A ≤ 4n2 and thus λ ≥ 1/(4n2).

Example 3.2.3: Let again X = {0, 1}n. Let τ, σ be as in the preceding example.
Consider the chain with kernel K(x, y) = 1/n if either y = τ j(x) for some
0 ≤ j ≤ n − 1 or y = σ(x), and K(x, y) = 0 otherwise. This chain is reversible
with respect to the uniform distribution. Without further idea, it seems difficult
to do any thing much better than using the same paths and the same analysis
as in the previous example. This yields A ≤ n3 and λ ≥ 1/n3. Clearly, a better
analysis is desirable in this case because we have not taken advantage of all the
moves at our disposal. A better bound will be obtained in Section 4.2.

Example 3.2.4: It is instructive to work out what Theorem 3.2.1 says for simple
random walk on a graph (X ,A) where A is a symmetric set of oriented edges.
Set d(x) = #{y ∈ X : (x, y) ∈ A} and recall that the simple random walk on
(X ,A) has kernel

K(x, y) =

{
0 if (x, y) 6∈ A

1/d(x) if (x, y) ∈ A.

This gives a reversible chain with respect to the measure π(x) = d(x)/|A|. For
each (x, y) ∈ X 2 choose a path γ(x, y) with no repeated edge. Set

d∗ = max
x∈X

d(x), γ∗ = max
x,y∈X

|γ(x, y)|, η∗ = max
e∈A

#{(x, y) ∈ X 2 : γ(x, y) ∋ e}.
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Then Theorem 3.2.1 gives λ ≥ 1/A with

A ≤ d2
∗γ∗η∗
|A| .

The quantity η∗ can be interpreted as a measure of bottle necks in the graph
(X ,A). The quantity γ∗ as an obvious interpretation as an upper bound on the
diameter of the graph.

We now turn to more sophisticated (but still useful) versions of Theorem
3.2.1.

Definition 3.2.2 A weight function w is a positive function

w : A → (0,∞).

The w-length of a path γ in Γ is

|γ|w =
∑

e∈γ

1

w(e)
.

Theorem 3.2.3 Let K be an irreducible chain with stationary measure π on a
finite set X . Let A be an adapted edge set and w be a weight function. For each
(x, y) ∈ X × X choose exactly one path γ(x, y) in Γ(x, y). Then λ ≥ 1/A(w)
where

A(w) = max
e∈A




w(e)

Q(e)

∑

(x,y):
γ(x,y)∋e

|γ(x, y)|wπ(x)π(y)




.

Proof: Start as in the proof of Theorem 3.2.1 but introduce the weight w when
using Cauchy-Schwarz to get

|f(y) − f(x)|2 ≤


 ∑

e∈γ(x,y)
w(e)−1




 ∑

e∈γ(x,y)
|df(e)|2w(e)




= |γ(x, y)|w
∑

e∈γ(x,y)
|df(e)|2w(e).

From here, complete the proof by following step by step the proof of Theorem
3.2.1. A subtle discussion of this result can be found in [55] which also contains
interesting examples.

Example 3.2.5: What is the spectral gap of the dog? (for simplicity, the dog
below has no ears or legs or tail).
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For a while, Diaconis and I puzzled over finding the order of magnitude of
the spectral gap for simple random walk on the planar graph made from two
square grids, say of side length n, attached together by one of their corners.
This example became known to us as “the dog”. It turns out that the dog
is quite an interesting example. Thus, let X be the vertex set of two n × n
square grids {0, . . . , n}2 and {−n, . . . , 0}2 attached by identifying the two corners
o = (0, 0) ∈ X so that |X | = 2(n+ 1)2 − 1. Consider the markov kernel

K(x, y) =





0 if |x− y| > 1
1/4 if |x− y| = 1
0 if x = y is inside or x = y = 0

1/4 if x = y is on the boundary but not a corner
1/2 if x = y is a corner.

This is a symmetric kernel with uniform stationary measure π ≡ (2(n+1)2−1)−1

and 1/Q(e) = 4(2(n + 1)2 − 1) if e ∈ A. We will refer to this example as the
n-dog.

We now have to choose paths. The graph structure on X induces a distance
d(x, y) between vertices. Also, we have the Euclidean distance |x− y|. First we
define paths from any x ∈ X to o. For definitness, we work in the square lying
in the first quadrant. Let γ(x, o) be one of the geodesic paths from x to o such
that, for any z ∈ γ(x, o), the Euclidean distance between z and the straight line
segment [x, o] is at most 1/

√
2.

o ✂
✂
✂
✂
✂
✂✂
x

Let e = (u, v) be an edge with d(o, v) = i, d(o, u) = i+ 1. We claim that

#{x : γ(x, o) ∋ e} ≤ 4(n+ 1)2

i+ 1
.
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By symmetry, we can assume that u = (u1, u2) with u1 ≥ u2. This implies that
u1 ≥ (i+ 1)/2. Let I be the vertical segment of length 2 centred at u. Set

{x : γ(x, o) ∋ e} = Z(e).

If z ∈ Z(e) then the straight line segment [o, z] is at Euclidean distance at most
1/
√

2 from u. This implies that Z(e) is contained in the half cone C(u) with
vertex o and base I (because (u1 ≥ u2). Thus

Z(e) ⊂ {(z1, z2) ∈ {0, . . . , n}2 : z1 ≥ u1, z2 ≥ u2} ∩ C(u).

o

e

★
★

★
★

★
★

★
★

★

✦✦✦✦✦✦✦✦✦

r

r

r

r

r

r

r

r

r

r

r

r

r

r

Let ℓ(j) be the length of the intersection of the vertical line U(j) passing through
(j, 0) with C. Then ℓ(j)/j = ℓ(k)/k for all j, k. Clearly ℓ(u1) = 3. Hence
ℓ(j) ≤ 3j/u1. This means that there are at most 1+3j/u1 vertices in Uj ∩Z(e).
Summing over all u1 ≤ j ≤ n we obtain

#Z(e) ≤ n+
3n(n+ 1)

2u1
≤ 4n(n+ 1)

i+ 1
.

which is the claimed inequality.
Now, if x, y are any two vertices in X , we join them by going through o using

the paths γ(x, o), γ(y, o) in the obvious way. This defines γ(x, y). Furthermore,
we consider the weight function w on edges defined by w(e) = i + 1 if e is at
graph distance i from o. Observe that the length of any of the paths γ(x, y) is
at most

2
2n−1∑

0

1

i+ 1
≤ 2 log(2n+ 1).

Also, the number of times a given edge e at distance i from o is used can be
bounded as follows.

#{(x, y) : γ(x, y) ∋ e} ≤ (2(n+ 1)2 − 1) × #{z : γ(z, o) ∋ e}
≤ 4(n+ 1)2(2(n+ 1)2 − 1)/(i+ 1).

Hence, The constant A in Theorem 3.2.3 satisfies

A ≤ 4 maxx,y |γ(x, y|w
2(n+ 1)2 − 1

max
e

{
w(e)#{(x, y) : γ(x, y) ∋ e}

}

≤ 16(n+ 1)2 log(2n+ 1).
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This yields λ ≥ (16(n + 1)2 log(2n + 1))−1. To see that this is the right order
of magnitude, use the test function f defined by f(x) = sgn(x) log(1 + d(0, x))
where sgn(x) is 1, 0 or −1 depending on whether the sum of the coordinates of
x is positive 0 or negative. This function has π(f) = 0,

Varπ(f) = ‖f‖2
2 ≥ n(n+ 1)

2(n+ 1)2 − 1
[log(n+ 1)]2

and

E(f, f) ≤ 1

2[2(n+ 1)2 − 1]

2n−1∑

i=0

[(i+ 1) ∧ (2n− i+ 1)]| log(i+ 2) − log(i+ 1)|2

≤ 1

2(n+ 1)2 − 1

n−1∑

i=0

1

i+ 1

≤ log(n+ 1)

2(n+ 1)2 − 1
.

Hence, λ ≤ [n(n+1) log(n+1)]−1. Collecting the results we see that the spectral
gap of the n-dog satifies

1

16(n+ 1)2 log(2n+ 1)
≤ λ ≤ 1

n(n+ 1) log(n+ 1)
.

One can convince oneself that there is no choice of paths such that Theorem
3.2.1 give the right order of magnitude. In fact the best that Theorem 3.2.1
gives in this case is λ ≥ c/n3. The above problem (and its solution) generalizes
to any fixed dimension d. For any d ≥ 3, the corresponding spectral gap satisfies
c1(d)/n

d ≤ λ ≤ c2(d)/n
d.

In Theorems 3.2.1, 3.2.3, exactly one path γ(x, y) is used for each pair (x, y).
In certain situations it is helpful to allow the use of more than one path from x
to y. To this end we introduce the notion of flow.

Definition 3.2.4 Let (K,π) be an irreducible Markov chain on a finite set X .
Let A be an adapted edge set. A flow is non-negative function on the path set Γ,

φ : Γ → [0,∞[

such that
∀x, y ∈ X , x 6= y,

∑

γ∈Γ(x,y)

φ(γ) = π(x)π(y).

Theorem 3.2.5 Let K be an irreducible chain with stationary measure π on a
finite set X . Let A be an adapted edge set and φ be a flow. Then λ ≥ 1/A(φ)
where

A(φ) = max
e∈A





1

Q(e)

∑

γ∈Γ:
γ∋e

|γ|φ(γ)




.
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Proof: This time, for each (x, y) and each γ ∈ Γ(x, y) write

|f(y) − f(x)|2 ≤ |γ|
∑

e∈γ
|df(e)|2.

Then
|f(y) − f(x)|2π(x)π(y) ≤

∑

γ∈Γ(x,y)

|γ|
∑

e∈γ
|df(e)|2φ(γ).

Complete the proof as for Theorem 3.2.1.

Example 3.2.6: Consider the hypercube {0, 1}n with the chain K(x, y) = 0
unless |x − y| = 1 in which case K(x, y) = 1/n. Consider the set G(x, y) of all
geodesic paths from x to y. Define a flow φ by setting

φ(γ) =

{
[22n#G(x, y)]−1 if γ ∈ G(x, y)

0 otherwise.

Then A(φ) = maxeA(φ, e) where

A(φ, e) = n2n
∑

γ∈Γ:
γ∋e

|γ|φ(γ).

Using the symmetries of the hypercube, we observe that A(φ, e) does not depend
on e. Summing over the n2n oriented edges yields

A(φ, e) =
∑

e∈A

∑

γ∈Γ:
γ∋e

|γ|φ(γ)

=
∑

γ

|γ|2φ(γ) ≤ n2.

This example generalizes as follows.

Corollary 3.2.6 Assume that there is a group G which acts on X and such that

π(gx) = π(x), Q(gx, gy) = Q(x, y).

Let A be an adapted edge set such that (x, y) ∈ A ⇒ (gx, gy) ∈ A. Let A =⋃k
1 Ai, be the partition of A into transitive classes for this action. Then λ ≥ 1/A

where

A = max
1≤i≤k

{
1

|Ai|Qi
∑

x,y

d(x, y)2π(x)π(y)

}
.

Here |Ai| = #Ai, Qi = Q(ei) with ei ∈ Ai, and d(x, y) is the graph distance
between x and y.
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Proof: Consider the set G(x, y) of all geodesic paths from x to y. Define a flow
φ by setting

φ(γ) =

{
π(x)π(y)/#G(x, y) if γ ∈ G(x, y)

0 otherwise.

Then A(φ) = maxeA(φ, e) where

A(φ, e) =
1

Q(e)

∑

γ∈Γ:
γ∋e

|γ|φ(γ).

By hypothesis, A(φ, ei) = Ai(φ) does not depend on ei ∈ Ai. Indeed, if gγ
denote the image of the path γ under the action of g ∈ G, we have |gγ| = |γ|,
φ(gγ) = φ(γ). Summing for each i = 1, . . . , k over all the oriented edges in Ai,
we obtain

A(φ, ei) =
1

|Ai|Qi
∑

e∈Ai

∑

γ∈Γ:
γ∋e

|γ|φ(γ)

=
1

|Ai|Qi
∑

e∈Ai

∑

x,y

∑

γ∈G(x,y):
γ∋e

d(x, y)π(x)π(y)

#G(x, y)

≤ 1

|Ai|Qi
∑

x,y

Ni(x, y)d(x, y)π(x)π(y)

where
Ni(x, y) = max

γ∈G(x,y)
#{e ∈ Ai : γ ∋ e}.

That is, Ni(x, y) is the maximal number of edges of type i used in a geodesic
path from x to y. In particular, Ni(x, y) ≤ d(x, y) and the announced result
follows.

Example 3.2.7: Let X be the set of all k-subsets of a set with n elements.
Assume k ≤ n/2. Consider the graph with vertex set X and an edge from x to
y if #(x ∩ y) = k − 2. This is a regular graph with degree k(n− k). The simple
random walk on this graph has kernel

K(x, y) =

{
1/[k(n− k)] if #(x ∩ y) = k − 2

0 otherwise

and stationary measure π ≡
(
n
k

)−1
. It is clear that the symmetric group Sn acts

transitively on the edge set of this graph and preserves K and π. Here there
is only one class of edges, |A| =

(
n
k

)
n(n − k), Q = |A|−1. Therefore Corollary

3.2.6 yields λ ≥ 1/A with

A =
1

|A|Q
∑

x,y

d(x, y)2π(x)π(y)
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=
1

(
n
k

)2
k∑

1

ℓ2
(n
k

)(k
ℓ

)(
n− k

ℓ

)

=
1(
n
k

)
k∑

1

ℓ2
(
k

ℓ

)(
n− k

ℓ

)

=
k(n− k)(

n
k

)
k∑

1

(
k − 1

ℓ− 1

)(
n− k − 1

ℓ− 1

)

=
k(n− k)(

n
k

)
(
n− 2

k − 1

)
=
k2(n− k)2

n(n− 1)
.

Hence

λ ≥ n(n− 1)

k2(n− k)2
.

Here we have used the fact that the number of pair (x, y) with d(x, y) = ℓ is(
n
k

) (
k
ℓ

)(
n−k
ℓ

)
to obtain the second equality. Also, the equality

k∑

1

(
k − 1

ℓ− 1

)(
n− k − 1

ℓ− 1

)
=

(
n− 2

k − 1

)

can be proved by counting in two different ways how to draw k− 1 marked balls
from an urn containing n − 2 balls, k − 1 of them being red, the others black.

Indeed,
(
k−1
ℓ−1

)(
n−k−1
ℓ−1

)
=
(
k−1
k−ℓ

)(
n−k−1
ℓ−1

)
is the number of different ways to

pick k − 1 balls, ℓ − 1 of which are black. The true value of λ is n/[k(n − k)].
See [34].

Example 3.2.8: Let X be the set of all n-subsets of {0, . . . , 2n− 1}. Consider
the graph with vertex set X and an edge from x to y if #(x ∩ y) = n − 2 and
0 ∈ x ⊕ y where x ⊕ y = x ∪ y \ x ∩ y is the symmetric difference of x and y.
This is a regular graph with degree n. The simple random walk on this graph
has kernel

K(x, y) =

{
1/n if #(x ∩ y) = n− 2 and 0 ∈ x⊕ y
0 otherwise

and stationary measure π ≡
(

2n
n

)−1
. This process can be described informally

as follows: Let x be subset of {0, . . . , 2n − 1} having n elements. If 0 ∈ x,
pick an element a uniformly at random in the complement of x and move to
y = (x \ {0})∪{a}, that is, replace 0 by a. If 0 6∈ x, pick an element a uniformly
at random in x and move to y = (x \ {a}) ∪ {0}, that is, replace a by 0.

It is clear that the symmetric group S2n−1 which fixes 0 and acts on {1, . . . , 2n−
1} also acts on this graph and preserves K and π. This action is not transitive
on edges. There are two transitive classes A1,A2 of edges depending on whether,
for an edge (x, y), 0 ∈ x or 0 ∈ y. Clearly

|A1| = |A2| =

(
2n

n

)
n, Q1 = Q2 = |A|−1 = (2|A1|)−1.
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If x and y differ by exactly ℓ elements, the distance between x and y is 2ℓ if
0 6∈ x ⊕ y and 2ℓ − 1 if 0 ∈ x ⊕ y. Using this and a computation similar to the
one in Example 3.2.7, we see that the constant A in Corollary 3.2.6 is bounded
by

A =
1

|A1|Q1

∑

x,y

d(x, y)2π(x)π(y)

≤ 8
(

2n
n

)2
n∑

1

ℓ2
(

2n

n

)(n
ℓ

)2

=
4n2

2n− 1
.

Hence λ ≥ (2n−1)/(4n2). This can be slightly improved if we use the Ni(x, y)’s
introduced in the proof of Corollary 3.2.6. Indeed, this proof shows that λ ≥ 1/A′

with

A′ = max
i

{
1

|Ai|Qi
∑

x,y

Ni(x, y)d(x, y)π(x)π(y)

}

where Ni(x, y) is the maximal number of edges of type i used in any geodesic
path from x to y. In the present case, if x ⊕ y = ℓ, then the distance between
x and y is atmost 2ℓ with atmost ℓ edges of each of the two types. Hence,
A′ ≤ 2n2/(2n − 1) and λ ≥ (2n − 1)/(2n2). This bound is of the correct order
of magnitude is 1/n. See the end of Section 4.2.

Corollary 3.2.7 Assume that X = G is a finite group with generating set S =
{g1, . . . , gs}. Set K(x, y) = |S|−11S(x−1y), π ≡ 1/|G|. Then

λ(K) ≥ 1

2|S|D2

where D is the diameter of the Cayley graph (G,S ∪ S−1). If S is symmetric,
i.e., S = S−1, then

λ(K) ≥ 1

|S|D2
.

Proof: The action of the group G on its itself by left translation preserves K
and π. Hence it also preserves Q. We set

A =
{
(x, xs) : x ∈ G, s ∈ S ∪ S−1

}
.

There are at most s = 2|S| classes of oriented edges (corresponding to the distinct
elements of S ∪ S−1) and each class contains at least |G| distinct edges. If S is
symmetric (that is g ∈ S ⇒ g−1 ∈ S) then 1/Q(e) = |S||G| whereas if S is not
symmetric, |S||G| ≤ 1/Q(e) ≤ 2|S||G|. The results now follow from Corollary
3.2.6. Slightly better bounds are derived in [24].
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Corollary 3.2.8 Assume that X = G is a finite group with generating set S =
{g1, . . . , gs}. Set K(x, y) = |S|−11S(x−1y), π ≡ 1/|G|. Assume that there is
a subgroup H of the group of automorphisms of G which preserves S and acts
transitively on S. Then

λ(K) ≥ 1

2D2

where D is the diameter of the Cayley graph (G,S ∪ S−1). If S is symmetric,
i.e., S = S−1, or if H acts transitively on S ∪ S−1, then

λ(K) ≥ 1

D2
.

These results apply in particular when S is a conjugacy class.

Proof: Let ei = (xi, xisi) ∈ A, xi ∈ G, si ∈ S ∪ S−1, i = 1, 2 be two edges.
If s1, s2 ∈ S, there exists σ ∈ H such that σ(s1) = s2. Set σ(x1) = y1. Then
z → x2y

−1
1 σ(z) is an automorphism of G which send x1 to x2 and x1s1 to

x2s2. A similar reasoning applies if s1, s2 ∈ S−1. Hence there are atmost two
transitive classes of edges. If there are two classes, (x, xs) → (x, xs−1) establishes
a bijection between them. Hence |A1| = |A2| = |A|/2. Hence the desired results
follow from Corollary 3.2.6.

Example 3.2.9: Let X = Sn be the symmetric group on n objects. Let
K(x, y) = 0 unless y = xσi with σi = (1, i) and i = {2, . . . , n}, in which case
K(x, y) = 1/(n−1). Decomposing any permutation θ in to disjoint cycles shows
that θ is a product of at most n transpositions. Further more, any transposition
(i, j) can be written as (i, j) = (1, i)(1, j)(1, i). Hence any permutation is a prod-
uct of at most 3n σi’s and Corollary 3.2.7 yields λ ≥ 9n3. However, the subgroup
Sn−1(1) ⊂ Sn of the permutations that fixe 1 acts by conjugaison on Sn. Set
ψh : x → hxh−1, h ∈ Sn−1(1) and H = {ψh : Sn → Sn : h ∈ Sn−1(1)}. This
group of automorphisms of Sn acts transitively on S = {σi : i ∈ {2, . . . , n}}.
Indeed, for 2 ≤ i, j ≤ n, h = (i, j) ∈ Sn−1(1) satisfies ψh(σi) = σj . Hence
Corollary 3.2.8 gives the improved bound λ ≥ 9n2. The right answer is that
λ = 1/n by Fourier analysis [42].

To conclude this section we observe that there is no reason why we should
choose between using a weight function as in Theorem 3.2.3 or using a flow as
in Theorem 3.2.5. Furthermore we can consider more general weight functions

w : Γ ×A → (0,∞)

where the weight w(γ, e) of an edge also depends on which path γ we are con-
sidering. Again, we set |γ|w =

∑
e∈γ w(γ, e)−1. Then we have

Theorem 3.2.9 Let K be an irreducible chain with stationary measure π on a
finite set X . Let A be an adapted edge set, w a generalized weight function and
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φ a flow. Then λ ≥ 1/A(w, φ) where

A(w, φ) = max
e∈A





1

Q(e)

∑

γ∈Γ:
γ∋e

w(γ, e)|γ|wφ(γ)




.

3.3 Isoperimetry

3.3.1 Isoperimetry and spectral gap

It is well known that spectral gap bounds can be obtained through isoperimet-
ric inequalities via the so-called Cheeger’s inequality introduced in a different
context in Cheeger [12]. See Alon [5], Alon and Milman [6], Sinclair [71, 72],
Diaconis and Stroock [35], Kannan [56], and the earlier references given there.
See also [58]. This section presents this technique. It emphasizes the fact that
isoperimetric inequalities are simply ℓ1 version of Poincaré inequalities. It follows
that in most circumstances it is possible and preferable to work directly with
Poincaré inequalities if the ultimate goal is to bound the spectral gap. Diaconis
and Stroock [35] compare bounds using Theorems 3.2.1, 3.2.3, and bounds using
Cheeger’s inequality. They find that, most of the time, bounds using Cheeger’s
inequality can be tightned by appealing directly to a Poincaré inequality.

Definition 3.3.1 The “boundary” ∂A of a set A ⊂ X is the set

∂A = {e = (x, y) ∈ X × X : x ∈ A, y ∈ Ac or x ∈ Ac, y ∈ A} .

Thus, the boundary is the set of all pairs connecting A and Ac.
Given a Markov chain (K,π), the measure of the boundary ∂A of A ⊂ X is

Q(∂A) =
1

2

∑

(x,y)∈∂A
(K(x, y)π(x) +K(y, x)π(y))

=
∑

x∈A,y∈Ac

(K(x, y)π(x) +K(y, x)π(y)) .

The “boundary” ∂A is a rather large boundary and does not depend on the chain
(K,π) under consideration. However, only the portion of ∂A that has positive
Q-measure will be of interest to us so that we could as well have required that
the edges in ∂A satisfy Q(e) > 0.

Definition 3.3.2 The isoperimetric constant of the chain (K,π) is defined by

I = I(K,π) = min
A⊂X :

π(A)≤1/2

{
Q(∂A)

π(A)

}
. (3.3.1)

Let us specialize this definition to the case where (K,π) is the simple random
walk on an r-regular graph (X ,A). Then, K(x, y) = 1/r if x, y are neighbors and
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π(x) ≡ 1/|X |. Hence Q(e) = 1/(r|X |) if e ∈ A. Define the geometric boundary
of a set A to be

∂∗A = {(x, y) ∈ A : x ∈ A, y ∈ Ac}.
Then

I = min
A⊂X :

π(A)≤1/2

{
Q(∂A)

π(A)

}
=

2

r
min
A⊂X :

#A≤#X/2

{
#∂∗A

#A

}
.

Lemma 3.3.3 The constant I satisfies

I = min
f

{ ∑
e |df(e)|Q(e)

minα
∑
x |f(x) − α|π(x)

}
.

Here the minimum is over all non-constant fonctions f .

It is well known and not too hard to prove that

min
α

∑

x

|f(x) − α|π(x) =
∑

x

|f(x) − α0|π(x)

if and only if α0 satisfies

π(f > α0) ≤ 1/2 and π(f < α0) ≤ 1/2

i.e., if and only if α0 is a median.

Proof: Let J be the right-hand side in the equality above. To prove that I ≥ J
it is enough to take f = 1A in the definition of J . Indeed,

∑

e

|d1A(e)|Q(e) = Q(∂A),
∑

x

1A(x)π(x) = π(A).

We turn to the proof of J ≥ I. For any non-negative function f , set Ft = {f ≥ t}
and ft = 1Ft

. Then observe that f(x) =
∫∞
0
ft(x)dt,

π(f) =

∫ ∞

0

π(Ft)dt

and ∑

e

|df(e)|Q(e) =

∫ ∞

0

Q(∂Ft)dt. (3.3.2)

This is a discrete version of the so-called co-area formula of geometric measure
theory. The proof is simple. Write

∑

e

|df(e)|Q(e) = 2
∑

e=(x,y)
f(y)>f(x)

(f(y) − f(x))Q(e)

= 2
∑

e=(x,y)
f(y)>f(x)

∫ f(y)

f(x)

Q(e)dt

= 2

∫ ∞

0

∑

e=(x,y)
f(y)≥t>f(x)

Q(e)dt

=

∫ ∞

0

Q(∂Ft)dt.
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Given a function f , let α be such that π(f > α) ≤ 1/2, π(f < α) ≤ 1/2 and
set f+ = (f − α) ∨ 0, f− = −[(f − α) ∧ 0]. Then, f+ + f− = |f − α| and
|df(e)| = |df+(e)| + |df−(e)|. Setting F±,t = {x : f±(x) ≥ t}, using (3.3.2) and
the definition of I, we get

∑

e

|df(e)|Q(e) =
∑

e

|df+(e)|Q(e) +
∑

e

|df−(e)|Q(e)

=

∫ ∞

0

Q(∂F+,t)dt+

∫ ∞

0

Q(∂F−,t)dt

≥ I

∫ ∞

0

(π(F+,t) + π(F−,t))dt

= I
∑

x

(f+(x) + f−(x))π(x)

= I
∑

x

|f(x) − α|π(x).

This proves that J ≥ I.

There is an alternative notion of isoperimetric constant that is sometimes
used in the literature.

Definition 3.3.4 Define the isoperimetric constant I ′ of the chain (K,π) by

I ′ = I ′(K,π) = min
A⊂X

{
Q(∂A)

2π(A)(1 − π(A))

}
. (3.3.3)

Observe that I/2 ≤ I ′ ≤ I.

Lemma 3.3.5 The constant I ′ is also given by

I ′ = min
f

{ ∑
e |df(e)|Q(e)∑

x |f(x) − π(f)|π(x)

}

where the minimum is taken over all non-constant functions f .

Proof: Setting f = 1A in the ratio appearing above shows that the left-hand
side is not smaller than the right-hand side. To prove the converse, set f+ = f∨0,
and Ft = {x : f+(x) ≥ t}. As in the proof of Lemma 3.3.3, we obtain

∑

e

|df+(e)|Q(e) ≥ 2I ′
∫ ∞

0

π(Ft)(1 − π(Ft))dt.

Now,

2π(Ft)(1 − π(Ft)) =
∑

x

|1Ft
(x) − π(1Ft

)|π(x)

= max
g;π(g)=0

minα |g−α|≤1

∑

x

1Ft(x) g(x)π(x).
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Here, we have used the fact that, for any function u,

∑

x

|u(x) − π(u)|π(x) = max
g;π(g)=0

minα |g−α|≤1

∑

x

u(x) g(x)π(x).

See [68]. Thus, for any g satifying π(g) = 0 and minα |g − α| ≤ 1,

∑

e

|df+(e)|Q(e) ≥ I ′
∑

x

(∫ ∞

0

1Ft(x) dt

)
g(x)π(x)

≥ I ′
∑

x

f+(x)g(x)π(x).

The same reasoning applies to f− = −[f ∧ 0] so that, for all g as above,

∑

e

|df−(e)|Q(e) ≥ I ′
∑

x

f−(x)g(x)π(x).

Adding the two inequalities, and taking the supremum over all allowable g, we
get ∑

e

|df(e)|Q(e) ≥ I ′
∑

x

|f(x) − π(f)|π(x)

which is the desired inequality.
Lemmas 3.3.3 and 3.3.5 shows that the argument used in the proof of Theo-

rem 3.2.1 can be used to bound I and I ′ from below.

Theorem 3.3.6 Let K be an irreducible chain with stationary measure π on a
finite set X . Let A be an adapted edge set. For each (x, y) ∈ X × X choose
exactly one path γ(x, y) in Γ(x, y). Then I ≥ I ′ ≥ 1/B where

B = max
e∈A





1

Q(e)

∑

x,y∈X :
γ(x,y)∋e

π(x)π(y)




.

Proof: For each (x, y) ∈ X × X , write f(y) − f(x) =
∑
e∈γ(x,y) df(e) and

|f(y) − f(x)| ≤
∑

e∈γ(x,y)
|df(e)|.

Multiply by π(x)π(y) and sum over all x, y to obtain

∑

x,y

|f(y) − f(x)|π(x)π(y) ≤
∑

x,y

∑

e∈γ(x,y)
|df(e)|π(x)π(y).

This yields ∑

x

|f(x) − π(f)|π(x) ≤ B
∑

e

|df(e)|Q(e)

which implies the desired conclusion. There is also a version of this result using
flows as in Theorem 3.2.5.
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Lemma 3.3.7 (Cheeger’s inequality) The spectral gap λ and the isoperimet-
ric constant I, I ′ defined at (3.3.1), (3.3.3) are related by

I ′2

8
≤ I2

8
≤ λ ≤ I ′ ≤ I.

Compare with [35], Section 3.C. There, it is proved by a slightly different argu-
ment that h2/2 ≤ λ < 2h where h = I/2. This is the same as I2/8 ≤ λ ≤ I.

Proof: For the upper bound use the test functions f = 1A in the definition of
λ. For the lower bound, apply

∑

e

|df(e)|Q(e) ≥ I min
α

∑

x

|f(x) − α|π(x)

to the function f = |g−c|2sgn(g−c) where g is an arbitrary function and c = c(g)
is a median of g so that

∑
x |f(x) − α|π(x) is minimum for α = 0. Then, for

e = (x, y),
|df(e)| ≤ |dg(e)|(|g(x) − c| + |g(y) − c|)

because |a2 − b2| = |a − b|(|a| + |b|) if ab ≥ 0 and a2 + b2 ≤ |a − b|(|a| + |b|) if
ab < 0. Hence

∑

e

|df(e)|Q(e) ≤
∑

e=(x,y)

|dg(e)|(|g(x) − c| + |g(y) − c|)Q(e)

≤
(
∑

e

|dg(e)|2Q(e)

)1/2

×

(
2
∑

x,y

(|g(x) − c|2 + |g(y) − c|2)π(x)K(x, y)

)1/2

= (8E(g, g))
1/2

(
∑

x

|g(x) − c|2π(x)

)1/2

.

Hence

I
∑

x

|g(x) − c|2π(x) = I min
α

∑

x

|f(x) − α|2π(x)

≤
∑

e

|df(e)|Q(e)

≤ (8E(g, g))
1/2

(
∑

x

|g(x) − c|2π(x)

)1/2

.

and
I2Varπ(g) ≤ I2

∑

x

|g(x) − c|2π(x) ≤ 8E(g, g).
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for all functions g. This proves the desired lower bound.

Example 3.3.1: Let X = {0, . . . , n}2 be the vertex set of a square grid of side
n. Hence, the edge set A is given by A = {(x, y) ∈ X 2 : |x−y| = 1} where |x−y|
denote either the Euclidian distance or simply

∑
i |xi − yi| (it does not matter

which). Define K(x, y) to be zero if |x − y| ≥ 1, K(x, y) = 1/4 if |x − y| = 1,
and K(x, x) = 0, 1/4 or 1/2 depending on whether x is interior, on a side, or a
corner of X . The uniform distribution π ≡ 1/(n+ 1)2 is the reversible measure
of K. To have a more geometric interpretation of the boundary, we view each
vertex in X as the center of a unit square as in the figure below.
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Then, for any subset A ⊂ X , π(A) is proportional to the surface of those unit
squares with center in A. Call A the union of those squares (viewed as a subset
of the plane). Now Q(∂A) is proportional to the length of the interior part of
the boundary of A. It is not hard to see that pushing all squares in each column
down to the bottom leads to a set A↓ with the same area and smaller boundary.
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Similarly, we can push things left. Then consider the upper left most unit square.
It is easy to see that moving it down to the left bottom most free space does
not increase the boundary. Repeating this operation as many times as possible
shows that, given a number N of unit squares, the smallest boundary is obtained
for the set formed with [N/(n+1)] bottom raws and the N − (n+1)[N/(n+1)]
left most squares of the ([N/(n+ 1)] + 1)th raw. Hence, we have

Q(∂A)

π(A)
=





N+1
4N if #A = N ≤ n+ 1
n+2
4N if n+ 1 ≤ #A = N and #A does not divide n+ 1
n+1
4N if #A = N = k(n+ 1).
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Theorem 3.3.8 For the natural walk on the square grid X = {0, . . . , n}2 the
isoperimetric constants I, I ′ are given by

I =

{ 1
2(n+1) if n+ 1 is even

1
2n if n+ 1 is odd.

I ′ =

{
1

2(n+1) if n+ 1 is even
1

2n(1+(n+1)−2) if n+ 1 is odd.

Using Cheeger’s inequality yields

λ ≥ 1

32(n+ 1)2
.

This is of the right order of magnitude.

Example 3.3.2: For comparison, consider the example of the “n-dog”. That
is, two square grids as above with one corner o identified. In this case, it is clear
that the ratio Q(∂A)/π(A) (with π(A) ≤ 1/2) is smallest for A one of the two
squares minus o. Hence

I(n-dog) =
1

2[(n+ 1)2 − 1]
.

In this case Cheeger’s inequality yields

λ(n-dog) ≥ 1

32(n+ 1)4
.

This is far off from the right order of magnitude 1/(n2 log n) which was found
using Theorem 3.2.3.

The proof of Theorem 3.3.8 works as well in higher dimension and for rect-
angular boxes.

Theorem 3.3.9 For the natural walk on the parallelepiped

X = {0, . . . , n1} × . . .× {0, . . . , nd}
with n1 = maxni, the isoperimetric constants I, I ′ satisfy

I ≥ I ′ ≥ 1

d(n1 + 1)
.

In this case, Cheeger’s inequality yields a bound which is off by a factor of 1/d.

The above examples must not lead the reader to believe that, generaly speak-
ing, isoperimetric inequalities are easy to prove or at least easier to prove than
Poincaré inequalities. It is the case in some examples as the ones above whose
geometry is really simple. There are other examples where the spectral gap
is known exactly (e.g., by using Fourier analysis) but where even the order of
magnitude of the isoperimetric constant I is not known. One such example is
provided by the walk on the symmetric group Sn with K(x, y) = 2/n(n − 1)
if x and y differ by a transposition and K(x, y) = 0 otherwise. For this walk
λ = 2/(n− 1) and, by Cheeger’s inequality, 2/(n− 1) ≤ I ≤ 4/(n− 1)1/2.
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3.3.2 Isoperimetry and Nash inequalities

The goal of this section is to prove the following result.

Theorem 3.3.10 Assume that (K,π) satisfies

π(A)(d−1)/d ≤ S

(
Q(∂A) +

1

R
π(A)

)
(3.3.4)

for all A ⊂ X and some constants d ≥ 1, S,R > 0. Then

∀ g, ‖g‖d/(d−1) ≤ S

(
∑

e

|dg(e)|Q(e) +
1

R
‖g‖1

)
(3.3.5)

and

∀ g, ‖g‖2(1+2/d)
2 ≤ 16S2

(
E(g, g) +

1

8R2
‖g‖2

2

)
‖g‖4/d

1 . (3.3.6)

Proof: Since |d|g|(e)| ≤ |dg(e)| it suffices to prove the result for g ≥ 0. Write
g =

∫∞
0
gtdt where gt = 1Gt

, Gt = {g ≥ t}, and set q = d/(d− 1). Then

‖g‖q ≤
∫ ∞

0

‖gt‖qdt =

∫ ∞

0

π(Gt)
1/qdt

≤ S

∫ ∞

0

(
Q(∂Gt) +

1

R
π(Gt)

)
dt

= S

(
∑

e

|dg(e)|Q(e) +
1

R
‖g‖1

)
.

The first inequality uses Minkowski’s inequality. The second inequality uses
(3.3.4). The last inequality uses the co-area formula (3.3.2). This proves (3.3.5).
It is easy to see that (3.3.5) is in fact equivalent to (3.3.4) (take g = 1A).

To prove (3.3.6), we observe that
∑

e

|dg2(e)|Q(e) ≤ [8E(g, g)]1/2‖g‖2.

Indeed,
∑

e

|dg2(e)|Q(e) =
∑

e=(x,y)

|dg(e)||g(x) + g(y)|Q(e)

≤
(
∑

e

|dg(e)|2Q(e)

)1/2

×

(
2
∑

x,y

(|g(x)|2 + |g(y)|2)π(x)K(x, y)

)1/2

= (8E(g, g))
1/2

(
∑

x

|g(x)|2π(x)

)1/2

.



90 CHAPTER 3. GEOMETRIC TOOLS

Thus, (3.3.5) applied to g2 yields

‖g‖2
2q ≤ S

(
[8E(g, g)]1/2‖g‖2 +

1

R
‖g‖2

2

)

with q = d/(d− 1). The Hölder inequality

‖g‖2 ≤ ‖g‖1/(1+d)
1 ‖g‖d/(1+d)2q

and the last inequality let us bound ‖g‖2 by

(
S

(
[8E(g, g)]1/2‖g‖2 +

1

R
‖g‖2

2

))1/[2(1+d)]

‖g‖1/(1+d)
1

We raise this to the power 2(1 + d)/d and divide by ‖g‖2 to get

‖g‖(1+2/d)
2 ≤ S

(
[8E(g, g)]1/2 +

1

R
‖g‖2

)
‖g‖2/d

1 .

This yields the desired result.
There is a companion result related to Theorem 2.3.1 and Nash inequalities

of type (2.3.1) versus (2.3.3).

Theorem 3.3.11 Assume that (K,π) satisfies

π(A)(d−1)/d ≤ SQ(∂A) (3.3.7)

for all A ⊂ X such that π(A) ≤ 1/2. Then

∀ g ∈ ℓ2(π), Varπ(g)
(1+2/d) ≤ 8S2E(g, g)‖f‖4/d

1 .

Before proving this theorem, let us introduce the isoperimetric constant associ-
ated with inequality (3.3.7).

Definition 3.3.12 The d-dimensional isoperimetric constant of a finite chain
(K,π) is defined by

Id = Id(K,π) = min
A⊂X :

π(A)≤1/2

Q(∂A)

π(A)1/q

where q = d/(d− 1).

Observe that I ≥ Id with I the isoperimetric constant defined at (3.3.1) (in fact
I ≥ 21/dId). It may be helpful to specialize this definition to the case where
(K,π) is the simple random walk on a r-regular connected symmetric graph
(X ,A). Then Q(e) = 1/|A| = 1/(r|X |), π ≡ 1/|X | and

Id =
2

r|X |1/d min
A⊂X :

#A≤#X/2

#∂∗A

[#A]1/q

where ∂∗A = {(x, y) ∈ A : x ∈ A, y 6∈ A}.
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Lemma 3.3.13 The isoperimetric constant Id(K,π) is also given by

Id(K,π) = inf

{∑
e |df(e)|Q(e)

‖f − c(f)‖q
: f non-constant

}

where q = d/(d− 1) and c(f) denote the smallest median of f .

Proof: For f = 1A with π(A) ≤ 1/2, c(f) = 0 is the smallest median of f .
Hence ∑

e |df(e)|Q(e)

‖f − c(f)‖q
=

Q(∂A)

π(A)1/q
.

It follows that

min
f

{∑
e |df(e)|Q(e)

‖f − c(f)‖q

}
≤ Id(K,π).

To prove the converse, fix a function f and let c be such that π(f > c) ≤ 1/2,
π(f < c) ≤ 1/2. Set f+ = (f−c)∨0, f− = −[(f−c)∧0]. Then f+ +f− = |f−c|
and |df(e)| = |df+(e)|+|df−(e)|. Setting F±,t = {x : f±(x) ≥ t} and using (3.3.2)
we obtain

∑

e

|df(e)|Q(e) ≥
∑

e

|df+(e)|Q(e) +
∑

e

|df−(e)|Q(e)

=

∫ ∞

0

Q(∂F+,t)dt+

∫ ∞

0

Q(∂F−,t)dt

≥ Id

∫ ∞

0

(
π(F+,t)

1/q + π(F−,t)
1/q
)
dt.

Now
π(F±,t)

1/q = ‖1F±,t
‖q = max

‖g‖r≤1
〈1F±,t

, g〉

where 1/r + 1/q = 1. Hence, for any g such that ‖g||r ≤ 1,

∑

e

|df(e)|Q(e) ≥ Id

∫ ∞

0

(
〈1F+,t , g〉 + 〈1F−,t , g〉

)

= Id (〈f+, g〉 + 〈f−, g〉)
= Id 〈|f − c|, g〉.

Taking the supremum over all g with ‖g‖r ≤ 1 we get
∑

e

|df(e)|Q(e) ≥ Id‖f − c‖q. (3.3.8)

The desired inequality follows. Observe that in (3.3.8) c is a median of f .

Proof of Theorem 3.3.11: Fix g and set f = sgn(g − c)|g − c|2 where c is a
median of g, hence 0 is a median of f . The hypothesis of Theorem 3.3.11 implies
that Id ≥ 1/S. Inequality (3.3.8) then shows that

‖g − c‖2
2q = ‖f‖q ≤ S

∑

e

|df(e)|Q(e)|.
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As in the proof of Lemma 3.3.7 we have
∑

e

|df(e)|Q(e) ≤ [8 E(g, g)]1/2‖g − c‖2.

Hence
‖g − c‖2

2q ≤ [8S2 E(g, g)]1/2‖g − c‖2.

Now, the Hölder inequality ‖h‖2 ≤ ‖h‖1/(1+d)
1 ‖h‖d/(1+d)2q yields

‖g − c‖2 ≤
(
[8S2 E(f, f)]1/2‖g − c‖2

)d/2(1+d)
‖g − c‖1/(1+d)

1 .

Thus
‖g − c‖2(1+2/d)

2 ≤ 8S2E(f, f)‖g − c‖4/d
1 .

Since c is a median of g, it follows that

Varπ(g)
1+2/d ≤ 8S2 E(f, f)‖g‖4/d

1 .

This is the desired result.

Example 3.3.3: Consider a square grid X = {0, . . . , n}2 as in Theorem 3.3.8.
The argument developed for Theorem 3.3.8 also yields the following result.

Theorem 3.3.14 For the natural walk on the square grid X = {0, . . . , n}2 the
isoperimetric constant I2 (i.e., d = 2) is given by

I2 =

{ 1
23/2(n+1)

if n+ 1 is even
(n+2)1/2

23/2n1/2(n+1)
if n+ 1 is odd.

By Theorem 3.3.11 it follows that, for all f ∈ ℓ2(π),

Varπ(f)2 ≤ 64(n+ 1)2E(f, f)‖f‖2
1.

By Theorem 2.3.2 this yields

‖hxt − 1‖2 ≤ min
{

23/2(n+ 1)/t1/2, e−[t/64(n+1)2]+1/2
}
.

This is a very good bound which is of the right order of magnitude for all t > 0.

Example 3.3.4: We can also compute Id for a paralellepiped in d-dimensions.

Theorem 3.3.15 For the natural walk on the parallelepiped

X = {0, . . . , n1} × . . .× {0, . . . , nd}
with ni ≤ n1, the isoperimetric constant Id satisfies

Id ≥
1

d21−1/d(n1 + 1)

with equality if n1 + 1 is even. It follows that

Varπ(f)1+2/d ≤ 822(1−1/d) d2 (n1 + 1)2 E(f, f)‖f‖4/d
1 .
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In [28] a somewhat better Nash inequality

‖f‖1+2/d
2 ≤ 64 d (n+ 1)2

(
E(f, f) +

8

d(n+ 1)2
‖f‖2

2

)
‖f‖4/d

1

is proved (in the case n1 = . . . = nd = n) by a different argument.

Example 3.3.5: We now return to the “n-dog”. The Nash inequality in Theo-
rem 3.3.14 yields

‖f‖2
2 ≤

(
64(n+ 1)2E(f, f)‖f‖2

1

)1/2
+ π(f)2

≤
(

64(n+ 1)2
(
E(f, f) +

1

64(n+ 1)2
‖f‖2

2

)
‖f‖2

1

)1/2

.

for all functions f on a square grid {0, . . . , n}2. Now the n-dog is simply two
square grids with one corner in common. Hence, applying the above inequality on
each square grid, we obtain (the constant factor between the uniform distribution
on one grid and the uniform distribution on the n-dog cancel)

‖f‖4
2 ≤ 128(n+ 1)2

(
E(f, f) +

1

32(n+ 1)2
‖f‖2

2

)
‖f‖2

1.

The change by a factor 2 in the numerical constants is due to the fact that the
common corner o appears in each square grid. Recall that using Theorem 3.2.3
we have proved that the spectral gap of the dog is bounded below by

λ ≥ 1

8(n+ 1)2 log(2n+ 1)
.

Applying Theorem 2.3.5 and Corollary 2.3.5, we obtain the following result.

Theorem 3.3.16 For the n-dog made of two square grids {0, . . . , n}2 with the
corners o = o1 = o2 = (0, 0) identified, the natural chain satisfies

∀ t ≤ 32(n+ 1)2, ‖hxt ‖2 ≤ 8e(n+ 1)/t1/2.

Also, for all c > 0 and t = 8(n+ 1)2(5 + c log(2n+ 1))

‖hxt − 1‖2 ≤ e1−c.

This shows that a time of order n2 log n suffices to reach stationarity on the
n-dog. Furthermore, the upper bound on λ that we obtained earlier shows that
this is optimal since maxx ‖hxt − 1‖1 ≥ e−tλ ≥ e−at/(n

2 logn).
Consider now all the eigenvalues 1 = λ0 < λ1 ≤ . . . ≤ λ|X |−1 of this chain.

Corrolary 2.3.9 and Theorem 3.3.16 show that

λi ≥ 10−4(i+ 1)n−2



94 CHAPTER 3. GEOMETRIC TOOLS

for all i ≥ 104. This is a good estimate except for the numerical constant 104.
However, it leaves open the following natural question. We know that λ = λ1

is of order 1/(n2 log n). How many eigenvalues are there such that n2λi tends
to zero as n tends to infinity? Interestingly enough the answer is that λ1 is the
only such eigenvalue. Namely, there exists a constant c > 0 such that, for i ≥ 2,
λi ≥ cn−2. We now prove this fact. Consider the squares

X− = {−n, . . . , 0}2, X+ = {0, · · · , n}2

and set
ψ±(x) = 1X±(x), x ∈ X .

These functions span a two-dimensional vector space E ⊂ ℓ2(X ). On each of the
two squares X−,X+, we have the Poincaré inequality

∑

x∈X±

|f(x)|2 ≤ 1

4
(n+ 1)2

∑

e

|df(e)|2 (3.3.9)

for all function f on X± satisfying
∑
x∈X±

f(x) = 0. In this inequality, the right
most sum runs over all edge e of the grid X±. There are many ways to prove
this inequality. For instance, one can use Theorem 3.2.1 (with paths having only
one turn), or the fact that the spectral gap is exactly 1− cos(π/(n+ 1)) for the
square grid.

Now, if f is a function in ℓ2(X ) which is orthogonal to E (i.e., to ψ− and
ψ+), we can apply (3.3.9) to the restrictions f+, f− of f to X+, X−. Adding up
the two inequalities so obtained we get

∀ f ∈ E⊥,
∑

x∈X
|f(x)|2π(x) ≤ 2(n+ 1)2E(f, f).

By the min-max principle (1.3.7), this shows that

λ2 ≥ 1

2(n+ 1)2
.

Let ψ1 denote the normalized eigenfunction associated to the spectral gap λ.
For each n, let an < bn be such that

lim
n→∞

ann
−2 = +∞, lim

n→∞
bn[n

2 log n]−1 = 0, lim
n→∞

(bn − an) = +∞

and set In = [an, bn]. Using the estimates obtained above for λ1 and λ2 together
with Lemma 1.4.3 we conclude that for t ∈ In and n large enough the density
ht(x, y) of the semigroup Ht on the n-dog is close to

1 + ψ1(x)ψ1(y).

In words, the n-dog presents a sort of metastability phenomenon.
We finish this subsection by stating a bound on higher eigenvalues in terms

of isoperimetry. It follows readily from Theorems 3.3.11 and 2.3.9.
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Theorem 3.3.17 Assume that (K,π) is reversible and satisfies (3.3.7), that is,

π(A)(d−1)/d ≤ SQ(∂A)

for all A ⊂ X such that π(A) ≤ 1/2. Then the eigenvalues λi satisfy

λi ≥
i2/d

8e2/ddS2
.

Compare with [14].

3.3.3 Isoperimetry and the log-Sobolev constant

Theorem 2.3.6 can be used, together with theorems 3.3.10, 3.3.11, to bound the
log-Sobolev constant α from below in terms of isoperimetry. This yields the
following results.

Theorem 3.3.18 Let (K,π) be a finite reversible Markov chain.

1. Assume (K,π) satisfies (3.3.7), that is,

π(A)(d−1)/d ≤ SQ(∂A)

for all A ⊂ X such that π(A) ≤ 1/2. Then the log-Sobolev constant α is
bounded below by

α ≥ 1

4dS2
.

2. Assume instead that (K,π) satisfies (3.3.4), that is,

π(A)(d−1)/d ≤ S

(
Q(∂A) +

1

R
π(A)

)
,

for all set A ⊂ X . Then

α ≥ λ

2
[
1 + 8R2λ+ d

4 log
(
dS2

2R2

)] .

Example 3.3.6: Theorem 3.3.18 and Theorems 3.3.14, 3.3.16 prove that the
two-dimensional square grid X = {0, . . . , n}2 or the two-dimensional n-dog have
α ≃ λ. Namely, for the two-dimensional n-grid, α and λ are of order 1/n2

whereas, for the n-dog, α and λ are of order 1/[n2 logn].

Example 3.3.7: For the d-dimensional square grid X = {0, . . . , n}d, applying
Theorems 3.3.18 and 3.3.15 we obtain

α ≥ 2

d3(n+ 1)2

whereas Lemma 2.2.11 can be used to show that α is of order 1/[dn2] in this
case.
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3.4 Moderate growth

This section presents geometric conditions that implies that a Nash inequality
holds. More details and many examples can be found in [25, 26, 28]. Let us
emphasize that the notions of moderate growth and of local Poincaré in-
equality presented briefly below are really instrumental in proving useful Nash
inequalities in explicit examples. See [28].

Definition 3.4.1 Let (K,π) be an irreducible Markov chain on a finite state
space X . Let A be an adapted edge set according to Definition 3.1.1. Let d(x, y)
denote the distance between x and y in (X ,A) and γ = maxx,y d(x, y) be the
diameter. Define

V (x, r) = π({y : d(x, y) ≤ r}).

(1) We say the (K,π) has (M,d)-moderate growth if

V (x, r) ≥ 1

M

(
r + 1

γ

)d
for all x ∈ X and all r ≤ γ.

(2) We say that (K,π) satisfies a local Poincaré inequality with constant a > 0
if

‖f − fr‖2
2 ≤ ar2E(f, f) for all functions f and all r ≤ γ

where

fr(x) =
1

V (x, r)

∑

y:d(x,y)≤r
f(y)π(y).

Moderate growth is a purely geometric condition. On one hand it implies (take
r = 0) that π∗ ≥ M−1γ−d. If π is uniform, this says |X | ≤ Mγd. On the other
hand, it implies that the volume of a ball of radius r grows at least like rd.

The local Poincaré inequality implies in particular (take r = γ) that Varπ(f) ≤
aγ2E(f, f), that is λ ≥ 1/(aγ2). It can sometimes be checked using the following
lemma.

Lemma 3.4.2 For each (x, y) ∈ X 2, x 6= y, fix a path γ(x, y) in Γ(x, y). Then

‖f − fr‖2
2 ≤ η(r)E(f, f)

where

η(r) = max
e∈A





2

Q(e)

∑

x,y:d(x,y)≤r,
γ(x,y)∋e

|γ(x, y)|π(x)π(y)

V (x, r)




.

See [28], Lemma 5.1.
Definition 3.4.1 is justified by the following theorem.
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Theorem 3.4.3 Assume that (K,π) has (M,d) moderate growth and satisfies
a local Poincaré inequality with constant a > 0. Then λ ≥ 1/aγ2 and (K,π)
satisfies the Nash inequality

‖f‖2(1+2/d)
2 ≤ C

(
E(f, f) +

1

aγ2
‖f‖2

2

)
‖f‖4/d

1

with C = (1 + 1/d)2(1 + d)2/dM2/daγ2. It follows that

‖hxt − 1‖2 ≤ Be−c for t = aγ2(1 + c), c > 0

with B = (e(1 + d)M)1/2(2 + d)d/4. Also, the log-Sobolev constant satisfies α ≥
ε/γ2 with ε−1 = 2a(2 + logB).

Futhermore, there exist constants ci, i = 1, . . . , 6, depending only on M,d, a
and such that λ ≤ c1/γ

2, α ≤ c2/γ
2 and, if (K,π) is reversible,

c3e
−c4t/γ2 ≤ max

x
‖hxt − 1‖1 ≤ c5e

−c6t/γ2

.

See [28], Theorems 5.2, 5.3 and [29], Theorem 4.1.
One can also state the following result for higher eigenvalues of reversible

Markov chains.

Theorem 3.4.4 Assume that (K,π) is reversible, has (M,d) moderate growth
and satisfies a local Poincaré inequality with constant a > 0. Then there exists
a constant c = c(M,d, a) > 0 such that λi ≥ ci2/dγ−2.
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Chapter 4

Comparison techniques

This chapter develops the idea of comparison between two finite chains K,K ′.
Typically we are interested in studying a certain chain K on X . We consider
an auxilliary chain K ′ on X or even on a different but related state space X ′.
This auxilliary chain is assumed to be well-known, and the chain K is not too
different from K ′. Comparison techniques allow us to transfer information from
K to K ′. We have already encounter this idea several times. It is emphasized
and presented in detail in this chapter. The main references for this chapter are
[23, 24, 30].

4.1 Using comparison inequalities

This section collects a number of results that are the keys of comparison tech-
niques. Most of these results have already been proved in previous chapters,
sometimes under less restrictive hypoheses.

Theorem 4.1.1 Let (K,π), (K ′, π′) be two irreducible finite chains defined on
two state spaces X , X ′ with X ⊂ X ′. Assume that there exists an extention map
f → f̃ that associates a function f̃ : X → R to any function f : X ′ → R and
such that f̃(x) = f(x) if x ∈ X . Assume further that there exist a,A > 0 such
that

∀ f : X → R, E ′(f̃ , f̃) ≤ AE(f, f) and ∀x ∈ X , aπ(x) ≤ π′(x).

Then

(1) The spectral gaps λ, λ′ and the log-Sobolev constants α, α′ satisfy

λ ≥ aλ′/A , α ≥ aα′/A.

In particular

‖hxt − 1‖2 ≤ e1−c for all t =
Ac

aλ′
+

A

2aα′ log+ log
1

π(x)
with c > 0.

99
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(2) If (K,π) and (K ′, π′) are reversible chains, and |X | = n, |X ′| = n′,

∀ i = 1, . . . , n− 1, λi ≥ aλ′i/A

where (λi)
n−1
0 (resp (λ′i)

n′−1
0 ) are the eigenvalues of I −K (resp. I −K ′)

in nondecreasing order. In particular, for all t > 0,

|||ht − 1|||2 ≤ |||h′at/A − 1|||2 =
n′−1∑

1

e−2atλ′
i/A

where

|||ht − 1|||2 =
∑

x,y

|ht(x, y) − 1|2π(x)π(y) =
∑

x

‖hxt − 1‖2
2π(x).

(3) If (K,π) and (K ′, π′) are reversible chains and that there exists a group
G that acts transitively on X with K(gx, gy) = K(x, y) and π(gx) = π(x)
then

∀x ∈ X , ‖hxt − 1‖2
2 ≤

n′−1∑

1

e−2atλ′
i/A.

(4) If (K,π) and (K ′, π′) are invariant under transitive group actions then

∀x ∈ X , x′ ∈ X ′, ‖hxt − 1‖2 ≤ ‖h′x′

at/A − 1‖2.

Proof: The first assertion follows from Lemma 2.2.12 and Corollary 2.2.4. The
second uses Theorem 1.3.4 and (1.3.6). The last statement simply follows from
(2) and the fact that ‖hxt − 1‖2 does not depend on x under the hypotheses of
(3). Observe that the theorem applies when X = X ′. In this case the extention
map f → f̃ = f is the identity map on functions.

These results shows how the comparison of the Dirichlet forms E , E ′ allows us
to bound the convergence of ht towards π in terms of certain parameters related
to the chain K ′ which we assume we understand better. The next example
illustrates well this technique.

Example 4.1.1: Let Z = {0, 1}n. Fix a nonnegative sequence a = (ai)
n
1 and

b ≥ 0. Set

X (a, b) = X =
{
x = (xi)

n
1 ∈ Z :

∑
aixi ≤ b

}
.

On this set, consider the Markov chain with Kernel

Ka,b(x, y) = K(x, y) =





0 if |x− y| > 1
1/n if |x− y| = 1

(n− n(x))/n if x = y

where n(x) = na,b(x) is the number of y ∈ X such that |x− y| = 1, that is, the
number of neighbors of x in Z that are in X . Observe that this definition makes
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sense for any (say connected) subset of Z. This chains is symmetric and has the
uniform distibution π ≡ 1/|X | as reversible measure.

For instance, in the simple case where ai = 1 for all i,

X (1, b) =

{
x ∈ {0, 1}n :

∑

i

xi ≤ b

}

and

K1,b(x, y) =





0 if |x− y| > 1
1/n if |x− y| = 1

(n− b)/n if x = y and |x| = b.

As mentioned in the introduction, proving that a polynomial time t = O(nA)
suffices to insure convergence of this chain, uniformly over all possible choices of
a, b, is an open problem.

Here we will prove a partial result for a, b such that X (a, b) is big enough. Set
|x| =

∑n
1 xi. Set also x ≤ y (resp. <) if xi ≤ yi (resp. <) for x, y ∈ Z. Clearly,

y ∈ X (a, b) and x ≤ y implies that x ∈ X (a, b). Furthermore, if |x−y| = 1, then
either x < y or y < x. Set

V ↓(x) = {y ∈ Z : |x− y| = 1, y < x}.

Now, we fix a = (ai)
n
1 and b. For each integer c let Xc be the set

Xc = X
⋃{

z ∈ Z :
∑

xi ≤ c
}
.

Hence Xc+1 is obtained from Xc by adding the points z with
∑
zi = c+ 1. On

each Xc we consider the natural chain defined as above. We denote by

Ec(f, f) =
1

2n|X c|
∑

x,y∈Xc

|x−y|=1

|f(x) − f(y)|2

its Dirichlet form. We will also use the notation πc, Varc, λc, αc.
Define ℓ to be the largest integer such that

∑
i∈I ai ≤ b for all subsets I ⊂

{1, . . . , n} with #I = ℓ. Observe that Xc = X for c ≤ ℓ. Also, Xn = Z = {0, 1}n.
We claim that the following inequalities hold between the spectral gaps and log-
Sobolev constants of the natural chains on X c, X c+1.

λc+1 ≤
(

1 +
2(n− c)

c+ 1

)
λc (4.1.1)

αc+1 ≤
(

1 +
2(n− c)

c+ 1

)
αc. (4.1.2)

If we can prove these inequalities, it will follow that

2

n
≤ e2

(n−ℓ)2

ℓ+1 λ(a, b) (4.1.3)

1

n
≤ e2

(n−ℓ)2

ℓ+1 α(a, b) (4.1.4)
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where λ(a, b) and α(a, b) are the spectral gap and log-Sobolev constant of the
chain K = Ka,b on X = Xa,b. To see this use

n−1∑

c=ℓ

n− c

c+ 1
≤ (n− ℓ)

n−1∑

ℓ

1

c+ 1
≤ (n− ℓ)2

ℓ+ 1
.

To prove (4.1.1), (4.1.2) we proceed as follows. Fix c ≥ ℓ. Given a function
f : Xc → R we extend it to a function f̃ : Xc+1 → R by the formula

f̃(x) =

{
f(x) if x ∈ X c

1
c+1

∑
y∈V ↓(x) f(y) if x ∈ Xc+1 \ Xc

(observe that #V ↓(x) = c+ 1 if |x| = c+ 1). With this definition, we have

Varc(f) ≤
∑

x∈Xc

|f(x) − πc+1(f̃)|2 1

|Xc|

≤ |Xc+1|
|Xc|

∑

x∈Xc+1

|f̃(x) − πc+1(f̃)|2 1

|Xc+1|
≤ |Xc+1|

|Xc|
Varc+1(f̃)

and, similarly, Lc(f) ≤ [|Xc+1|/|Xc|]Lc+1(f̃). We can also bound Ec+1(f̃ , f̃) in
terms of Ec(f, f).

Ec+1(f̃ , f̃) =
1

2n|Xc+1|
∑

x,y∈Xc+1:

|x−y|=1

|f̃(x) − f̃(y)|2

≤ |Xc|
|Xc+1|




1

2n|Xc|
∑

x,y∈Xc:
|x−y|=1

|f(x) − f(y)|2

+
1

n|Xc|
∑

x:|x|=c+1

∑

y∈V ↓(x)

|f̃(x) − f(y)|2




=
|Xc|

|Xc+1|

(
Ec(f, f) +

1

n|Xc|
R
)
.

We now bound R in terms of Ec(f, f). If |x − y| = 2, let x ∧ y be the unique
element in V ↓(x) ∩ V ↓(y).

R =
∑

x:|x|=c+1

∑

y∈V ↓(x)

|f̃(x) − f(y)|2

=
∑

x:|x|=c+1

1

2(c+ 1)

∑

y,z∈V ↓(x)

|f(z) − f(y)|2

≤
∑

x:|x|=c+1

1

c+ 1
|f(z) − f(z ∧ y)|2 + |f(z ∧ y) − f(y)|2
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≤
∑

x:|x|=c+1

2

c+ 1

∑

v∈V ↓(x)

u∈V ↓(v)

|f(v) − f(u)|2

≤ 2n(n− c)|Xc|
c+ 1

Ec(f, f).

Hence

Ec+1(f̃ , f̃) ≤ |Xc|
|Xc+1|

(
1 +

2(n− c)

c+ 1

)
Ec(f, f).

Now, Lemmma 2.2.12 yields the claimed inequalities (4.1.1) and (4.1.2). We
have proved the following result.

Theorem 4.1.2 Assume that a = (ai)
n
1 , b and ℓ are such that ai, b ≥ 0 and∑

i∈I ai ≤ b for all I ⊂ {1, . . . , n} satisfying #I ≤ n − n1/2. Then the chain
Ka,b on

X (a, b) =

{
x = (xi)

n
1 ∈ {0, 1}n :

∑

i

aixi ≤ b

}

satisfies

λ(a, b) ≥ 2ǫ

n
, α(a, b) ≥ ǫ

n
with ǫ = e−4

The associated semigroup Ht = Ha,b,t = e−t(I−Ka,b) satisfies

‖hxt − 1‖2 ≤ e1−c for t = (4ǫ)−1n (logn + 2c) .

These are good estimates and I believe it would be difficult to prove similar
bounds for ‖hxt −1‖2 without using the notion of log-Sobolev constant (coupling
is a possible candidate but if it works, it would only give a bound in ℓ1).

In the case where ai = 1 for all i and b ≥ n/2, we can use the test function
f(x) =

∑
i<n/2(xi − 1/2)−∑i>n/2(xi − 1/2) to bound λ(1, b) and α(1, b) from

above. Indeed, this function satisfies π1,b(f) = πZ(f) = 0 (use the symmetry

that switches i < n/2 and i > n/2) and Var1,b(f, f) ≥ 2 |Z|
|X (a,b)|VarZ(f, f) (use

the symmetry x→ x+ 1 mod (2)). Also Ea,b ≤ |X (a,b)|
|Z| EZ . Hence λ(a, b) ≤ 4/n,

α(a, b) ≤ 2/n in this particular case.

4.2 Comparison of Dirichlet forms using paths

The path technique of Section 3.1 can be used to compare two Dirichlet forms on
a same state space X . Together with Theorem 4.1.1 this provides a powerful tool
to study finite Markov chains that are not too different from a given well-known
chain. The results presented below can be seen as extentions of Theorems 3.2.1,
3.2.5. Indeed, what has been done in these theorems is nothing else than compar-
ing the chain (K,π) of interest to the “trivial” chain with kernel K ′(x, y) = π(y)
which has the same stationary distribution π. This chain K ′ has Dirichlet form
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E ′(f, f) = Varπ(f) and is indeed well-known: It has eigenvalue 1 with multiplic-
ity 1 and all the other eigenvalues vanish. Its log-Sobolev constant is given in
Theorem 2.2.9. Once the Theorems of Section 3.2 have been interpreted in this
manner their generalization presented below is straight-forward.

We will use the following notation. Let (K,π) be the unknown chain of
interest and

Q(e) =
1

2
(K(x, y)π(x) +K(y, x)π(y)) if e = (x, y).

Let A be an adapted edge-set according to Definition 3.1.1 and let

Γ =
⋃

x,y

Γ(x, y)

where Γ(x, y) be the set of all paths from x to y that have no repeated edges.

Theorem 4.2.1 Let K be an irreducible chain with stationary measure π on a
finite set X . Let A be an adapted edge-set for K. Let (K ′, π′) be an auxilliary
chain. For each (x, y) ∈ X ×X such that x 6= y and K ′(x, y) > 0 choose exactly
one path γ(x, y) in Γ(x, y). Then E ′ ≤ AE where

A = max
e∈A





1

Q(e)

∑

x,y∈X :
γ(x,y)∋e

|γ(x, y)|K ′(x, y)π′(x)




.

Proof: For each (x, y) ∈ X × X such that K ′(x, y) > 0, write

f(y) − f(x) =
∑

e∈γ(x,y)
df(e)

and, using Cauchy-Schwarz,

|f(y) − f(x)|2 ≤ |γ(x, y)|
∑

e∈γ(x,y)
|df(e)|2.

Multiply by 1
2K

′(x, y)π′(x) and sum over all x, y to obtain

1

2

∑

x,y

|f(y) − f(x)|2K ′(x, y)π′(x) ≤ 1

2

∑

x,y

|γ(x, y)|
∑

e∈γ(x,y)
|df(e)|2K ′(x, y)π(x).

The left-hand side is equal to E ′(f, f) whereas the right-hand side becomes

1

2

∑

e∈A





1

Q(e)

∑

x,y:
γ(x,y)∋e

|γ(x, y)K ′(x, y)|π′(x)



 |df(e)|2Q(e)



4.2. COMPARISON OF DIRICHLET FORMS USING PATHS 105

which is bounded by

max
e∈A





1

Q(e)

∑

x,y:
γ(x,y)∋e

|γ(x, y)|K ′(x, y)π′(x)



 E(f, f).

Hence
∀ f, E(f, f) ≤ AE(f, f)

with A as in Theorem 4.2.1.

Theorems 4.1.1, 4.2.1 are helpful for two reasons. First, non-trivial informa-
tions about K ′ can be brought to bear in the study of K. Second, the path
combinatorics that is involved in Theorem 4.2.1 is often simpler than that in-
volved in Theorem 3.2.1 because only the pairs (x, y) such that K ′(x, y) > 0
enter in the bound. These two points are illustrated by the next example.

Example 4.2.1: Let X = {0, 1}n. Let x → τ(x), be defined by [τ(x)]i = xi−1,
1 < i ≤ n, [τ(x)]1 = xn. Let x → σ(x) be defined by σ(x) = x + (1, 0, . . . , 0).
Set K(x, y) = 1/n if either y = τ j(x) for some 1 ≤ j ≤ n or y = σ(x), and
K(x, y) = 0 otherwise. This chain is reversible with respect to the uniform
distribution. In Section 3.2, we have seen that λ ≥ 1/n3 by Theorem 3.2.1.
Here, we compare K with the chain K ′(x, y) = 1/n if |x−y| = 1 and K(x, y) = 0
otherwise. For (x, y) with |x− y| = 1, let i be such that xi 6= yi. Let

γ(x, y) = (x, τ j(x), σ ◦ τ j(x), τ−j ◦ σ ◦ τ j(x) = y)

where j = i if i ≤ n/2 and j = n− i if i > n/2. These paths have length 3. The
constant A of Theorem 4.2.1 becomes

A = 3max
e∈A

# {(x, y) : K ′(x, y) > 0, γ(x, y) ∋ e} .

If e = (u, v) with v = τ j(u), there are only two (x, y) such that e ∈ γ(x, y)
depending on whether σ appears after or before e. If v = σ(u), there are n
possibilities depending on the choice of j ∈ {0, 1, . . . , n − 1}. Hence A = 3n.
Since λ′ = 2/n and α′ = 1/n, this yields

λ ≥ 2

3n2
, α ≥ 1

3n2
.

Also it follows that

max
x

‖hxt − 1‖2 ≤ e1−c for t =
3n2

4
(2c+ logn) , c > 0.

Example 4.2.2: Consider a graph (X ,A) where A is a symmetric set of oriented
edges. Set d(x) = #{y ∈ X : (x, y) ∈ A} and

K(x, y) =

{
0 if (x, y) 6∈ A

1/d(x) if (x, y) ∈ A.
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This is the kernel of the simple random walk on (X ,A). It is reversible with
respect to the measure π(x) = d(x)/|A|. For each (x, y) ∈ X 2 choose a path
γ(x, y) with no repeated edges. Set

d∗ = max
x∈X

d(x), γ∗ = max
x,y∈X

|γ(x, y)|, η∗ = max
e∈A

#{(x, y) ∈ X 2 : γ(x, y) ∋ e}.

We now compare with the chain K ′(x, y) = 1/|X | which has reversible measure
π′(x) = 1/|X | and spectral gap λ′ = 1. Theorem 4.2.1 gives λ ≥ a/A with

A ≤ |A|γ∗η∗
|X |2 and a =

|A|
d∗|X | .

This gives

Theorem 4.2.2 For the simple random walk on a graph (X ,A) the spectral gap
is bounded by

λ ≥ |X |
d∗γ∗η∗

.

Compare with Example 3.2.4 where we used Theorem 3.2.1 instead. The present
result is slightly better than the bound obtained there. It is curious that one
obtains a better bound by comparing with the chain K ′(x, y) = 1/|X | as above

than by comparing with the K̃(x, y) = π(y) which corresponds to Theorem 3.2.1.

It is a good exercise to specialize Theorem 4.2.1 to the case of two left in-
variant Markov chains K(x, y) = q(x−1y), K ′(x, y) = q′(x−1y) on a finite group
G. To take advantage of the group invariance, write any element g of G as a
product

g = gǫ11 · · · gǫkk
with q(gi) + q(g−1

i ) > 0. View this as a path γ(g) from the identity id of G to
g. Then for each (x, y) with q′(x−1y) > 0, write

x−1y = g(x, y) = gǫ11 · · · gǫkk
(where the gi and ǫi depend on (x, y)) and define

γ(x, y) = xγ(g) = (x, xg1, . . . , xg1 . . . gk−1, xg(x, y) = y).

With this choice of paths Theorem 4.2.1 yields

Theorem 4.2.3 Let K,K ′ be two invariant Markov chains on a group G. Set
q(g) = K(id, g), q′(g) = K ′(id, g). Let π denote the uniform distribution. Fix
a generating set S satisfying S = S−1 and such that q(s) + q(s−1) > 0. for all
s ∈ S. For each g ∈ G such that q′(g) > 0, choose a writing of g as a product of
elements of S, g = s1 . . . sk and set |g| = k. Let N(s, g) be the number of times
s ∈ S is used in the chosen writing of g. Then E ≤ AE ′ and λ ≥ λ′/A with

A = max
s∈S





2

q(s) + q(s−1)

∑

g∈G
|g|N(s, g)q′(g)



 .
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Assume further that K,K ′ are reversible and let λi (resp. λ′i), i = 0, . . . , |G| − 1
denote the eigenvalues of I −K (resp. I −K ′) in non-decreasing order. Then
λi ≥ λ′i/A for all i ∈ {1, . . . , |G| − 1} and

∀x ∈ G, ‖hxt − 1‖2 ≤ ‖h′xt/A − 1‖2.

Proof: (cf. [23], pg 702) We use Theorem 4.2.1 with the paths described above.
Fix an edge e = (z, w) with w = zs. Observe that there is a bijection between

{(g, h) ∈ G×G : γ(g, h) ∋ (z, w)}

and

{(g, u) ∈ G×G : ∃ i such that si(u) = s, z = gs1(u) · · · si−1(u)}

given by (g, h) → (g, g−1h) = (g, u). For each fixed u = g−1h, there are exactly
N(s, u) g ∈ G such that (g, u) belongs to

{(x, u) ∈ G×G : ∃ i such that si(u) = s, z = xxs1(u) · · · si−1(u)}.

Hence ∑

(g,h)∈G×G:γ(g,h)∋(z,w)

|γ(g, h)| =
∑

u∈G
|u|N(s, u).

This proves the desired result. See also [24] for a more direct argument.

We now extend Theorem 4.2.1 to allow the use of a set of paths for each pair
(x, y) with K ′(x, y) > 0.

Definition 4.2.4 Let (K,π), K ′, π′ be two irreducible Markov chains on a same
finite set X . Let A be an adapted edge-set for (K,π). A (K,K ′)-flow is non-
negative function φ : Γ(K ′) → [0,∞[ on the path set

Γ(K ′) =
⋃

x,y:
K′(x,y)>0

Γ(x, y)

such that

∀x, y ∈ X , x 6= y, K ′(x, y) > 0,
∑

γ∈Γ(x,y)

φ(γ) = K ′(x, y)π′(x).

Theorem 4.2.5 Let K be an irreducible chain with stationary measure π on a
finite set X . Let A be an adapted edge-set for (K,π). Let (K ′, π′) be a second
chain and φ be a (K,K ′)-flow. Then E ′ ≤ A(φ)E where

A(φ) = max
e∈A





1

Q(e)

∑

γ∈Γ(K′):
γ∋e

|γ|φ(γ)




.
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Proof: For each (x, y) such that K ′(x, y) > 0 and each γ ∈ Γ(x, y) write

|f(y) − f(x)|2 ≤ |γ|
∑

e∈γ
|df(e)|2.

Then
|f(y) − f(x)|2K ′(x, y)π′(x) ≤

∑

γ∈Γ(x,y)

|γ|
∑

e∈γ
|df(e)|2φ(γ).

From here, complete the proof as for Theorem 4.2.1.

Corollary 4.2.6 Assume that there is a group G which acts on X and such that

π(gx) = π(x), π′(gx) = π′(x), Q(gx, gy) = Q(x, y), Q′(gx, gy) = Q′(x, y).

Let A be an adapted edge-set for (K,π) such that (x, y) ∈ A ⇒ (gx, gy) ∈ A. Let

A =
⋃k

1 Ai, be the partition of A into transitive classes for this action. Then
E ′ ≤ AE where

A = max
1≤i≤k

{
1

|Ai|Qi
∑

x,y

Ni(x, y)dK(x, y)K ′(x, y)π(x)

}
.

Here |Ai| = #Ai, Qi = Q(ei) with ei ∈ Ai, dK(x, y) is the distance between x
and y in (X ,A), and Ni(x, y) is the maximum number of edges of type i in a
geodesic path from x to y.

Proof: Consider the set G(x, y) of all geodesic paths from x to y. Define a
(K,K ′)-flow φ by setting

φ(γ) =

{
K ′(x, y)π′(x)/#G(x, y) if γ ∈ G(x, y)

0 otherwise.

Then A(φ) = maxeA(φ, e) where

A(φ, e) =
1

Q(e)

∑

γ∈Γ:
γ∋e

|γ|φ(γ).

By hypothesis, A(φ, ei) = Ai(φ) does not depend on ei ∈ Ai. Indeed, if gγ
denote the image of the path γ under the action of g ∈ G, we have |gγ| = |γ|,
φ(gγ) = φ(γ). Summing for each i = 1, . . . , k over all edges in Ai, we obtain

A(φ, ei) =
1

|Ai|Qi
∑

e∈Ai

∑

γ∈Γ:
γ∋e

|γ|φ(γ)

=
1

|Ai|Qi
∑

e∈Ai

∑

x,y

∑

γ∈G(x,y):
γ∋e

d(x, y)K ′(x, y)π′(x)

#G(x, y)

≤ 1

|Ai|Qi
∑

x,y

Ni(x, y)d(x, y)K
′(x, y)π′(x).
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This proves the desired bound.

Example 4.2.3: Let X be the set of all the n-sets of {0, 1, . . . , 2n − 1}. On
this set, consider two chains. The unknown chain of interest is the chain K of
Example 3.2.8:

K(x, y) =

{
1/n if #(x ∩ y) = n− 2 and 0 ∈ x⊕ y
0 otherwise

This is a reversible chain with respect to the uniform distribution π ≡
(

2n
n

)−1
.

Let AK = {e = (x, y) : K(x, y) 6= 0} be the obvious K-adapted edge-set.
The better known chain K ′ that will be used for comparison is a special case

of the chain considered of Example 3.2.7:

K ′(x, y) =

{
1/n2 if #(x ∩ y) = n− 2

0 otherwise

The chain K ′ is studied in detail in [34] using Fourier analysis on the Gelfand
pair (S2n, Sn × Sn). The eigenvalues are known to be the numbers

i(2n− i+ 1)

n2
with multiplicity

(
2n

i

)
−
(

2n

i− 1

)
, 0 ≤ i ≤ n.

In particular, the spectral gap of K ′ is λ′ = 2/n. This chain is known as the
Bernoulli-Laplace diffusion model.

As in Example 3.2.8, the symmetric group S2n−1 which fixes 0 acts on X and
preserves both chains K, K ′. There are two classes A1,A2 of K-edges for this
action: those edges (x, y), x ⊕ y = 2, with 0 ∈ x ⊕ y and those with 0 6∈ x ⊕ y.
Hence, we have E ′ ≤ AE with

A =
2

n2
(

2n
n

) max
i=1,2




∑

x,y
x⊕y=2

Ni(x, y)dK(x, y)



 .

Now, if x⊕ y = 2 then

dK(x, y) =

{
1 if 0 ∈ x⊕ y
2 if 0 6∈ x⊕ y.

Moreover, in both cases, Ni(x, y) = 0 or 1. This yields

A ≤ 4

n2
(

2n
n

)
∑

x,y
x⊕y=2

1 = 4.

Thus
E ′ ≤ 4E .

This shows that

λ ≥ 1

2n
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improving slightly upon the bound obtained in Example 3.2.8.
In their paper [34], Diaconis and Shahshahani actually show that

‖h′xt − 1‖2 ≤ be−c for t =
1

4
n(2c+ logn).

Using the comparison inequality E ′ ≤ 4E and Theorem 4.1.1(2) we deduce from
Diaconis and Shahshahani result that

|||ht − 1||| ≤ be−c for t = n(2c+ logn).

Furthermore, the group S2n−1 fixing 0 acts with two transitive classes on X . A
vertex x is in one class or the other depending on whether or not x contains 0.
The two classes have the same cardinality. Since ‖hxt − 1‖2 depends only of x
through its class, we have

|||ht − 1|||2 =
1

2

(
‖hx1

t − 1‖2
2 + ‖hx2

t − 1‖2
2

)

where x1 ∋ 0 and x2 6∋ 0 are fixed elements representing their class. Hence, we
also have

max
x

‖hxt − 1‖2 ≤ 2be−c for t = n(2c+ logn).

This example illustrates well the strength of the idea of comparison which
allows a transfer of information from one example to another.
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[73] Stein E. and Weiss G. (1971) Introduction to Fourier analysis in Euclidean
spaces. Princeton Univ. Press, Princeton.



116 BIBLIOGRAPHY

[74] Stong R. (1995) Random walks on the groups of upper triangular matrices
Ann. Prob., 23, 1939-1949.

[75] Stong R. (1995) Eigenvalues of the natural random walk on the Burnside
group B(3, n). Ann. Prob., 23, 1950-1960.

[76] Stong R. (1995) Eigenvalues of random walks on groups. Ann. Prob., 23,
1961-1981.

[77] Swendsen R. H. and Wang J-S. (1987) Nonuniversal critical dynamics in
Monte-Carlo simulations, Physical review letters, 58, 86-88.

[78] Varopoulos N. (1985) Semigroupes d’opérateurs sur les espaces Lp. C. R.
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