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Abstract—This paper studies the asymptotic properties of
the Hessian in discrete-time linear quadratic optimal control.
We show that the singular values of the Hessian converge, in
a well defined sense, to the principal gains in the frequency
domain of an associated normalized system transfer function.
We treat the stable and unstable case for multi-input multi-
output linear systems. Potential applications of the ideas
presented here include fast and/or robust algorithms for
constrained model predictive control of discrete-time linear
systems.

I. INTRODUCTION

This paper is aimed at contributing to the development

of fast and/or robust algorithms for constrained model pre-

dictive control (MPC) of discrete-time linear systems. This

class of algorithms have become widely used in process

control applications [7], [8], [9]. Usually the problem is

posed as a quadratic program [1], [10]. There has also

been recent interest in, so called, explicit forms of model

predictive control [2], [16]. The latter algorithms offer

the potential for greater computational efficiency in high

speed applications. Other approximate algorithms aimed

at high speed applications are described in [6], [4]. A

special type of algorithms in this class uses a singular value

decomposition (SVD) of the associated Hessian to suggest

directions in which the system input has a “high gain” to the

corresponding cost function [11], [13], [15]. Similar ideas

have been suggested for constrained continuous-time linear

systems [5].

The current paper contributes to this circle of ideas by

further exploring the SVD structure of discrete-time linear

quadratic optimal control problems. Earlier work (see for

example [13]) was restricted to stable single-input single-

output systems. Here we extend the result to stable and/or

unstable multi-input multi-output systems. The key result

in the paper is to establish an asymptotic equivalence

between the singular values of the Hessian and the principal

gains in the frequency domain of an associated normalized

system transfer function. This result allows one to apply

frequency domain intuition to the control of constrained

linear systems. Potential applications include:

• improved algorithms for high dimension multi-input

multi-output systems of the type described in [12];

• new methods for treating ill-conditioning problems

in the constrained-control of unstable systems (see

Section III below)
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• utilization of frequency domain insights to develop

model predictive control algorithms exhibiting robust-

ness to unconstrained uncertainty. In particular, it

seems heuristically reasonable that one should restrict

the optimization to the set of frequencies where the

relative model error is small. This would allow one

to link traditional robust control approaches of uncon-

strained linear systems to the constrained case (Details

of this idea are currently being developed but the core

building block is the kind of frequency domain link

established in the current paper).

The layout of the remainder of the paper is as follows: in

Section II we describe the finite horizon linear quadratic op-

timal control problem which is central to MPC algorithms.

In section III we address the case of unstable systems.

Section IV examines the limiting properties of the singular

values of the Hessian when the prediction horizon is taken

to infinity. The result is substantiated with an example based

on a MIMO plant having both stable and unstable modes

in Section V. Finally, we draw conclusions in Section VI.

II. RECEDING HORIZON QUADRATIC OPTIMAL

CONTROL

Linear quadratic optimal receding horizon control solves,

at each time step, the following optimization problem

PN (x) : {uk}OPT , arg min JN (x, {uk}) (1)

where

JN (x, {uk}) ,

N−1∑

k=0

[
xT

k Qxk + uT
k R uk

]
+ xT

NP xN (2)

subject to

x0 = x

xk+1 = Axk + Buk

uk ∈ U

xk ∈ X

xN ∈ Xf ⊂ X

(3)

for k = 0, 1, . . . , N − 1, N ∈ Z
+. xk ∈ R

n is the state

vector and uk ∈ R
m is the input vector. x is the current

measured (or observed) state. Q = QT ≥ 0, R = RT > 0
and P = P T ≥ 0. The pair (A,B) is assumed stabilisable
and the pair (A,Q

1
2 ) detectable. U and X are convex input

and state constraints respectively that contain the origin. Xf

is a final constraint set. Once the optimal control sequence

{uk}OPT is obtained, only the first element uOPT0 is applied



to the plant and the procedure is repeated when a new

state measurement x becomes available. More details about

receding horizon control can be found in [8], [7], [3].

III. PROBLEM FORMULATION FOR UNSTABLE

SYSTEMS

Consider the following normalized system based on the

objective function defined in (2),

Sn : xk+1 = Axk + BR− 1
2 u′

k

yk = Q
1
2 xk

(4)

Assume the eigenvalues of A are not on the unit disc. Then,

we can separate stable and unstable modes using a suitable

state space transformation and write Sn as follows,

Sd :

[
xs

k+1

xu
k+1

]
=

[
As 0
0 Au

] [
xs

k

xu
k

]
+

[
Bs

Bu

]
u′

k

yk =
[
Cs Cu

] [
xs

k

xu
k

] (5)

where the superscripts indicate stable and unstable parts.

One way of implementing the optimization problemPN (x)
in (1) is to include the above model implicitly when building

the matrices for the associated quadratic program (QP).

However, it is well known that this approach leads to

serious numerical problems, especially when long predic-

tion horizons are used [14], [7]. The reason for this is

that the solution to the system of equations (5) contains

exploding terms of the type Ak
u. Ways of avoiding this

difficulty include pre-stabilizing the predictions [14], or

considering the system equations (5) as explicit equality

constraints in the optimization. In this Section we propose

yet another alternative. This new implementation ofPN (x)
is also instrumental to extend our earlier results on the

characterization of the singular values of the Hessian of

JN (x, {uk}) when N → ∞ [11] to unstable systems. This
will be further analysed in Section IV. In this contribution,

we propose to solve only the stable modes of (5) in forward

time i.e.,

ys
k , Csx

s
k = CsA

k
sxs

0 +

k−1∑

j=0

CsA
k−1−j
s Bsu

′
j (6)

and solve the unstable modes in reverse time, starting from

the unstable state xu
N at time k = N . That is,

yu
k , Cuxu

k = CuA−(N−k)
u xu

N−
N−1∑

j=k

CuAk−1−j
u Buu′

j (7)

In doing so, we ensure that the associated Markov param-

eters, for both stable and unstable modes, are convergent.

This prevents the appearance of any numerical issue. We

note that the final unstable state xu
N and input sequence

{u′
j} are related to the unstable state initial conditions via

the following equality

A−N
u xu

N −
N−1∑

j=0

A−j−1
u Buu′

j = xu
0 (8)

Define the vectors

y =
[
yT
1 yT

2 . . . yT
N

]T

ys =
[
ys T
1 ys T

2 . . . ys T
N

]T

yu =
[
yu T
1 yu T

2 . . . yu T
N

]T

u =
[
(u′

0)
T (u′

1)
T . . . (u′

N−1)
T
]T

(9)

From (5) we note that y = ys + yu. Therefore, we have

y = (Γs + Γu)︸ ︷︷ ︸
Γ

u + Ωuxu
N + Ωsx

s
0

subject to

Lu + A−N
u xu

N = xu
0

(10)

where

Γs ,




CsBs 0 ··· 0

CsAsBs CsBs ··· 0

...
...

. . .
...

CsAN−1
s Bs CsAN−2

s Bs ··· CsBs



 (11)

Γu , −





0 CuA−1
u Bu CuA−2

u Bu ... CuA−(N−1)
u Bu

0 CuA−1
u Bu ... CuA−(N−2)

u Bu

. . .
. . .

...
0 0 CuA−1

u Bu

0



 (12)

and

Ωs =





CsAs

CsA
2
s

...

CsA
N
s




Ωu =





CuA
−(N−1)
u

CuA
−(N−2)
u

...

CuA−1
u

Cu




(13)

The matrix that defines the equality constraint in (10) is

given by

L =
[
−A−1

u Bu −A−2
u Bu . . . −A−N

u Bu

]
(14)

Observe that the matrix formulation of the output predic-

tions y of the normalized system Sd in (10) contains only

terms of the form Ak
s and A−k

u . The proposed formulation

requires the inclusion of only nu equality constraints, where

nu is the number of unstable states in Sd. However, this can

be regarded as being a marginal increase in the complexity

of PN (x). We can now express the objective function in
(2) using the matrix notation introduced in (10) i.e.,

JN (x, {uk}) = J ′
N (xs

0, x
u
N ,u) , yT

0 y0

+ ‖Γu + Ωuxu
N + Ωsx

s
0‖2

2 + ‖u‖2
2

subject to

Lu + A−N
u xu

N = xu
0

(15)

Note that we have considered P = Q in (2). However,

this is not restrictive since, as we shall see in Section IV,

we are interested in the case N → ∞. After some matrix
manipulations, we can write

J ′
N (xs

0, z) = zT Hz + 2zT Fxs
0 + c0 (16)



where z =
[
uT (xu

N )T
]T
and

H =

[
ΓT Γ + I ΓT Ωu

ΩT
u Γ ΩT

u Ωu

]
, F =

[
ΓT Ωs

ΩT
u Ωs

]
(17)

In addition, c0 in (16) is an appropriate constant value. In

the next Section we will analyse in detail the singular value

structure of the Hessian in (17) when the prediction horizon

N is taken to infinity.

IV. ASYMPTOTIC SINGULAR VALUE

STRUCTURE OF THE HESSIAN

The importance of a singular value decomposition (SVD)

of the Hessian H is that it provides a set of orthogonal basis

vectors (the singular vectors) with a specific associated gain

(the singular values) to the performance index J ′
N (xs

0, z).
This decomposition can be exploited to develop sub-optimal

solutions to PN (x) [13], [15]. We shall show that when
N → ∞ the singular values of H become even more

insightful for they converge, in a well defined sense, to the

principal gains in the frequency domain of the normalized

system Sd in (5). We first establish the following Lemma.

Lemma 4.1: Let the prediction horizon N be infinite. If

the infinite horizon optimal control problem P∞(x) in (1)
is feasible, then the optimal solution to P∞(x) is equal to
the solution to the following optimization problem,

P
′
∞(x) : zOPT , arg min J ′

N (xs
0, z)

subject to

x0 = x , uk ∈ U , xk ∈ X

xu
∞ = 0

(18)

Proof: Feasibility of the optimization problemP∞(x)
implies that there exists a stabilizing control sequence {uk}
– equivalently, a control sequence {u′

k} – such that xk → 0
when k → ∞. In particular, xu

k → 0. Also, note that
the equality constraint (15) becomes redundant. The result

follows.

We observe that the Hessian of the equivalent optimiza-

tion problem P ′
∞(x) is given by

H ′ = ΓT Γ + I (19)

We next analyse the singular value structure of H ′ when the

prediction horizon N is taken to infinity. We make explicit

the dependence on N by using the notationH ′
N . We express

the SVD of H ′
N in terms of the SVD of the matrix Γ. In

particular, consider

Γ = UΣV T (20)

where U ∈ R
Nn×Nn and V ∈ R

Nm×Nm are orthogonal

matrices. In addition, we have

Σ =

[
S

0

]
(21)

where S is a diagonal matrix containing the singular values

of Γ i.e., S = diag(σ1, . . . , σNm). Using (20) we obtain
the following SVD of H ′

N ,

H ′
N = V (S2 + INm)V T (22)

where INm is the Nm × Nm identity matrix.

From the definitions of Γs and Γu in (11) and (12)

respectively, we observe that Γ has the structure

Γ =





h0 h
−1 ... h

−(N−1)

h1 h0 ... h
−(N−2)

...
...
. . .

...
hN−1 hN−2 ... h0



 (23)

where

hk =

{
−CuAk

uBu for k = −1,−2, . . .

CsA
k
sBs for k = 0, 1, 2, . . .

(24)

We then have the following Lemma,

Lemma 4.2: Let G(z) be the two-sided Z-transform of

the infinite sequence {hk : k = −∞, . . . ,∞} in (24). Then
G(z) is given by

G(z) = z G(z) , (25)

where G(z) is the transfer function of the normalized
system in (5). Moreover, the region of convergence of G(z)
is given by

max{|λi(As)|} < |z| < min{|λi(Au)|} ,

where λi(·) is the set of eigenvalues of the corresponding
matrix.

Proof: The two-sided Z-transform of {hk} is given
by

G(z) ,

∞∑

k=−∞

hk z−k =
−1∑

k=−∞

hk z−k +
∞∑

k=0

hk z−k

Substituting the values of {hk} in (24), we obtain

G(z) = −
−1∑

k=−∞

CuAk
uBu z−k

︸ ︷︷ ︸
a

+

∞∑

k=0

CsA
k
sBs z−k

︸ ︷︷ ︸
b

.

(26)

Le us first analyse the ‘b’ term above. This is a geometric

series that converges if and only if

|z| > max{|λi(As)|} (27)

In addition, note that

Gs(z) , Cs(zI − As)
−1Bs =

∞∑

k=1

CsA
k−1
s Bs z−k (28)

Comparing the above expression to ‘b’ in (26), we see that

b = zGs(z) (29)

For the ‘a’ term in (26) we let j = −k. Hence,

a = −
∞∑

j=1

CuA−j
u Bu zj (30)



Now, we can write

a = −
∞∑

j=1

Cu(A−1
u )j−1 A−1

u Bu (z−1)−j (31)

The above is a geometric series that converges if and only

if

|z| <
1

max{|λi(A
−1
u )|}

= min{|λi(Au)|} .

Comparing the form of the terms in (31) to that of the terms

in (28) we conclude that

a = −Cu(z−1I − A−1
u )−1 A−1

u Bu (32)

from which

a = z Cu(A−1
u z − I)−1 A−1

u Bu

= z Cu(zI − Au)−1 Bu

= z Gu(z)

(33)

Therefore,

G(z) = a + b = z Gs(z) + z Gu(z)

= z G(z) .
(34)

for all z ∈ C such that

max{|λi(As)|} < |z| < min{|λi(Au)|}

This concludes the Proof.

The region of convergence of the two-sided Z Transform

G(z) includes the unit circle and this allows us to refer to
the frequency response of G(z) by taking z = ejw.

The fact that the sequence {hk} contains only decaying
terms ensures that given any ε > 0 there exists k0 > 0 such
that

∣∣∣∣∣∣

∥∥G(ejw)
∥∥2

F
−

∥∥∥∥∥

k0∑

k=−k0

hke−jwk

∥∥∥∥∥

2

F

∣∣∣∣∣∣
< ε , ∀w ∈ [−π, π]

(35)

where ‖·‖F is the Frobenius norm. The above is equivalent

to saying that for k > k0 and k < −k0 the terms of

the matrix sequence {hk} are negligible. As a result, the
autocorrelation of the matrix sequence {hk}∞k=−∞ can be

approximated as follows,

Φl ,

∞∑

k=−∞

hT
k hk+l ≈

k0−l∑

k=−k0

hT
k hk+l , 0 ≤ l ≤ 2k0

Φl ≈ 0 , l > 2k0 ,

Φ−l = ΦT
l

(36)

Using the definition of the matrix Φl above, we see that

ΓT Γ can be written as

ΠN , ΓT Γ =




X1 | 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Φ2k0
. . . Φ0 . . . Φ−2k0

0

. . .
. . .

. . .

0 Φ2k0
. . . Φ0 . . . Φ−2k0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 | X2





(37)

provided N ≥ (4k0 + 1). X1 and X2 are appropriate sub-
matrices. We then have the following key result relating the

singular values of Γ to the principal gains in the frequency
domain of the transfer function G(ejw).
Theorem 4.3: Consider

1) the matrix Γ in (23) and its corresponding singular
value decomposition (20);

2) the singular value decomposition of the transfer func-

tion G(ejw) i.e.,

G(ejw) = Û(ejw)Σ̂(w)V̂ H(ejw) (38)

where Û ∈ C
n×n, V̂ ∈ C

m×m, Σ̂(w) =
diag{σ̂1(w), . . . , σ̂q(w)}, q , min(n,m). In addi-

tion, ÛH Û = Û ÛH = In, V̂
H V̂ = V̂ V̂ H = Im;

3) the Nm × m matrix

EN,w ,
[
e1

N,w · · · em
N,w

]
,

1√
N

EN,w , (39)

where

EN,w ,





V̂ (ejw)

ejw V̂ (ejw)
...

ej(N−1)w V̂ (ejw)





and

w =
2π

N
p , p ∈ {0, . . . , N − 1} . (40)

Let k0 > 0 be such that (35) holds. Let

w0 ,
2π

N0
p0 ∈ [−π, π] (41)

for arbitrary N0 ≥ (4k0 + 1) and p0 ∈ {0, . . . , N0 − 1}.
Then, for every index i ∈ {1, . . . , q} there exists at least
one singular value σj of Γ, with j ∈ {1, . . . , Nm} such
that when N

N0
→ ∞,

σj = σ̂i(w0) (42)

Proof: Let

Φ(ejw) =

∞∑

l=−∞

Φl e
−jwl ≈

2k0∑

l=−2k0

Φl e
−jwl

with w ∈ [−π, π], be the Discrete Time Fourier Transform
of the autocorrelation matrix in (36). The existence of



Φ(ejw) is guaranteed by Lemma 4.2. In particular, note
that

Φ(ejw) = G(ejw)HG(ejw)

and by means of Lemma 4.2

Φ(ejw) = G(ejw)He−jwejwG(ejw) = G(ejw)HG(ejw)

Using (38) we can write

Φ(ejw)V̂ (ejw) = V̂ (ejw)Σ̂(w)T Σ̂(w) (43)

Next, consider N0 > 4k0 + 1, 0 ≤ p0 ≤ N0 − 1 and
w0 = 2π

N0
p0. By direct calculation, we can write

ΠN0
EN0, w0

=

1√
N0

[
W1

EN0, w0
[2k0m+1:(N0−2k0)m , :] Φ(ejw0 )V̂ (ejw0 )

W2

]
(44)

where EN0, w0
[2k0m + 1 : (N0 − 2k0)m , :] represents the

section of the matrix EN0, w0
that starts at the (2k0m+1)-th

row and finishes at the ((N0 − 2k0)m)-th row. In addition,
W1 and W2 are appropriate sub-matrices of dimension

2k0m × m. Replacing (43) in (44) we have

ΠN0
EN0, w0

=



1√
N0

W1

EN0, w0
[2k0m+1:(N0−2k0)m , :] Σ̂(w0)

T Σ̂(w0)
1√
N0

W2





which can be considered column-wise as follows,

ΠN0
ei

N,w0
=





1√
N0

c1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σ̂2
i (w0) e

i
N,w0

[2k0m + 1 : (N0 − 2k0)m ]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1√
N0

c2





for i = 1, . . . , q. Subtracting σ̂2
i (w0) e

i
N,w0

from both sides

of the above equation yields

ΠN0
ei

N,w0
− σ̂2

i (w0) e
i
N,w0

= dN0, w0
(45)

where

dN0, w0
,

1√
N0




d1

0(N0−4k0)m

d2



 (46)

Here 0(N0−4k0)m is a column vector with zero entries and

length (N0 − 4k0)m. It can be easily shown that the norms
of both vectors d1 and d2 are bounded. They are determined

by the entries of sub-matrices X1 and X2 in (37) (which are

independent of the prediction horizon N0), the fixed value

σ̂2
i (w0) and the entries of vector e

i
N0,w0

which are bounded.

As a result, we can find Tw0
> 0 such that

‖dN0, w0
‖2 =

1√
N0

√
‖d1‖2

2 + ‖d2‖2
2 ≤ 1√

N0

Tw0
.

(47)

We now select N = LN0 and p = Lp0, for some L ∈ Z
+,

such that

w =
2πp

N
=

2πp0

N0
= w0 (48)

Therefore, for every ε0 > 0 we can select L such that

‖dN, w0
‖2 ≤ 1√

N
Tw0

=
1√

LN0

Tw0
< ε0 . (49)

The above is satisfied for L ∈ Z
+ such that

L >
T 2

w0

N0 ε2
0

(50)

We conclude that, for every w0 = 2π
N0

p0 and ε0 > 0, there
exists N = LN0 with L ∈ Z

+ satisfying (50) such that

‖ΠNei
N,w0

− σ̂2
i (w0)e

i
N,w0

‖2 < ε0 (51)

for i = 1, . . . , q. Therefore

lim
N

N0
→∞

‖ΠNei
N,w0

− σ̂2
i (w0)e

i
N,w0

‖2 = 0 (52)

Properties of the vector norm ‖ · ‖2 ensure that, in the limit

when N
N0

→ ∞,

ΠNei
N,w0

= σ̂2
i (w0)e

i
N,w0

(53)

That is, in the limit, σ̂2
i (w0) is an eigenvalue of ΠN and

ei
N,w0

is the corresponding eigenvector. However, by defi-

nition, the singular values of the matrix Γ are equal to the
square root of the eigenvalues of ΠN and the corresponding

eigenvector of ΠN is equal to the right singular vector of

Γ. This completes the Proof.

The importance of the above Theorem is that it es-

tablishes a well defined equivalence between the singular

values of the matrix Γ and the principal gains in the
frequency domain of the transfer function G(ejw) related to
the normalized system (5). This result, in turn, provides an

asymptotic characterization of the singular value structure

of the Hessian H ′
N in (19).

V. NUMERICAL EXAMPLE

We illustrate the result of Theorem 4.3 with the following

example. Let Sd in (5) be defined via the matrices

As =

[
1.442 −0.64

1 0

]
, Bs =

[
1 0
0 0

]
,

Cs =

[
0.721 −0.64
−0.36 0.32

] (54)

and

Au = 2 , Bu =
[
0 1

]
, Cu =

[
−0.1
−0.1

]
(55)

We then compute the singular values of ΠN in (37) for two

different prediction horizon N and we compare them with

the principal gains squared of the system Sd. The results

are presented in Figure 1 for N = 61 and in Figure 2
for N = 401. We observe that, as the prediction horizon
N is increased, the singular values of ΠN converge to

the continuous line representing the square of the principal

gains of Sd as predicted by Theorem 4.3.
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Fig. 1. Singular values of matrix ΠN (circles) with N = 61. The
continuous lines indicate the two principal gains squared of G(ejw).
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Fig. 2. Singular values of matrix ΠN (circles) with N = 401. The
continuous lines indicate the two principal gains squared of G(ejw).

VI. CONCLUSIONS

This paper has investigated the asymptotic properties

of the Hessian in discrete time linear quadratic optimal

control. We have shown that the singular values of the

Hessian converge, in a well defined sense, to the principal

gains squared of the associated normalized system transfer

function.
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Control and Estimation - An optimization approach. Springer Verlag,
2004. To appear.

[4] T. A. Johansen, I. Petersen, and O. Slupphaug. Explicit sub-
optimal linear quadratic regulation with state and input constraints.
Automatica, 38:1099–1111, 2002.

[5] A. Kojima and M. Morari. LQ control for constrained continuous-
time systems: an approach based on singular value decomposition. In
Proceedings of the 40th IEEE Conference on Decision and Control,
Orlando, Florida USA, December 2001.

[6] B. Kouvaritakis, M. Cannon, and J. A. Rossiter. Who needs QP for
linear MPC anyway? Automatica, 38:879–884, 2002.

[7] J. M. Maciejowski. Predictive Control with constraints. Prentice
Hall, Edinburgh Gate, Harlow, Essex, UK, 2002.

[8] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert.
Constrained model predictive control: stability and optimality. Auto-
matica, 36(6):789–814, 2000.

[9] S. J. Qin and T. A. Badgwell. A survey of industrial model predictive
control technology. Control Engineering Practice, 11:733–764, 2003.

[10] C. V. Rao, S. J. Wright, and J. B. Rawlings. Application of interior-
point methods to model predictive control. Journal of Optimization
Theory and Applications, 99(3):723–757, 1998.

[11] O. J. Rojas, G. C. Goodwin, A. Feuer, and M. M. Serón. A
sub-optimal receding horizon control strategy for constrained linear
systems. In Proceedings of the American Control Conference,
Denver, Colorado, USA, 4-6 June 2003.

[12] O. J. Rojas, G. C. Goodwin, and G. V. Johnston. Spatial frequency
anti-windup strategy for cross directional control problems. IEE Pro-
ceedings Control Theory and Applications, 149(5):414–422, 2002.
Submitted June 2001.

[13] O. J. Rojas, G. C. Goodwin, M. M. Serón, and A. Feuer. An SVD
based strategy for receding horizon control of input constrained linear
systems. International Journal of Robust and Nonlinear Control,
2003. To appear.

[14] J. A. Rossiter, B. Kouvaritakis, and M. J. Rice. A numerically
robust state-space approach to stable-predictive control strategies.
Automatica, 34(1):65–73, 1998.

[15] J. Sanchis, C. Ramos, M. Martı́nez, and X. Blasco. Principal com-
ponent weighting (PCW) for constrained GPC design. In Proceed-
ings of 9th Mediterranean Conference on Control and Automation,
Dubrovnik, Croatia, 27-29 June 2001.
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