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Abstract— A recent industry-led European research project inves-

tigated the potential of a number of advanced analysis techniques

for use in the clearance of flight control laws for highly augmented

aircraft. Among the analysis techniques considered in the project were

methods based on µ-analysis and the structured singular value. This

paper summarises the approach taken by the authors in attempting

to develop advanced robustness analysis tools for highly complex, and

highly formalised, industrial flight clearance problems.

I. INTRODUCTION

Modern high performance aircraft are often designed to be

naturally unstable due to performance reasons and, therefore, can

only be flown by means of a controller which provides artificial

stability. As the safety of the aircraft is dependent on the controller,

it must be proven to the clearance authorities that the controller

functions correctly throughout the specified flight envelope in all

normal and various failure conditions, and in the presence of all

possible parameter variations.

This task is a very lengthy and expensive process, particularly

for high performance aircraft, where many different combinations

of flight parameters (e.g. large variations in mass, inertia, centre

of gravity positions, highly non-linear aerodynamics, aerodynamic

tolerances, air data system tolerances, structural modes, failure

cases, etc.) must be investigated so that guarantees about worst-

case stability and performance can be made.

The aircraft models used for clearance purposes describe the

actual aircraft dynamics, but only within given uncertainty bounds.

One reason for this is the limited accuracy of the aerodynamic data

set determined from theoretical calculations and wind tunnel tests.

Moreover, the employed sensor, actuator and hydraulic models

are usually only approximations, where the nonlinear effects are

not fully modelled because they are either not known or it

would make the model unacceptably complex. The goal of the

clearance process is to demonstrate that a set of selected criteria

expressing stability and handling requirements is fulfilled in the

presence of all of the above sources of uncertainty. Typically, the

clearance criteria can be grouped into four classes: (I) Linear

stability criteria, (II) Aircraft handling/Pilot Induced Oscillation

(PIO) criteria, (III) Non-linear stability criteria and (IV) Non-linear

handling criteria.

To perform the clearance, for each point of the flight envelope,

for all possible configurations and for all combinations of parame-

ter variations and uncertainties, violations of the clearance criteria

and the worst-case result for each criterion must be found. Based

on the clearance results, flight restrictions are imposed where

necessary. Faced with limited time and resources, the current flight

clearance process employed by the European aerospace industry

uses a gridding approach, [1], whereby the various clearance

criteria are evaluated for all combinations of the extreme points of

the aircraft’s uncertain parameters. This process is then repeated

over a gridding of the aircraft’s flight envelope. The effort involved

in the resulting clearance assessment thus increases exponentially
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with the number of uncertain parameters. Another difficulty is

the fact that there is no guarantee that the worst case uncertainty

combination has in fact been found, since only a certain number

of selected points in the aircraft’s flight envelope can be checked.

Motivated by the above issues, the Group for Aeronautical

Research and Technology in Europe (GARTEUR) set up Flight

Mechanics Action Group FM-AG11 to investigate the usefulness

of a number of advanced analysis techniques for flight clearance

problems, [1]. The Action Group consisted of participants from

Universities, Research Laboratories and Industry, with all of the

main European airframe manufacturers being actively involved in

the project. The benefits and limitations of the various analysis

techniques were evaluated based on their application to a number

of realistic flight clearance problems which were defined by the

industrial partners.

II. LINEAR STABILITY CLEARANCE CRITERIA

A basic requirement of the flight clearance process is to prove

that the aircraft is stable over the entire flight envelope with

sufficient margin against instability for all known uncertainties

(worst-case combinations), [1]. The process consists of calculating

linear stability margins for the open-loop frequency response in

pitch, roll and yaw. These frequency responses are obtained by

breaking the loop at the input of each actuator or of each sensor

and are then plotted in Nichols diagrams where the required phase

and gain margins are shown as exclusion regions which must not

be violated by the plot.

In single loop analysis, the open-loop frequency response is

obtained by breaking the loop at the input of each actuator or

sensor, one at a time, while leaving the other loops closed. For

the nominal case, these Nichols plots should not violate the outer

exclusion region shown in Figure 1, which corresponds to a

minimum gain margin of ±6 dB and a minimum phase margin

of ±35o. When uncertainties are taken into account, a boundary

corresponding to ±4.5 dB is used, as shown by the inner exclusion

region in the same figure.

In multi loop analysis, the closed-loop system is required to

withstand the application of simultaneous gain and phase offsets,

again defined by trapezoidal shaped regions in the Nichols plane,

at the actuators or sensors without becoming unstable. To test for

violations of this criterion, a perturbation of the form K
(

1−T s
1+T s

)

is inserted at, for example, the input of each actuator. With K

set to 1, T is then varied simultaneously in each loop until the

eigenvalues of the closed-loop system go unstable. The phase

margin is calculated as

φPM = 2∗ tan−1ωT (1)

where ω is the frequency of the generated undamped oscillation. K

is then increased and decreased by 1 dB (corresponding to the right

corner points of the Nichols exclusion region) and T is again varied

for the new fixed gain until the eigenvalues become unstable. By

setting T = 0 and varying K, the upper and lower gain margins

can be obtained (corresponding to the left corner points of the

exclusion region). These steps can be repeated for any number of

points around the required Nichols exclusion region. Due to the



fact that the criterion must be evaluated over all combinations of

the aircraft’s uncertain parameters, this test is in practice usually

restricted to only a few points of the exclusion regions (e.g. the

four corners of each exclusion region). In addition, the same gain

and phase offsets are usually applied simultaneously in all loops,

to avoid testing over too large a number of different combinations.

In addition to the stability margin criterion, the eigenvalues of

the closed-loop system must be calculated in order to identify

possible unstable (i.e. those with positive real part) eigenvalues

which do not appear in the Nichols plots. It is required to

identify the flight cases where unstable eigenvalues occur and

for what tolerance combination these eigenvalues have the largest

real part, since this can be directly linked to existing handling

qualities requirements on the minimum time to double amplitude

of unstable modes. This test aims to determine the most severe

cases of divergent modes in the closed-loop system in order

to allow an assessment of their acceptability in terms of their

influence on aircraft handling. A typical boundary on the real part

of the eigenvalues is shown in Figure 2.

III. HWEM AIRCRAFT MODEL AND CONTROL LAW

The Harrier Wide-Envelope Model (HWEM) used in this study

is a full non-linear model of the Vectored-thrust Aircraft Advanced

flight Control (VAAC) Harrier, developed by QinetiQ Ltd. for

research on various aspects of flight control that are relevant

to Short Take-Off and Vertical Landing (STOVL) operations.

Recent research milestones with the VAAC Harrier include the

first reported flight of an H∞ control law, [2], and the first

reported flight of an LPV control law, [3]. More details of this

aircraft model can be found in [4]. The flight control law for

the HWEM analysed in this study is based on VAAC Control

Law 002 (CL002). It is a full three-axis (pitch, roll and yaw)

control law designed using classical methods. The study reported

in this paper considers the pitch axis only - for more details of this

control law and of the lateral/directional control laws the reader is

referred to [4]. Points in the flight envelope of the HWEM from

200 knots down to hover are to be analysed in the clearance task.

All flight conditions are defined for 1g straight and level flight

at an altitude of 200 ft AMSL. The angle of attack range for all

flight conditions is [−4o,+16o]. Five Category 1 (most significant)

uncertain parameters are specified for the longitudinal axis analysis

and are shown in Table I. Further information about the uncertain

aircraft parameters can be found in [4], [5].

IV. LFT-BASED UNCERTAINTY MODELLING

In order to apply µ-analysis tools to the HWEM model, the

uncertainties in the original non-linear aircraft model must be rep-

resented in the form of linear fractional transformations (LFT’s),

[6], [7]. The approach to generating LFT-based uncertainty models

used for this study is based on physical modelling principles. In

this approach, the uncertainties are directly introduced in the non-

linear SIMULINK model of the aircraft in the form of multiplica-

tive (or additive) uncertainties. For example, the uncertainty in

the aircraft dynamics due to CMTAIL
can be represented physically

in block diagram form as shown in Figure 3. In Figure 3, an

extra ‘fictitious’ input and output w1 and z1 have been added,

respectively, at the point in the system where the uncertainty

∆1 occurs. This step is then repeated for the other uncertain

parameters. Using standard block diagram manipulation software

the resulting non-linear model can then be linearised to calculate

the transfer matrix of the system M with inputs u = [w1, ..., wn, uc]

and outputs y = [z1, ..., zn, ym], where uc are the control inputs and

ym are the measured outputs. The LFT-based uncertainty model for

the system, shown in Figure 4, is then given by the relation

ym = Fu(M(s),∆)uc (2)

where ∆ = diag(∆1, ..., ∆n)

The above approach is simple and intuitive and allows an exact

description of joint parametric dependencies in the model. If each

uncertainty appears in only one location in the SIMULINK block

diagram, the resulting LFT-based uncertainty model will also be

of minimal order. In addition, this physical modelling approach

allows additional uncertainties in the physical parameters (such

as products of the uncertainties) to be easily implemented in

the model. The main limitation of the approach is that detailed

information about the model and the uncertainties is required.

Hence, its application is restricted to those models that can be

implemented in a SIMULINK block diagram type representation.

Another drawback is that the dependence of the linearisations on

the uncertain parameters is ignored. To determine the accuracy

of the derived LFT-based uncertainty model, time-domain sim-

ulations were used to validate it against the original linearised

and nonlinear model. Figure 5, for example, shows good matches

between the various models for a small magnitude step demand

on pitch rate.

V. µ -TOOLS FOR STABILITY CLEARANCE CRITERIA

In the approach first proposed in [8], [9], [10], the original

Nichols exclusion regions shown in Figure 1 are replaced with

elliptical regions of the form shown in Figure 6. Thus, any

feedback system whose open-loop frequency response avoids the

regions A and B in Figure 6 provides gain and phase margins

of ±6dB/±36.87◦ and ±4.5dB/±28.44◦ respectively. Also, for

these particular choices of gain and phase margins the corre-

sponding exclusion regions in the Nyquist plane are circles with

(centre,radius) given by (-1.25,0.75) for region A, and (-1.14,0.54)

for region B, [8], [11]. Now, as shown in [8], another way to

interpret the requirement for avoidance of, for example, the circle

corresponding to region B in the Nyquist plane by the open-

loop frequency response L( jω), is to consider a plant subject to

disc uncertainty of (centre,radius) given by (+1.14,0.54) at each

frequency. Avoidance of the (-1,0) critical point in the Nyquist

plane by L( jω) for all possible plants in this set is exactly

equivalent to avoidance of the exclusion region B by L( jω) for

the original plant. The set of possible plants can be represented as

P(s) = P1(s)(1.14+∆N) (3)

where P1 is the original plant, ∆N is complex and ‖ ∆N ‖∞≤ 0.54.

This is of course the same as writing

P(s) = 1.14P1(s)(1+WN∆N) (4)

with WN = 0.47 and ‖ ∆N ‖∞≤ 1. In this way the Nichols ex-

clusion region is represented as a ‘fictitious’ multiplicative input

uncertainty for the scaled nominal plant which can be pulled out

of the closed loop system along with all the other uncertainties to

form an LFT-based representation of the uncertain system in the

usual way.

A second approach to casting Nichols plane exclusion region

specifications as a µ problem was developed in [12]. This method

models the Nichols exclusion regions of Figure 1 using a Padé ap-

proximation. The variations in the phase and gain are represented



by equations (5) and (6) respectively. The phase offset is given by

φ =

(

φmax −φmin

2

)

δ2 +

(

φmax +φmin

2

)

(5)

The gain offset a (in dB) is represented as

a = δ1(t −mδ2) (6)

where δ1 and δ2 are normalised real uncertainties, and t and m

characterise the top limit line of the exclusion region. For example,

the inner exclusion region in Figure 1 for the single loop analysis

requires that t = 3 and m = 1.5. To cast this problem into a µ
framework, it is necessary to convert these equations to the polar

form ae− jφ , where the negative sign denotes phase lag. This gives

ae− jφ = ecδ1(t−mδ2)− j(γ1δ2+γ2)

= e− jγ2 ecδ1(t−mδ2)− jγ1δ2 (7)

where c = (ln10)/20, γ1 =
φmax−φmin

2 and γ2 =
φmax+φmin

2

To generate the LFT-based uncertainty description, a first order

Padé approximation is used:

e−T s = 1−
T s

1+ T s
2

(8)

where −T s is given by

−T s = cδ1(t −mδ2)− jγ1δ2 (9)

This first order approximation is adequate for phase margins of up

to 90o. The resulting LFT-based uncertainty model for this first

order Padé approximation is shown in Figure 7. The uncertainty

block, ∆margins, is made up of two real scalars, δ1 and δ2, the

latter being repeated twice.

∆margins =

[

δ1 0

0 δ2I2

]

(10)

For multi-loop analysis, the criterion is checked by scaling the

exclusion region by applying a scaling factor to m, t, γ1 and γ2

until µ = 1. The multi-loop gain and phase margins can then be

computed by back-substituting these values in equations (5) and

(6).

µ-analysis methods can also be used to address the worst-case

eigenvalue clearance criterion defined in Section 2 by shifting

the imaginary axis into the left and right half planes until an

uncertainty combination is found which places a closed loop pole

on the axis. Other tests are also possible, for example, by sweeping

s0 along a line of constant damping one may find the smallest

perturbation which reduces damping below this level, [13].

VI. HWEM ANALYSIS RESULTS

For the considered ranges of uncertainties, the worst-case eigen-

value criterion was satisfied for all seven flight conditions, and

almost identical results were obtained using the µ-analysis and

classical techniques. For FC1, for example, the nominal, µ worst-

case and classical worst-case eigenvalue positions are shown in

Table II. Also shown in the table are the worst-case values of the

uncertain parameters found using both approaches. Although the

results are very similar, the µ worst-case uncertainty combination

places all the eigenvalues slightly nearer the boundaries.

To compare the worst-case stability margin criterion results,

Nichols curves were plotted for (i) the worst-case obtained using

µ and (ii) every combination of the extreme points of the Five

Category 1 uncertain parameters. For three flight conditions (FC4,

FC5 and FC6), the worst-case uncertainties did not lie on the

extreme points of the parameters. Sample results for FC4 are

shown in Figure 8 - zoomed in Figure 9. In all three cases, the

classical approach produces optimistic results, i.e. the worst-case

Nichols plots found by µ are closer to the exclusion regions. For

example, the tailplane loop cut analysis at FC4 using µ (Figures 8

and 9) generated a worst-case uncertainty of δCmq
= 0.9845, δCmα

= 0.9976, δCm
tail

= 1, δIyy
= 0.0931 and δXDxcg

= 0.1438. When the

classical approach was used, the worst-case was found to be δCmq
=

1, δCmα
= 1, δCm

tail

= 1, δIyy
= -1 and δXcg

= 1. Using µ-sensitivities,

[14], it can be show that δXcg
and δIyy

are in fact the second and

third most important elements in the set of uncertain parameters,

[11] - the fact that their worst-case values do not correspond to

thir maximum or minimum values clearly calls into question the

implicit assumptions made in the classical approach.

The computation times for finding the worst cases was recorded

for (i) the classical approach using only minimum and maximum

values of each parameter, and (ii) µ analysis with 100 frequency

points. The results are plotted in Figure 10. As expected, the

computation time for the classical approach increases exponen-

tially with the number of uncertainties, so that for a ∆ size > 8,

computation of mixed µ bounds is seen to be faster than the

classical technique. This fact becomes significant when we seek to

also include Category 2 uncertainties in the analysis, or when we

seek to analyse the effect of longitudinal and lateral uncertainties

together.

For the worst-case stability margin multi-loop analysis using

the µ-analysis approach, the uncertainties associated with the

elliptical Nichols exclusion regions were increased in each loop

simultaneously until µ = 1. At flight condition FC5, for example,

the gain and phase margins were found to be 13.97 dB and 37.86o

respectively. Using the classical approach, the corner points of

the trapezoidal Nichols exclusion region were checked and the

gain and phase margins were computed as 15.5 dB and 41.2o

respectively. The results obtained using the classical approach

are more optimistic than those computed from µ since (a) every

possible combination of the phase/gain offsets is considered in the

µ-analysis and (b) the elliptical exclusion regions used by µ are

slightly bigger than the diamond-shaped exclusion regions used by

the classical approach. Complete results from the analysis of the

longitudinal dynamics of the CL002 control law over the HWEM

flight envelope can be found in [11].

VII. IMPROVING MIXED µ LOWER BOUNDS

Formulating the the stability margin clearance criterion in a

µ-analysis framework using elliptical Nichols exclusion regions

results in a mixed µ-analysis problem. The complex part of

the uncertainty matrix ∆ represents the “fictitious” uncertainty

associated with the elliptical exclusion regions, while the real part

represents the uncertain aircraft parameters. A potential problem

with this approach is that the standard lower bound algorithm in

the MATLAB µ-Analysis and Synthesis Toolbox, [15], sometimes

produces a bound which is far from the assiciated upper bound,

for cases where the real uncertainty in the ∆ matrix is dominant.

An example of such a result is shown in Figure 11(a) - clearly,

in this case, the “worst-case” uncertainty combination returned by

the lower bound software will be far from the true worst-case.

In order to improve the lower bound returned by the standard

algorithm, the problem of computing a lower bound for µ can

be formulated as a search for the worst case (i.e. smallest)

destabilising uncertainty matrix ∆. Denote the real ∆i entries of



∆ by the vector p, and the complex ∆i entries by q. Thus, for an

n×n ∆ matrix, define the vector x as

[x] = [p,q]T p ∈ R
l , q ∈ C

m, l +m = n (11)

This search can then be formulated as an equivalent constrained

minimisation problem, f (x), over a frequency range Ω:

min f (x) = min
∆i=1..l∈R, ∆i=l+1..n∈C , ω∈Ω

σ̄(∆)

subject to σ(I −M11∆) ≤ ε (12)

ε in the above constraint is a user defined parameter which can be

used to trade-off computation time versus tightness of the resulting

lower bound. The above optimisation problem can then be cast as

a well known quadratic programming problem:

f (x) ≈
1

2
xT Hx + xT g (13)

where H is the symmetric matrix of second derivatives of f and

g is the direction of the gradient of f . Commercially available

optimisation software, [16], can then be used to solve eqn. (13).

As the search for a worst case destabilising ∆ is non-convex,

local minima can occur. A key issue with this approach is

therefore the selection of a good initial guess for the worst-case

∆ at each frequency. In fact, for the example considered in this

paper, application of the above approach with a random initial

guess for the worst-case ∆ at each frequency produced results

that were generally not much better than those produced by the

standard algorithms. By using the ∆ computed by the standard

algorithms as the starting point for the optimisation, however,

dramatic improvements in the quality of the lower bound were

achieved. As shown in Figure 11(b), for example, the gap between

the peak values of the upper and lower bounds has been reduced

from 0.2147 (with the standard algorithms) to 0.0901 (using the

proposed approach with ε = 1e−6) - an improvement of almost

60%. Note that a similar approach to improving the quality of µ
lower bounds can be adopted in the case of purely real uncertainty,

as for example in the case of using trapezoidal exclusion regions

in a µ framework, [17].

Computing times for the numerical optimisations involved in the

above approach are a function of the problem size, ε , the number

of optimisation restarts, and also depend on internal algorithm

settings. For the example considered in this paper, computing times

to generate the improved lower bounds were comparable to those

required by the standard algorithms.

A second problem in calculating µ-bounds encountered by the

authors was that of using a frequency grid to compute bounds on

µ in the case where the µ plot has narrow and high peaks, and

indeed this issue has been well documented in the literature, [6],

[18]. This problem is of particular concern for many aeronautical

applications of µ-analysis, where, for example, aircraft structural

modes can cause just such fine peaks in the µ plot. Two standard

solutions to the problem are available. The first is to simply

increase the resolution of the frequency grid. The second is

to transform the original µ-analysis problem into a so-called

“skewed µ” problem, where the frequency is introduced as an

uncertainty into the ∆ matrix of the LFT-based uncertainty model.

The maximum value of µ over frequency can then be computed

directly, as shown in [18]. Although useful, both of the above

approaches have some serious drawbacks. Increasing the number

of points in the frequency grid is computationally expensive, and

(as we shall demonstrate) provides no guarantee of improving the

accuracy of the µ bounds. Incorporation of frequency into the LFT-

based uncertainty model requires a repeated real scalar uncertain

parameter to be included in the ∆ matrix. The number of times this

parameter is repeated is equal to the number of states in the plant,

therefore for high order systems the result is often a huge increase

in the size of the ∆ matrix. More importantly, the existence of

repeated real uncertainties is known to produce conservatism (and

sometimes convergence problems) for the standard mixed µ upper

bound algorithm, [15]. To get around these difficulties we propose

a new approach, based on constrained non-linear optimisation,

which allows “safer” computation of both upper and lower µ
bounds without any extra conservatism being introduced.

We illustrate our approach using the stability margin clearance

criterion for the HWEM aircraft model. For a frequency grid of

50 points over the frequency range 0.01 rads/sec to 1 rad/sec,

upper and lower bounds were computed as shown in Figure 12(a).

Increasing the number of points in the frequency grid to 100

actually results in decreased (i.e. less accurate) bounds, as shown

in Figure 12(b). This surprising result can be explained by noting

that, due to the logarithmic spacing between 10−2 and 100, these

100 points will not include the original 50 points as a subset. This

therefore allows the theoretical possibility that some point in the

original 50 points could be nearer to the µ peak than any point in

the subsequent 100. This is in fact what occurred for our example

in Figure 12(a) and (b). To address this problem, we formulate an

optimisation problem

max
ω∈R

µ(ω) , (14)

where the cost function is a µ upper bound calculation using

standard µ algorithms for a single frequency. Maximising this cost

function with respect to frequency is then expected to converge

to the frequency of the maximum µ value. The same approach

is applied to the lower bound optimisation problem simply by

including ω in the search vector x for the optimisation problem 12.

Solving the above optimisation problems using standard software

and an initial grid of 50 frequency points led to the results shown

in Figure 12(c). Extremely tight upper and lower bounds were

computed (0.8602698 and 0.8602691 respectively). In addition,

the peak value of µ has now been correctly identified, in contrast

to the results obtained using a frequency gridding approach.

VIII. CONCLUSIONS

This paper has described new µ-analysis tools for the clearance

of flight control laws for highly augmented aircraft. These tools

have been used to analyse the stability robustness properties of a

flight control law for a vertical/short take-off and landing aircraft.

Comparisons between the µ-analysis techniques and the classical

industrial approach show that the new analysis tools can provide

more rigorous and efficient analysis of worst-case aircraft stability

characteristics in the presence of multiple sources of parametric

uncertainty. An interesting result is the fact that worst-cases were

shown by the µ-tools to occur sometimes in the interior of the

uncertain parameter space, i.e. not at some combination of the

extreme values of the uncertain parameters. This result contradicts

the basic assumption of the classical gridding approach, and further

motivates the use of the proposed new analysis tools. Remaining

obstacles to the widespread adoption of µ-analysis tools by indus-

try are centred on difficulties associated with efficiently generating

accurate LFT-based uncertainty models for non-linear systems, and

problems with routinely obtaining tight bounds on µ for all types



of analysis problems - further research in these areas is certainly

needed.
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Variable name [Min,Max] value Units

U Xcg [-1.72,-11.7] %MAC

U Iyy [56887,69529] kgm2

U Cmtail
[-20,+20] %

U Cmq
[-20,+20] %

U Cmα [-20,+20] %

TABLE I

CATEGORY I LONGITUDINAL UNCERTAINTIES

classical µ classical w.c. µ w.c.

w.c. eig. w.c. eig. uncertainties uncertainties

-0.1985 -0.1980 1 0.9682

-0.1669 -0.1660 -1 -0.9985

-0.0631 -0.0630 1 0.9771

-8.5e-5+0.0775j 7.8e-5+0.0775j -1 -0.9906

-8.5e-5-0.0775j 7.8e-5-0.0775j 1 0.9886

TABLE II

SAMPLE RESULTS FOR WORST-CASE EIGENVALUE CRITERION AT FC1
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Fig. 1. Nichols exclusion regions (single loop)
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Fig. 2. Boundaries for the unstable eigenvalue requirement
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Fig. 3. Part of the HWEM model with uncertainty included
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Fig. 5. Pitch rate responses to a step demand on pitch rate
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Fig. 6. Elliptical Nichols plane exclusion regions
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Fig. 8. µ (-*-) and classical (-) worst cases
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Fig. 9. Close-up of Figure 8
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Fig. 10. Computation times for µ and classical techniques
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Fig. 11. (a) µ upper and lower bounds (standard mixed µ algorithms),
(b) Improved mixed µ lower bound
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Fig. 12. (a) Standard and improved µ bounds for 50 frequency points,
(b) Standard and improved µ bounds for 100 frequency points, (c)
Optimisation based µ bounds for an initial 50 point frequency grid


