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Abstract 

Enterprise-wide supply chain planning problems inherently exhibit multi-level decision network 

structures, where for example, one level may correspond to a local plant control/scheduling/planning 

problem and another level to a plant-wide planning/distribution network problem. Such multi-level 

decision network structures can be mathematically represented using multi-level mathematical 

programming principles. In this paper, we address bilevel decision-making problems under uncertainty 

in the context of enterprise-wide supply chain optimization with one level corresponding to a plant-

specific planning problem and the other to a distribution network problem. We first describe how such 

problems can be modelled as bilevel programming problems and then present an effective solution 

strategy based on parametric programming techniques.  
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Supply chains typically involve multiple 

enterprise-wide activities, from the procurement of the raw 

materials, through a series of process operations, to the 

distribution of end-products to customers. It is not 

surprising that their design and operation issues pose a 

number of important theoretical, technical and practical 

challenges, which have started to receive increasing 

attention in academia and industry (see representative 

publications in Table 1). However little attention has been 

given to actual supply chain principles, particularly (i) 

hierarchical decision structures from local, independent to 

global, centralized objectives, which are often conflicting 

each other, and (ii) incomplete data and information to 

significant uncertainty involved in characteristics at the 

various levels of the hierarchy i.g. demand forecasts, raw 

material availabilities, etc.  

In order to bridge the gap between the industrial 

practices and the lack of corresponding research, we 

propose an approach that directly captures their multilevel 

and uncertainty aspects based on bilevel optimization 

principles. The solutions of the resulting stochastic bilevel 

programming problems are obtained by proposing an 

effective solution strategy based on parametric 

programming techniques.  

Supply chain planning - a bilevel optimization model 

Bilevel programming problems refer to hierarchical 

optimization problems (leader’s or outer problems) that 

are constrained by another optimization problem 

(follower’s problem or inner problem). It is often used to 

describe situations involving several indifferent groups 

which are inter-connected in a hierarchical structure (see 

some of representative references on bilevel programming 

in Table 2). Each group may correspond to an individual 

or an agency, often with a corresponding independent 

 

   



  
 

objective. The two problems are inter-connected: the outer 

problem sets parameters influencing the inner problem; the 

outer problem, in turn, is affected by the outcome of the 

inner problem. Bilevel programming problems are 

challenging since even they typically involve non-

convexities for linear models and attention has been given 

to only deterministic ones (see, for example, Visweswaran 

et al., 1996). 

Table 1. Recent research on Supply chain 
planning problem  

Researcher 
Solution 

Method 
Uncertainty Key issue 

Bose and Pekny 

(2000) 

Simulation 

Optimization 
Demand 

Model predictive 

control (MPC) 

Zhou et 

al.(2000) 

Optimization 

(multi-

objective) 

no. Refinery example 

Gupta and 

Maranas (2000) 
Optimization Demand 

Stochastic 

programming 

Flores et 

al.(2000) 
Simulation Demand MPC 

Gjerdrum et 

al.(2001) 

Optimization 

(MILP) 
no. 

Profit distribution 

Game-theory 

Perea-Lopez et 

al.(2001) 
Simulation Demand 

Decentralized  

Control 

Papageorgiou et 

al.(2001) 

Optimization 

(MILP) 
no 

Tax, scale-up cost 

Phamaceutical 

 

Table 2. Representative applications of the 
bilevel programming 

 

Area Reference 

Economy Cassidy et al. (1971) 

Hobbs and Nelson (1992) 

Civil Eng. Clegg et al. (2000) 

Boyce and Mattsson (1999) 

Chiou (1999), Migdalas (1995) 

Environ. 

Eng. 

Amouzegar and Moshirvaziri (1999) 

Finance Bard et al. (2000) 

Chem. Eng. Clark and Westerberg (1983, 1990)  

Grossmann and Floudas (1987) 

Brengel and Seiderm (1992) 

Visweswaran et al. (1998) 

Floudas et al. (2001) 

 

In view of multiple enterprise activities in actual 

supply chains, their planning problems can be naturally 

posed as bilevel optimisation models. Consider the 

following manufacturing supply chain that consists of a 

production part involving two plants, PL1, PL2 and a 

distribution part, involving an inventory warehouse, WH 

for two products A and B, as shown in Figure 1. Based on 

the mathematical notation in Table 3, its individual 

production and distribution problem can be 

mathematically modelled separately as follows: 

Table 3. Notation 

    Indices 

I Product (1,…,NM) 

L Plant (1,…,NL) 

    Variables 

Yli Production amount of product I at plant l(ton) 

Xi Inventory holding amount of product I (ton) 

    Parameter 

DMi Demand of product i(ton) 

pcli, pdi ,CRSli, CRSB, IRSli, IRSBl, dci, ddli, 

b2,INVRSi,,INVB : cost parameter 

 
 

D istribution  centre C  

(X A ,X B) 

Plant B 1(Y 1A ,Y 1B) 

Plant B 2(Y 2A ,Y 2B)

D em and A

D em and B

 

Figure 1 Process configuration of                    
an illustrative supply chain 
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where the objective function (1) is to minimize production 

/ delivery costs; (2) denote that commonly used resources 

at each plants can be shared; (3) represent that allocations 

of some resources may be controlled by individual plant 

conditions; (4) indicate that the production should exceed 

the inventory warehouse levels. 
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where (5) represents the minimization of warehouse 

distribution costs; (6) are bounds for the inventory levels; 

(7) denote that inventory levels should meet demands. 

 

Note that the decisions of the distribution part are 

generally based on those of the production part: for 

example, inventory policies are made using the outcome of 

production decisions. Similarly, decisions on the 

production part are affected by decisions of the 

distribution part: for example, production levels are 

decided from the given information regarding the 

inventory conditions. Therefore the overall supply chain 

planning model can be posed as the following bilevel 

optimization problem:  
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where the inner problem corresponds to the production 

optimization problem and the outer problem to the 

distribution problem. By denoting Xli as x, Yi as y and by 

also including uncertainty (present in, i.g. demand 

forecast, equipment availability etc.) denoted as θ , (8) 

may be recast as the following bilevel programming 

problem under uncertainty:  
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where ,,, RRYyRXx ⊆Θ∈⊆∈⊆∈ θ      

 , are constant vectors and   

are constant matrices. 

212 ,, cc 2121 ,,, ctctdd

21212 ,,,, KKBBA

1,bb

1,A

Parametric programming-based solution methodology  

There is little research on methodology for stochastic 

bilevel programming problems like (9) to the best of our 

knowledge. We therefore propose a novel solution 

methodology involving the following three steps: 

Step 1 

Formulate the inner optimisation problem as a multi-

parametric linear programming (mp-LP) problem by 

regarding the variables of the outer problem and the 

uncertain parameters as parameters: 
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 (10)                  

Step 2. 

Solve problem (10) using multi-parametric LP algorithms 

(refer to Dua, 2000 and POP software). The corresponding 

parametric solutions are of the following form: 
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where k denotes the number of the computed parametric 

solutions, lk is a constant parameter, Hk and Ik are constant 

matrices and hk is a constant vector.  

Step 3. 

Using the parametric expression in  (11), the outer 

problem is then transformed into a family of single 

parametric optimization problems. By solving those single 



  
 

problems, all local optimal solutions of the original 

problem are obtained and the global optimum may be 

determined consequently.  

 

A typical solution for the illustrative example is 

shown in Table 4, where uncertainty in demands is 

incorporated as BA θθ , . The proposed methodology is 

novel because it provides a complete set of optimal 

planning strategies of individual supply chain elements as 

a function of uncertain parameters and other design 

variables which are decided in advance hierarchically.  

Conclusion 

This paper has proposed a bilevel programming 

framework to address industrial supply chain planning 

problems under uncertainty. The solutions of the resulting 

problem are computed using a novel methodology based 

on parametric optimization. 
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Table 4. A typical Result of the illustrative example 

 

Optimal operation plan 

# 

Critical region 

Production Distribution 
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