BASIC RECEIVER RCS433-BR2

Thank you for choosing an RCS product.
You are recommended to read this manual carefully before installing this product.

SUMMARY

1- PRODUCT SPECIFICATIONS

1A - Introduction
1B - Usable transmitters
1C- Technical specifications
1D - Receiver overview
1E-Wiring diagram
1F - Main features
1G - Power selection
1H - K2 Output type selection

2- TRANSMITTER CODES MEMORIZATION

2A - Output "K1 Relay"
2B - Output "K2 Relay"
3- RELAY PROGRAMMING (PULSE / LATCH)

4- MEMORY CAPACITY

5- MEMORY ERASURE

6- TRANSMITTER NUMBER DISPLAY

1-PRODUCT SPECIFICATIONS

1A - Introduction

This receiver, type RCS-433BR2 is a 2 relay output receiver,operating at $433,92 \mathrm{Mhz}$ in AM/ASK modulation.
It is designed for automatic closing systems and anti-burglar systems. The operating frequency is among the European harmonised frequencies; The antenna is connected with a F-type connector.
There are 2 relay outputs : K 1 with contacts $\mathrm{C}-\mathrm{NO}$ and K 2 with contacts C NC or NO according to the selection of J 2 (see par. 1H).
The operating mode can be Pulse or Latch for K1 or K2.
The power supply is $12 \mathrm{or} 24 \mathrm{Vac} / \mathrm{dc}$ (see par. 1F).
The IP grade of 2 X allows only indoor installations.
The product fully complies with the EMC European Regulations (CE) and FCC Part 15 Regulations.

1B-Usable Transmitters

- RCS-433MDT2 : 2 button transmitter
- RCS-433CKPD: Wireless Keypad

1C- Technical specifications

Receiver type:

Demodulation:
O perating frequency:
Local oscillator frequency:
Intermediate frequency:
Sensitivity (for good signal):
Input impedance:
Supply voltage:
Current absorbtion:
atrest:
with 1 relay excited:
Number of relays:
Relay operating mode
Commutable max power:
Memory capacity (txkeys):
O perating temperature:
Dimensions:
Weight:
IP Protection grade:

Superheterodyne.

AM/ASK.
$433,92 \mathrm{MHz}$.
$6,6128 \mathrm{MHz}$.
$10,7 \mathrm{MHz}$.
$-115 \mathrm{dBm}$
75 Ohm.
$12 / 24 \mathrm{Vac} / \mathrm{dc}(\pm 10 \%)$.
11 mA
30 mA
2 (1NO, 1NO/NC).
Pulse / Latch
24 W or 24 VA
42.
$-4 \div+158^{\circ} \mathrm{F}$.
$4.13 \times 1.77 \times 1.1$ in
2.29 oz

2X
1D - Receiver overview

LEGEND :

P1:	Push button P1	J2: K2 output type Jumper
P2:	Push button P2	K1: Relay K1
LD:	LED GREEN	K2: Relay K2
J1:	Power selection Jumper	F:

See Par. 1G
See Par. 1H
1E - Wiring diagram

Signal	6 pole connector	Wire color
GND	$\mathbf{1}$	BLACK
$+12 / 24$ Vac/dc	$\mathbf{2}$	RED
K1 C Contact	$\mathbf{3}$	GREEN
K1 NO Contact	$\mathbf{4}$	${ }^{\text {GREEN }}$
K2 C Contact	$\mathbf{5}$	ORANGE
K2 Contact: according to J2 selection	$\mathbf{6}$	ORANGE

1F-Main features

- 42 storable transmitter keys
- Single transmitter key or Full memory erasure
- Programmable operation mode of the K2 relay: pulsing, latching
- Easy transmitter memorization

1G-Power selection

JUMPER J1 = CLOSED
Supply = 12 Vdc
JUMPER J1 = OPEN
Supply = 24 Vdc

1H-K2 Output type selection

\square
JUMPER J2 $=$ POSITION B
K2 outputs $=\mathrm{C}, \mathrm{NC}$ K2 outputs $=\mathrm{C}, \mathrm{NO} \quad \mathrm{K} 2$ outputs $=\mathrm{C}, \mathrm{NC}$

2- TRANSMITTER CODE MEMORIZATION

2A-"K1" O utput

1) Keep P1 pressed down until the green Led (LD) switches on, release P1 and push the key of the transmitter;
2) The K1 relay makes a pulse
3) $\mathbf{L D}$ will remain lit for 4 seconds.

2B-"K2" O utpu

1) Keep P2 pressed down until the green Led (LD) switches on, release P2 and push the key of the transmitter;
2) The K2 relay makes a pulse
3) $L \mathbf{D}$ will remain lit for 4 seconds.

3- RELAY PROGRAMMING (PULSE / LATCH)

It is possible to set the operating mode of K1 or K2 relay: pulse or latch

- In pulse mode the relay remains excited as long as the transmitter key remains activated
- In latch mode, the relay is activated at the first pulse of the transmitter and releases at the next pulse.
K1 can be Pulse or Lathcing mode.

K2 can be pulse or lathcing mode

The default operating mode for K 1 or K 2 is Pulse.

Programming K1 or K2 to Latch mode

1) Keep $P 1$ or $P 2$ pressed down until LD switches on
2) Release $P 1$ or $P 2$ and then push P2 once and release

LD will blink quickly for 2 seconds and then switches off.
When the LD blinks quickly the relay K 1 or K 2 is set to latch mode
In order to restore the previous mode, repeat the same sequence:

1) keep $P 1$ or $P 2$ pressed down until LD blinks quickly,
2) Release P1 or P2 and then push P2 once and release.

LD will remain lit solid for 2 seconds and then switches off At this point the pulse mode has been restored

4- MEMORY CAPACITY

The receiver can store the single keys of each transmitter.
For example a 4 key transmitter needs 4 memory cells.
The total memory space is 42 .
That means that the receiver can store up to 10 transmitters with 4 keys or 21 transmitter with 2 keys.
In case of full memory, if one tries to store an extra transmitter, a sequence of 3 blinks of LD occurs and the operation fails.

5- MEMORY ERASURE

It is possible to delete either the single transmitter key or the complete memory.

Single transmitter key erasure

1) Select the relay on which the transmitter key has been memorized.
2) Keep P1 or P2 pressed down until the green Led LD switches on (it will blink if the relay is in latch mode);
3) Release the button and push the key of the transmitter to erase;
4)The led LD switches off for a while, then switches on and remains lit again for 4 seconds.
At the end the transmitter key has been erased.
Full memory erasure
4) Keep $\mathbf{P 1}$ pressed down until $\mathbf{L D}$ switcheson
5) Release P1 and then press P1 and P2 down simultaneously until LD flashes 3 times.
At that point the memory has been completely erased.

6- TRANSMITTER NUMBER DISPLAY

It is possible to display how many transmitter keys are stored in the memory. The number is displayed, in binary notation (0 or 1), by a sequence of led flashes.

A short flash ($1 / 2$ second) of LD gives a binary "0"
A long flash (1 second) of L gives a binary " 1 ".
The complete sequence is composed by 6 flashes and by a final longer flash (2 seconds).
According to its position, each flash has a different "weight"

First flash:	$\mathbf{2}^{\mathbf{0}}=\mathbf{1}$
Second flash:	$\mathbf{2}^{1}=\mathbf{2}$
Third flash:	$\mathbf{2}^{\mathbf{2}}=\mathbf{4}$
Fourth flash:	$\mathbf{2}^{\mathbf{3}}=\mathbf{8}$
Fifth flash:	$\mathbf{2}^{\mathbf{4}}=\mathbf{1 6}$
Sixth flash:	$\mathbf{2}^{\mathbf{5}}=\mathbf{3 2}$

Procedure

1) Keep P1 or P2 pressed down until LD switcheson.
2) Release the button and then push P2 for a while before LD switches off.

At this point begins the sequence of flashes.
Take a note of the sequence to calculate the corresponding decimal number, as shown in the following examples.

Es. $N^{\circ} 1$: Memory empty

Weights $\begin{array}{llllllll} & 2 & 4 & 8 & 16 & 32 & \text { End Sequence }\end{array}$
Sequence : - - - - -
Final number: $0+\overline{0}+\overline{0}+\overline{0}+\overline{0}+0=\overline{0}$

Es. $N^{\circ} 2: 5$ transmitter keys
$\begin{array}{llllllll}\text { Weights } & 1 & 2 & 4 & 8 & 16 & 32 & \text { End Sequence }\end{array}$
Sequence: - - - - -
Final number: $1+\overline{0}+\overline{4}+\overline{0}+0 \overline{+} 0=\overline{5}$
Es. $N^{\circ} 3$: 12 transmitter keys
$\begin{array}{llllllll}\text { Weights } & 1 & 2 & 4 & 8 & 16 & 32 & \text { End Sequence }\end{array}$
Sequence:
Final number: $0+\overline{0}+\overline{4}+\overline{8+} 0+0=\mathbf{1 2}$

GUARANTEE

The guarantee period of all RCS products is 6 months, beginning from the manufacturer date. During this period, if the product does not work correctly, due to a defective component, the product will be repaired or substituted at the discretion of the producer. The guarantee does not cover the plastic container integrity. After-sale service is supplied at the producer's factory.

REMOTE CONTROL SOLUTIONS
Pierpont Commerce Center
4862 E. Baseline Rd. Suite 104
Mesa, AZ 85206 - U.S.A.
Office: 480-281-1878
Fax: 480-281-1883
e-mail: techsupport@rcsremotes.com

