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ABSTRACT   

 

The "flux-based" local scaling in the stably stratified boundary layer is valid only 

in cases with strong, continuous turbulence, when the gradient Richardson number Ri is 

constant and sub-critical. In order to extend the local similarity approach to cases with 

weak turbulence (very stable regime), the "gradient-based" local scaling is introduced and 

discussed in the paper. Both types of local scaling, the "flux-based" and the "gradient-

based", are tested based on the data, collected from a 60-m tower during CASES-99. The 

obtained results show that the "gradient-based" scaling provides a useful framework for 

the treatment of cases with both strong and weak turbulence and overcritical Richardson 

numbers.  

 

1. Introduction 

 

The examination of stably-stratified, nocturnal turbulence presents a considerable 

challenge because of both the theoretical, computational and measuring difficulties. 

Weak stable turbulence requires very accurate measurements and data analyses (e.g., 

Vickers and Mahrt, 2005). The stable boundary layer (SBL) often does not reach 

equilibrium (eg. Caughey et al., 1979; Wyngaard and Kosovic, 1994), and is sensitive to 

minor influences, such as terrain inclination (e.g., Brost and Wyngaard, 1978, Derbyshire 

and Wood, 1994), surface heterogeneity (e.g., Mahrt, 1998; Mahrt et al., 1998; Nappo, 

1991), and radiative effects, due to the presence of water vapor, water droplets, and 

aerosols in the atmosphere (e.g., Garrat and Brost, 1981; Duynkerke, 1999; Ha and 
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Mahrt, 2005; Van de Wiel et al, 2003). Additional complicating factors include 

meandering motions, development of low-level jets (e.g., Saiki et al, 2000), advection, a 

variety of density currents and propagating gravity waves, which may cause turbulence 

by overturning (e.g., Merrill, 1977, Sun et al., 2004).   

 Standard theories (e.g., Turner, 1973; Yamada, 1975) suggest that turbulence is 

determined by the gradient Richardson number Ri. Linearized theory predicts that small 

perturbations in inviscid fluid may grow exponentially for Ri < Ric = 0.25 (e.g., Miles, 

1961, Woods, 1969). In viscid flows this limit may be smaller (Nieuwstadt, 1984). If Ri 

exceeds the critical value Ric, turbulence is suppressed, can decay, or degenerate into 

wavy motions (e.g., Steward, 1969; Tavoularis and Karnik, 1989). In many geophysical 

flows, however, turbulent activity exists when Ri is overcritical. Under non-stationary 

conditions, turbulent mixing may occur at all Richardson numbers (e.g., Schumann and 

Gerz, 1995).  

 Recent data analyses indicate that the adequate understanding of the stably-

stratified boundary layer (SBL) depends on high-resolution measurements, since 

turbulence can be confined in layers, sometimes only a few meters deep (e.g., Mahrt and 

Vickers, 2003; Poulos and Burns, 2003). Similarly, large-eddy simulations imply that the 

accurate description of the SBL requires very fine-resolution (about 1 m) calculations 

(e.g., Beare and MacVean, 2004). Thin layers in the SBL can have a step-like structure, 

with small and large eddies (e.g., Chimonas, 1999). Basley et al. (2003) detected thin 

layers with temperature gradients of 28 K/m. 

 The interactions between waves and turbulence in the SBL have been well 

documented during the past few decades (e.g., Hunt et al. 1985, Finnigan and Enaudi, 
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1981; King et al 1987, Sun et al., 2004). Shutts et al. (1988) found large amplitude 

gravity waves in the lower atmosphere, providing a large dynamic Reynolds stress, one 

order of magnitude larger than that in typical stable conditions. King et al. (1987) 

described waves, which propagate down to the earth's surface from a height about 1 km. 

Rees and Mobbs (1988) identified topographically generated wavy modes. Blumen et al. 

(2001) reported cases of shear instability with trains of billows, resembling a cat's eye 

pattern, embedded within step-like structures. 

 Turbulence in the SBL can have either "continuous" or "intermittent" (sporadic) 

character (Mahrt et al., 1998). Continuous turbulence takes place during cloudy nights 

with strong winds. Its presence is manifested by a relatively large, negative heat flux at 

the surface, which decreases with height. On the other hand, the intermittent turbulence is 

characterized by short burst of fluctuations followed by events with low turbulent activity 

(e.g., Mahrt, 2003, Mahrt and Vickers, 2005). It occurs with clear, nocturnal skies, and 

weak winds.  

Intermittence can take the form of "fine-scale intermittence", when only small-

scale turbulence is present, or "global intermittence", when turbulence on all scales 

collapses (e.g., Mahrt, 2003). Intermittence could be interrupted by local shear effects 

(e.g., Sun et al., 2004), by turbulence generated aloft and diffused to the surface, by 

locally generated waves, gravity currents (e.g. Coulter, 1990, Poulos, 2002, Nappo, 

1991), or by convection generated by radiative cooling at the tops of stratocumuli clouds 

(e.g., Lilly and Schubert, 1980). Knowledge of physical mechanisms behind the 

intermittent behavior of turbulence in SBL is still limited.  

 Many authors (e.g., Mahli, 1995, Oyha et al, 1997, Mahrt 1998, Mahrt et al. 1998) 
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categorize the SBL into either weakly stable, or very stable regimes. The definitions of 

these regimes vary among studies. The weakly stable regime is often defined as the case 

with the Richardson number Ri < 0.25, with significant wind shear, clouds, and 

continuous turbulence near the surface.  

 In contrast, the very stable regime is characterized by small shear, clear skies, Ri 

> 0.25, and intermittent turbulence. The very stable regime may assume an "upside-

down" character, with the strongest turbulence at the top of the surface inversion layer, 

where it is generated by vertical shear on the underside of the lower-level jet stream . The 

upper portion of the SBL can be detached from the nearly laminar surface sub-layer. The 

detachment may be only temporary, since flow acceleration above the very stable surface 

layer may lead to shear generation of turbulence, and recoupling of elevated turbulence 

with the surface (e.g., Businger, 1973). The very stable boundary layer is often layered, 

and its depth may not be well defined (e.g., Mahrt et al.,1998). 

Currently, there is no accepted theory of the SBL that would generally treat the 

described above properties of the SBL. Nevertheless several theoretical developments, 

obtained within the last five decades, deserve mention. Among them is the first 

constructive theoretical description of stable turbulence in the atmospheric surface layer, 

proposed by Monin and Obukhov (1954) within their similarity theory. Another 

milestone is the introduction of local scaling, based on dry, second-order closure 

equations by Nieuwstadt (1984). Sorbjan (1986, a, b, c) developed local similarity 

functions based on dimensional analysis and a similarity approach.  

Each of the above listed theories was found to have limitations. The Monin-

Obukhov similarity can be applied only to the surface layer. Nieuwstadt's local theory, 
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based on the "flux-based" local scaling, is valid only during continuous turbulence, in the 

quasi steady-state, for which the heat flux is linear with height. Sorbjan's local approach, 

in which the heat flux is allowed to be non-linear with height, is more general but it also 

lacks consistency, when the Richardson number varies with height, and also outside the 

critical limit.  

The purpose of this paper is to further extend the local similarity approach by 

introducing an alternate, "gradient-based" scaling, intended to be valid in both the weakly 

stable and very stable conditions. The paper has the following structure. First, "flux-

based" local scaling is briefly be reviewed in Section 2. Next, the "gradient-based" 

scaling is introduced and discussed. In Section 3, both types of scales are examined, 

based on data obtained during the CASES-99 field experiment. 

 

2. Local scaling 

 

 Nieuwstadt (1984) derived his local scaling by employing a steady-state, dry 

model of the SBL. His original system consisted of seven, second-order moment 

equations, which are listed in the Appendix. By eliminating the vertical heat flux in the 

considered system, and using the generalized Monin-Obukhov length Λ(z), Nieuwstadt 

obtained: 
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where Λ(z) = -τ3/2/(κβw" ), κ is the von Karman constant, and all other terms are 

described in the Appendix.  

 Nieuwstadt argued that the above six equations express a relationship between 

seven dimensional combinations KM/τ
1/2Λ, KH /τ1/2Λ, w

2
/τ, e2/τ, H/w" , 

" 2 τ/w" 2, and l/Λ. If the mixing length is assumed to be linear: l ~ z, then the 

dimensional combinations should depend only on the dimensionless height z/Λ: 

 

            KM/τ1/2Λ  ~  KH /τ1/2Λ ~ w
2
/τ  ~  e

2
/τ ~ H/w"   ~ "

2 τ/w" 2  
 = f (z/Λ)                (2) 

 

In the limit of z/Λ → ∞, the mixing length becomes limited, and the set (1) no longer 

contains z as a variable (the z-less regime). As a consequence, the dimensionless 

quantities in (2) approach constant values: 

 

                KM/τ1/2Λ ~ KH /τ1/2Λ ~ w
2
/τ  ~ e

2
/τ  ~ H/w"  ~ "

2 τ/w" 2 
 = const                   (3) 
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 Nieuwstadt limited his discussion to the dry, quasi steady-state case, for which 

w" /w" o = (1 - z/h), and τ/τo = (1 - z/h)3/2, where h is the height of the SBL. This 

approach neglects the effects of radiative fluxes in the SBL, and leads to the singularity 

of temperature at the top of the SBL (e.g., Sorbjan, 1987, Derbyshire, 1990). Sorbjan 

(1987) argued that in a more general case, which includes the effects of radiative cooling 

and advection, w" /w" o = (1 - z/h)a and τ/τo =(1 - z/h)b, where a and b are empirical 

constants. The singularity of temperature at the top of the SBL is avoided, when a ≥ b 

(Sorbjan, 1987). 

 Sorbjan's (1986a, b, c) approach was based on dimensional analysis. It recognized 

that the semi-empirical similarity functions, expressed in terms of the Monin-Obukhov 

scales in the surface layer (i.e., u* for wind velocity, t* = -w" o/u* for temperature, q* = -

wqo/u* for humidity, and L = u*
2/[κ β t*] for height) must be identical with the universal 

functions, scaled by the analogous local scales:  

 

U* (z) = τ1/2                

T* (z)  = - w"  /U*                                                                            (4) 

Q* (z) = - wq /U* 

Λ(z ) =  U*
2/ (κβT*) 

 

where wq is the humidity flux and Q*(z) is the humidity local scale. Consequently, any 

scaled statistical moment X is expected to be independent of height in the stable boundary 

layer:   
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where a, b, c, and d are appropriate power coefficients. 

 The above hypothesis was found to be valid for gradients, variances, covariances, 

eddy viscosities and diffusivities, dissipation rates, structure parameters Cv
2, CT

2, spectra 

and cospectra only in the continuous, sub-critical case (e.g., Sorbjan, 1995). Note that (5) 

implies that the gradient Richardson number Ri = N2 / S2 ~ (β T*/Λ) / ( U*/Λ)2 = const, 

where N = (β dΘ/dz)0.5 is the Brunt-Våisålå frequency, and S = [(∂U/∂z)2 +(∂V/∂z)2]1/2 is 

the wind shear. 

The local similarity based on (4) and (5) is invalid, when the Richardson number 

varies with height, and also outside the critical limit. Moreover, it fails in the intermittent 

case near the Earth's, when w'" '  ~ 0, u'w'  ~ 0. The temperature gradient in this case 

cannot be accurately defined: dΘ/dz ~ T*/Λ  ~ β w"2/u'w'   ~  0/0. This drawback of 

the Monin-Obukhov scaling can be associated with the fact that the z-less regime is 

locally shear generated, and not systematically coupled to the surface. When the 

proximity to the surface is sufficiently small, turbulence can be controlled by radiative 

effects, i.e., the long-wave flux cooling can exceed the sensible heat flux divergence 

(Mahrt and Vickers, 2005).  

Additional disturbing effects can be related to large flux errors, which 

contaminate the similarity scales. Fluxes computed from traditional methods for weak 

turbulence are erratic and often of either sign because random flux errors are larger than 

the magnitude of the true flux (e.g., Mahrt and Vickers, 2005). Because the stability 
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parameter z/Λ is a function of the turbulence itself, serious self-correlation errors can also 

appear (Mahrt et al., 1998; Mahrt and Vickers, 2005). Finally, in very stable regime, 

fluxes and variances can be influenced by non-turbulent motions, which do not follow the 

Monin-Obukhov scaling laws (e.g., Mahrt et al., 1998).  

In an attempt to extend the validity of the local similarity approach, let us propose 

the following alternative local scaling (Sorbjan, 2001): 

 

                                                 Un(z) = σw  

                                                 Ln (z) = Un/N             

                                                 Tn(z)  =  LndΘ/dz                                                       (6) 

                                                 Qn (z) =  Lndq/dz                     

 

where σw
2
 is the vertical velocity variance and N is the Brunt-Våisålå frequency. The 

length scale Ln in (6) can be derived from a simple energy budget, in which the potential 

energy Ep ~ β dΘ/dz Ln
2, acquired by a portion of fluid displaced by a vertical distance 

Ln, is equated with its initial kinetic energy Ek ~ σw
2 (e.g., Pristley, 1958, Mahrt, 1979, 

Hunt et al., 1988, Mahrt et al., 1998). It can be noted, that analogous scales were 

previously employed to describe the dynamics of the stably stratified interfacial layer 

above the mixed layer (Sorbjan, 2004), with σw ~ w*, where w* is the convective scale 

for velocity. 

 Applying the local scales (6) to the set (A1), together with a closure assumption 

that the mixing length l ~ Ln, yields: 
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 The above system implies that the dimensionless combinations in (7) are 

functions of a local gradient Richardson number Ri: 

 

                      w" / (UnTn) ~  H/(UnTn ) ~ "
2
/Tn

2 ~  e2/Un
2 ~ τ/Un

2 = f (Ri)                       (8) 

 

 Because the eddy diffusivities have been eliminated in (7), the length scale Ln is absent 

in (8).  

 Based on (8), it can be argued that generally, any scaled statistical moment X in 

the SBL is expected to be a function of a local Richardson number:   

                                                    
X

Un

a
Tn
b
Qn

c
Ln
d
= fx (Ri)                                                       (9) 
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where a, b, c, and d are appropriate power coefficients. 

 A similar result can be obtained based on dimensional analysis and similarity 

approach (e.g., Sorbjan, 1995). Considering 5 governing parameters of stable turbulence: 

β = g/Το, dΘ/dz, dq/dz, S = [(∂U/∂z)2 +(∂V/∂z)2]1/2, and σw  (which involve 4 independent 

units [m, s, K, kg]), yields 4 scales listed in Eqs. 6, and one dimensionless parameter - the 

gradient Richardson number Ri (Sorbjan, 2005).  

 Turbulence described by the system (7) is assumed to be stationary.  Consequently, 

one can expect that (9) is valid in the steady state. In some cases of non-stationarity, the 

effects could be parametrically included in (9) through the local Richardson number  

(e.g., Schumann and Gerz, 1995).  

 It can be noted that during continuous turbulence, when Ri = const < Ric, both 

scaling sets, (4) and (6), are equivalent.  Indeed, based on (5) we have: dΘ/dz ~ T*/Λ  ~ 

β w" 2/τ2. On the other hand, from (8), we have: w" 2 ~ Un
2Tn

2 ~ dΘ/dz σw
4/β, which 

gives (with τ ~ σw
2) the same relationship between the temperature gradient and the 

temperature flux. From (8), we will also obtain that Λ ~ τ3/2/(β w" ) ~ σw/N = Ln. Mason 

and Derbyshire (1990), Derbyshire (1990), Hunt et al. (1985) reported a close association 

between Λ and Ln based on measurements in the weakly stable case.  

 There are several practical advantages of using the gradient-based scaling (6) 

versus employing the flux-based scaling (4). First of all, the velocity scale Un, defined by 

the vertical velocity variance, is less sensitive to the sampling problems. Moreover, Un is 

quite robust, since the vertical velocity variance is less sensitive to the choice of 

averaging time scale compared to other moments (e.g., Mahrt and Vickers, 2005). Un is 
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less vulnerable to sampling problems, compared to flux-based quantities. Its probability 

distribution is relatively independent of Ri (e.g., Mahrt and Vickers, 2005). The length 

scale Ln does not inherit the difficulty of measuring fluxes in the very stable case. At the 

same time, the measurements of scalars seem to be more accurate than the evaluation of 

their fluxes, even though an appropriate calculating of their gradients requires a sufficient 

vertical resolution of observations. The effects of multiple layers within the SBL can be 

included and parametrically expressed in terms of the Richardson number Ri, which can 

vary with height, and can be larger than Ric. 

  

3. Empirical verification  

 

 In this Section, both sets of scales, the “flux-based” (4) and the “gradient-based” (6) 

will be tested based on atmospheric data, presented by Mahrt and Vickers (2005). The 

considered data set was collected during the CASES-99 experiment in October of 1999. 

The experimental site was located over grassland in south central Kansas (Poulos et al., 

2002).   

 Data collecting and processing procedures can be summarized as follows (Mahrt 

and Vickers, 2005). Sonic anemometer data sets were obtained on 6 levels of a 60-m 

tower. Profiles of mean temperature were computed from 34 thermocouples on the 60-m 

tower (Burns and Sun, 2000). In addition, data from the 1.5-m and 5-m levels of a mini 

tower, 10 m to the side of the main tower, were included. Data was quality controlled and 

pre-processed following the procedure of Vickers and Mahrt (1997, 2005). The applied 

corrections for sonic tilt are outlined in Mahrt et al. (2000). Perturbations were defined as 
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deviations from a record-dependent averaging length. Covariances were averaged over 

one hour to reduce flux sampling errors, except for time-height cross-sections, for which 

30 minute-averages were used. Mostly cloudy cases were removed by discarding records, 

where the magnitude of the surface net radiation loss was less than 40 W/m2. Finally, the 

composite profiles for the strong S and weak W turbulence classes were computed. 

          The strong-turbulence composite set S was based on 1-hour records, collected on 

day 284 (11 October 1999), beginning at the hours of 1, 2, 3, 4, 5, and 6 (Central 

Standard Time), on day 298 (hours 2, 3, and 4), and on day 300 (hours 22, 23, and 0). 

The weak-turbulence composite set W was based on records collected on day 290 (hours: 

21, 22, and 23), on day 291 (hours: 4, 17, 18, and 19), on day 292 (hours: 4, 6, 20, 21, 

and 23), on day 293 (hours: 0, and 1), on day 296 (hour 23), on day 298 (hours: 18, and 

19), on day 299 (hours: 1, 2, and 4), on day 301 (hours: 5 and 19). The composite profiles 

are not equivalent to those composed based on ensemble averaging. 

             The surface-layer characteristics of both composite cases are depicted in Table 1.  

The surface-layer scales u*, T*, L in the table were evaluated based on observations at z = 

1 m. The net radiation flux, Fn= F↓- F↑, was calculated as an average for four radiation 

stations (stations 1, 2, 3, and 5) surrounding the main tower (e.g., Sun et al. 2003). Using 

near neutral observations, the roughness length (for momentum) at the site was estimated to 

be zo = 2.7 cm. As seen in the table, the surface temperature flux Ho, defined by the product 

(-u*T*), is about 12 times larger in case S than in case W. The Monin-Obukhov height L in 

case S is about 40 times larger than in case W.   

        A general characteristic of the considered composite cases is presented in Figures 1-3.  

Note that the temperature in Figure 1 is obtained as the deviation from the surface value. 

The standard errors for all moments can be found in Mahrt and Vickers (2005). The error 
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bars are not shown in the figures presented in this paper in order to indicate that local 

scaling was applied to the processed data. 

Based on Figures 1-3, one might conclude that case W is characterized by a larger 

temperature difference between the top and the bottom of the tower, lesser wind velocity, 

and consequently weaker turbulence. The R ichardson number exceeds the critical value. 

The surface heat flux is relatively small, and the SBL is relatively shallow. In case S, the 

temperature difference between the top and the bottom of the tower is smaller, the wind 

velocity greater, which produces stronger turbulence. The Richardson number is below 

the critical value. The surface heat flux is larger than in case W. In case S, observations 

contain only a part of the boundary layer. 

 The “flux-based” scaling (4) is tested in Figures 4 and 5. The figure depicts the 

dimensionless variances, " 2 /T*
2 and w2 /U*

2, as the function of the dimensionless height 

z/Λ. In case S, the observational points are confined to the portion of the plot, where z/Λ 

is small (< 2.5).  In case W, the observational points are located in the region where z/Λ  

> 1.9. It can be noted that the larger values of the parameter z/Λ in case W are due to the 

smaller values of the Reynolds stress (as seen in Figure 3b).  

 The dimensionless temperature variance in Figure 4a is nearly constant with the 

dimensionless height in case S (which agrees with Eq. 5), and is highly scattered in case 

W. A possible dependence between the dimensionless variance " 2 /T*
2 and z/Λ is 

represented by the dotted line in the figure. The constant value of the temperature 

variance in case S (z/Λ < 3) can be estimated as 4.5, which gives σθ/T* ~ 2.1. This value 

can be compared with the result of Nieuwstadt (1984), who obtained σθ/T* ~ 3.   

 Figure 4a indicates that the “flux-based” scaling (4) is effective and consistent 
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with Eq. 5 in case S, and it is ineffective in case W. A similar conclusion follows from 

Figure 4b, where the dimensionless vertical velocity variance is shown to be nearly 

constant in case S. The constant value of w2
/U*

2 in the figure can be estimated as 2.5, 

which gives σw /U* ~ 1.4. The same result was obtained by Nieuwstadt (1984). The 

vertical velocity variance in case W increases with the dimensionless height z/Λ  in a 

quite consistent manner (i.e., without any significant scatter). Large values of both 

dimensionless variances in Figures 4a and 4b imply that the flux-based local scales T* 

and U* are relatively small at large z/Λ. 

 The dependence between the dimensionless height z/Λ and the Richardson 

number Ri is shown in Figure 5. In case S, when z/Λ → 0, then the Richardson number Ri 

also decreases to zero. On the other hand, in the range of z/Λ from about 1 to 3 (which is 

the "flux-based" local scaling regime, described by Eq. 5), Ri is approximately constant, 

and equal to 0.15. Nieuwstadt (1984) obtained Ri ~ 0.2 in the same range of z/Λ. In case 

W, which is confined in figure in the range of z/Λ from about 2 to about 760, the 

Richardson number Ri increases from about 0.5 to about 5.4. Consequently, since Ri  

varies with heigh, the “flux-based” scaling (4) is clearly inconsistent in this case. 

 The “gradient-based” scaling (6) is examined in Figures 6a-c. Figure 6a shows the 

dimensionless temperature flux w" /(UnTn) as a function of the Richardson number. As 

expected, the dimensionless temperature flux vanishes in the neutral limit, when Ri → 0. 

On the other hand, when the temperature stratification becomes sufficiently large, 

turbulence is suppressed, and the dimensionless temperature flux decreases. At some 

value of Ri between these two limiting regimes (which is about 0.25 in the Figure), the 

dimensionless temperature flux reaches a minimum, equal to about -0.3. A similar 
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minimum was detected by Mahli (1995) at about z/L = 0.2 (according to Businger, 1973, 

this value is equivalent to Ri ~ 0.1), and Pahlow et al. (2001) at z/L = 0.1. Mahrt et al. 

(1998), obtained w"  = -0.045 K m/s at about z/L = 0.065 (which is equivalent to Ri ~ 

0.065). The authors argued that the abscissa (i.e., z/L or Ri), for which the flux reaches 

minimum defines a threshold between weakly stable and very stable regime.  

 The presence of the minimum in Figure 6a indicates that the value of the 

dimensionless temperature flux in the SBL is bounded: w" (z) ≥ - 0.3 UnTn, for any z 

and any Ri. Derrbyshire (1990) found another upper stability bound for the surface flux 

w" o ≥ Hm ~ -G
2
f/β, where G is the geostrophic wind, f is the Coriolis parameter, and β is 

the buoyancy parameter. His formula implies that the surface flux is limited by a product 

of the velocity scale equal to G, and the temperature scale equal to Gf/β. Contrary to our 

result, such a temperature scale is independent of the temperature stratification near the 

surface. 

 The dimensionless Reynolds stress τ/Un
2 is presented in Figure 6b. As the 

temperature stratification vanishes in the neutral case, when Ri → 0, the value of the 

Reynolds stress reaches a constant value. When the temperature stratification becomes 

sufficiently large and Ri → ∞, turbulence is suppressed, and the dimensionless stress 

decreases. The values of the dimensionless stress, presented by Schumann and Gerz 

(1995) in the range Ri < 0.5 (based on laboratory data), show a faster drop-off, from 

τ/Un
2 ~ 0.75 - 0.95 at  Ri = 0, to  about  0.2 at  Ri = 0.5. 

 Figure 6c shows the dependence of the dimensionless temperature variance 

" 2 /Tn
2 on the Richardson number. As in Figure 5a, the temperature variance vanishes, 
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when Ri → 0. The temperature variance decreases, when Ri → ∞. At some value of Ri 

between these two limiting regimes (which is Ri ~ 1 in the figure), the dimensionless 

temperature variance reaches a maximum, equal to about 1.5. A similar maximum of the 

dimensionless temperature variance was detected by Mahrt et al (1998), who obtained 

σθ /t* = 2 at about z/L = 0.1 (according to Businger (1973) this value is equivalent to Ri = 

0.05). The presence of the maximum indicates that " 2 (z) ≤ 1.5 Tn
2, for any level z within 

the SBL, and for any value of Ri. 

  Finally, Figure 7 illustrates the dependence of the correlation coefficient rwθ, 

between the temperature and vertical velocity, on the Richardson number. The curve in 

the figure (and also the curves in Figures 4-6) have a tentative (subjective) character. The 

correlation coefficient is about -0.35 in the neutral limit, when Ri → 0, and slowly 

increases, when Ri → ∞. The results presented by Shumann and Gerz (1995) in the range 

Ri < 0.5 (based on laboratory experimental data) reflect a faster drop-off in rwθ, from 

about -0.5 at Ri = 0 to about -0.1 at Ri = 0.5. 

 

4. Final remarks 

 

 Stably-stratified shear flows exist in the stratosphere, troposphere, in the 

atmospheric boundary layer over colder (during warm air advections), or radiatively 

cooled surfaces, and in the ocean. Although numerous studies have examined various 

aspects of stably-stratified flows, a unified theory of this case has been missing, partly 

due to measuring difficulties of weak turbulence, and partly due to a variety of 

complicating physical processes in the SBL. Lately, progress in understanding of stable 
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turbulence has been achieved, based on recent field campaigns, such as STABLES-98 

(Cuxart et al., 2000), and CASES-99 (Paulos et al., 2002). In the present paper, the 

CASES-99 observations have been used in order to evaluate local similarity approach for 

the description of stably-stratified shear flows.  

Two composite data sets (referred to as W and S), obtained during CASES-99, 

have been employed. Case W is characterized by weak turbulence, small surface heat 

flux, and the local Richardson numbers, exceeding its critical value. In case S, turbulence 

is stronger, and the local Richardson numbers are below the critical value. The 

considered sets used to examine two types of local scaling, the "flux-based" and 

"gradient-based".  

The analysis has shown that the "flux-based" local scaling is effective in case S, 

and ineffective in case W. Generally, the "flux-based" local scaling is valid only in cases 

with strong, continuous turbulence, when the gradient Richardson number Ri is constant 

and sub-critical.  It fails in the intermittent case, when the fluxes are small. It is also 

known to introduce self-correlation errors, i.e., the scaled variables and the stability 

parameter z/L* depend on surface fluxes.  

The "gradient-based" scaling produces consistent results in both cases, W and S, 

with dimensionless parameters dependent on the Richardson number. This could be 

related to the advantageous properies of the "gradient-based" scales. The velocity scale 

Un, defined by the vertical velocity variance, is less sensitive to sampling problems, 

compared to the flux-based scale. It is more robust, because the vertical velocity variance 

is relatively less sensitive to the choice of an averaging time-scale, and its probability  

distribution is nearly independent of Ri. The length scale Ln does not inherit the difficulty 
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of measuring fluxes. The "gradient-based" scales are equivalent to the "flux-based" scales 

in the case when the Richardson number is sub-critical and constant with height.. 

Concluding, the "gradient-based" scaling provides a useful framework for 

examining stably-stratified shear turbulence. Effects of non-stationarity and multiple 

layers within the SBL can be included and parametrically expressed in terms of the 

Richardson number Ri, which can vary with height, and can be larger than Ric. The 

evaluation of the SBL height h is irrelevant in this approach.  

 

APPENDIX 

 

 The original system employed by Nieuwstadt (1984) consisted of seven dry, 

steady-state, second-order moment equations, modified by additional assumptions that 

the stress, the velocity gradient, and the horizontal heat flux are parallel. The set included 

equations for the turbulent kinetic energy E = e2/2, the vertical velocity variance w2 , the 

modulus of the Reynolds stress τ, the vertical heat flux w" , the horizontal heat flux H, 

and the temperature variance " 2 :                 
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 where " = (uw
2

+ vw
2

)
1/ 2, " = K

M
S , S = [(∂U/∂z)2 +(∂V/∂z)2]1/2 is the wind shear, 

w" = #K
H
$% /$z, H = [u"

2

+ v"
2

]
1/ 2 , β = g/T is the buoyancy parameter, l is the mixing 

length, KM and KH are the eddy viscosity and diffusivity, and a1, a2, d, C, C1, C2, C3 ,Cq, Ce 

are constants. 
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Figure captions 

 

 Figure 1. Profiles of: (a) the temperature, and (b) the wind velocity, in the 

composite case W (open circles) and S (filled circles). The temperature is the deviation 

from the surface value. 

 Figure 2. Profiles of the Richardson number Ri, in case W (open circles) and case 

S  (filled circles). 

 Figure 3. Profiles of: (a) the heat flux, (b) the Reynolds stress,  (c) the temperature 

variance, and (d) the vertical velocity variance, in case W (open circles) and case S (filled 

circles). 

 Figure 4.  The dependence of: (a) the temperature variance, and (b) the vertical 

velocity variance, scaled by the "flux-based" local scales, given by Eqs. (4), on the 

dimensionless height z/Λ, in case W (open circles) and case S  (filled circles). 

 Figure 5. The dependence between the dimensionless height z/Λ and the 

Richardson number Ri, in case W (open circles) and case S  (filled circles). 

 Figure 6. The dependence of: (a) the heat flux, (b) the Reynolds stress, (c) the 

temperature variance, scaled by the "gradient-based" local scales, given by Eqs. (6), on 

the Richardson number Ri, in case W (open circles) and case S  (filled circles). 

 Figure 7.  The correlation coefficient rwθ between the temperature and vertical 

velocity as the function of the Richardson number Ri, in case W (open circles) and case S  

(filled circles).  
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Fig.1a 
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Fig.1b 

Figure 1. Profiles of: (a) the temperature, and (b) the wind velocity, in the composite case 

W (open circles) and S (filled circles). The temperature is the deviation from the surface 

value. 
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Figure 2. Profiles of the Richardson number Ri, in case W (open circles) and case S  

(filled circles). 
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Fig.3a 
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Fig. 3b  
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Fig.3c 
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Fig. 3d 

Figure 3. Profiles of: (a) the heat flux, (b) the Reynolds stress,  (c) the temperature 

variance, and (d) the vertical velocity variance, in case W (open circles) and case S (filled 

circles). 
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Fig.4a    
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Fig. 4b  

Figure 4.  The dependence of: (a) the temperature variance, and (b) the vertical velocity 

variance, scaled by the "flux-based" local scales, given by Eqs. (4), on the dimensionless 

height z/Λ, in case W (open circles) and case S  (filled circles). 
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Figure 5. The dependence between the dimensionless height z/Λ and the Richardson 

number Ri, in case W (open circles) and case S  (filled circles). 
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Fig.6a
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Fig.6b 
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Fig. 6c  

Figure 6. The dependence of: (a) the heat flux, (b) the Reynolds stress, (c) the 

temperature variance, scaled by the "gradient-based" local scales, given by Eqs. (6), on 

the Richardson number Ri, in case W (open circles) and case S  (filled circles). 
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Figure 7.  The correlation coefficient rwθ between the temperature and vertical velocity as 

the function of the Richardson number Ri, in case W (open circles) and case S  (filled 

circles). 
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                TABLE 1. The surface-layer characteristics of the composite cases W and S   

 

  ______________________________________________________ 

  Compo-     No.             u*         T*         Ho           L      Net radiation 

  site case    records     [m s-1]    [K]   [K m s-1]     [m]       [W m-2] 

  ______________________________________________________ 

     W              22            0.04    0.07    -0.0028     0.51      -43.95 

  _______________________________________________________ 

     S               12            0.30    0.12    -0.0360    19.63      -56.65 

  _______________________________________________________ 

 

 

 

 

 

 

 

 

 

 

 

 

 


