CHAPTER 1

STATISTICS: AN INTRODUCTION

(1) STATISTICS:

Statistics deals with the methods of classification and analysis of data (numerical and nonnumerical) for drawing valid conclusions and making reasonable decisions. It has meaningful applications in production engineering, in analysis of experimental data, in economics, in law, in medicines, in biology, etc. The importance of statistical methods whether it be in engineering, in social sciences, in biological sciences, in medical sciences, in health sciences, or, in physical sciences, is on the increase. As such we shall now study this interesting and important field and its applications. Depending on how data are used, the two major areas of statistics are <u>descriptive</u> <u>statistics</u> and <u>inferential statistics</u>.

(a) DESCRIPTIVE STATISTICS:

It consists of the collection, organization, summarization, and presentation of data. (It describes the situation as it is).

(b) INFERENTIAL STATISTICS:

It consists of making inferences from samples to populations, hypothesis testing, determining relationships among variables, and making predictions. (Inferential statistics is based on probability theory. It goes beyond what is known).

(**NOTE:** By <u>probability</u>, we mean the chance of an event occurring. For example, people who play cards, dice, bingo, and lotteries are using the concepts of probability theory. It is also used in the insurance industry and other areas such as genetics, etc.).

*** *** ***

(2) SOME USEFUL TERMINOLOGIES:

We shall now explain certain terminologies which will be useful in the study of various statistical techniques and their applications.

(A) In order to gain information about seemingly haphazard events, statisticians study <u>random</u> <u>variables</u>. These are defined as follows:

(i) VARIABLES:

A variable is a characteristic or an attribute that can assume different values. Height, weight, temperature, number of phone calls received, etc. are <u>examples of variables</u>.

(ii) RANDOM VARIABLES:

Variables whose values are determined by chance are called random variables.

(B) COLLECTION OF DATA:

The collection of data constitutes the starting point of any statistical investigation. It should be conducted systematically with a definite aim in view and with as much accuracy as is desired in the final results, for detailed analysis would not compensate for the bias and inaccuracies in the original data. The definition of data is given below.

(i) DATA:

The measurements or observations (values) for a variable are called data.

(ii) DATA SET:

A collection of data values forms a data set.

(iii) DATA VALUE OR DATUM:

Each value in the data set is called a <u>data value</u> or a <u>datum</u>.

Example: Suppose a researcher selects a specific day and records the number of calls received by a local office of the Internal Revenue Service each hour as follows: {8, 10, 12, 12, 15, 11, 13, 6}, where 8 is the number of calls received during the first hour, 10 the number of calls received during the second hour, and so on. The collection of these numbers is an example of a data set, and each number in the data set is a data value.

(C) Data may be collected for each and every unit of the whole lot (called population), for it would ensure greater accuracy. But, however, since in most cases the populations under study are usually very large, and it would be difficult and time-consuming to use all members, therefore statisticians use subgroups called samples to get the necessary data for their studies. The conclusions drawn on the basis of this sample are taken to hold for the population. The definitions of a population and a sample are given below.

(i) POPULATION:

A population is the totality of all subjects possessing certain common characteristics that are being studied.

(ii) SAMPLE:

A sample is defined as a subgroup or subset of the population.

(iii) RANDOM SAMPLE:

A sample obtained without bias or showing preferences in selecting items of the population is called a random sample.

(D) CLASSIFICATION OF VARIABLES (AND DATA):

(a) Random Variables (or Data) can be classified as qualitative or quantitative as follows:

(i) QUALITATIVE VARIABLES (OR DATA):

Qualitative variables are variables that can be placed into distinct categories, according to some characteristic or attribute. For example, if subjects are classified according to <u>gender (male or female)</u>, then the variable <u>"gender"</u> is qualitative. <u>Other examples</u> of qualitative variables are religious preferences, geographic locations, grades of a student, etc.

(ii) QUANTITATIVE VARIABLES (OR DATA):

Quantitative variables are numerical in nature and can be ordered or ranked. <u>For example</u>, the variable <u>"age"</u> is numerical, and people can be ranked in order according to the value of their ages. <u>Other examples</u> of quantitative variables are heights, weights, body temperatures, etc. (b) <u>Quantitative random variables (or data) can be further classified either as discrete or continuous, depending on the values it can assume</u>. These are defined as follows:

(i) DISCRETE VARIABLES (OR DATA):

Discrete variables assume values that can be counted (such as, 0, 1, 2, 3, etc.). <u>They are obtained by counting</u>. <u>Examples of discrete variables</u> are the number of children in a family, the number of students in a class-room, the number of calls received by a switchboard operator each day for one month, etc.

(ii) CONTINUOUS VARIABLES (OR DATA):

Continuous variables can assume all values between any two specific values. <u>They are obtained</u> <u>by measuring</u>. For Example, <u>"temperature"</u> is a continuous variable, since the variable can assume all values between any two given temperatures. <u>Other examples</u> of continuous variables are height, weight, length, time, etc.

(3) RECORDED VALUES OF A CONTINUOUS RANDOM VARIABLE AND ITS BOUNDARIES:

Since continuous data must be measured, rounding answers is necessary because of the limits of the measuring device. Usually, answers are rounded to the nearest given unit. For example, heights must be rounded to the nearest inch, weights to the nearest ounce, etc. Hence, a recorded height of 73 inches would mean any measure of 72.5 inches up to but not including 73.5 inches. Thus, the boundary of this measure is given as 72.5 – 73.5 inches. (We have taken 72.5 as one of the boundaries since it could be rounded to 73. But, we can not include 73.5 because it would be 74 when rounded). Sometimes 72.5 – 73.5 is called a class which will contain the recorded height of 73 inches. The concept of the boundaries of a continuous variable is illustrated in the following Table I:

Variable	Recorded Value	Boundaries (Class)
Length	15 cm	14.5 – 15.5 cm
Temperature	86 ⁰ F	85.5 – 86.5 ⁰ F
Time	0.43 sec	0.425 – 0.435 sec
Weight	1.6 gm	1.55 – 1.65 gm

TABLE I

Note: The boundaries of a continuous variable in the above table are given in one additional decimal place and always end with the digit 5. The concept of the class (or boundaries) of a continuous variable will be discussed again in Chapter2.

(4) **MEASUREMENT SCALES OF A DATA:** Data can also be <u>measured</u> by <u>various scales</u>. The four basic levels of measurements are <u>nominal</u>, <u>ordinal</u>, <u>interval</u>, and <u>ratio</u>. These are described below:

TABLE II

MEASUREMENT SCALES (DEFINITIONS AND EXAMPLES)

N	Nominal-level Data		Ordinal-	Level Data	Interval-level Data		Ratio-level Data	
De	Definition: The		Definitio	1: The	Definitior	: The interval-	Definition: The	
no	nominal-level of		ordinal-lev	/el of	level of m	level of measurement		of
me	measurement		measurer	nent	ranks data	a, and precise	measurer	nent
cla	assifies d	lata into	classifies	data into	difference	s between	possesse	s all the
m	utually ex	xclusive	categories that can		units of measure do		characteristics of	
(n	on-overla	apping),	be ordere	d or ranked.	exist. How	vever, there is	interval	
		categories	However, precise		no meaningful zero (i.e.,		measurement (i.e.,	
in	which no	ordering	differences between		starting point). For		data can be ranked,	
or	ranking	can be	the ranks do not exist.		example, many		and there exists a	
im	posed o	n the data.	(For exan	<u>iple,</u> when	standardiz	zed	true zero	or starting
			people ar	e classified	psycholog	ical tests yield	point). In a	addition,
			according	to their	values me	asured on an	true ratios	s exist
			build (sma	all, medium,	interval so	ale. There is a	between o	different
			or large),	or when	meaningfu	ul difference of	units of m	easure.
			students a	are	one point	between an IQ	For example, if one	
			classified	according	of 109 and	d an IQ of 110.	person can lift 200	
			to their gr	ades (A, B,	There is n	o true zero	, pounds and another	
			C, or D), a large		(i.e., no st	arting point)	can lift 100 pounds,	
			variation exists		because I	Q tests do not	then the ratio	
				e individuals	measure	people who	between them is 2 to	
			in each cl	ass.	have no ir	ntelligence.	1. In othe	r words,
							the first pe	erson can
								s much as
							the secon	d person.
E>	camples		Example		Examples:		Examples:	
	(i)	Zip Code	(i)	Grade (A,	(i)	SAT Score	(i)	Height
	(ii)	Gender		B, C, D,	(ii)	IQ	(ii)	Weight
		(Male,		F)	(iii)	Temperature	(iii)	Time
		Female)	(ii)	Judging			(iv)	Salary
	(iii)	Eye Color		(1st			(v)	Age
		(Blue,		place,			(vi)	Number
		Brown,		2nd				of
		Green,		place,				Phone
		Hazel)		etc.)				Calls
	(iv)	Political	(iii)	Rating				
	<i>.</i> .	Affiliation		Scale				
	(v)	Religious		(Poor,				
	<i>,</i>	Affiliation		Good,				
	(vi)	Major		Excellent)				
			/5./	Donking				
		Field of	(iv)	Ranking				
		Study	(17)	of Tennis				
		Study (Math.,	(17)					
		Study (Math., Comp.	(1V)	of Tennis				
		Study (Math., Comp. Sc.)	(1V)	of Tennis				
	(vii)	Study (Math., Comp. Sc.) Nationality	(1V)	of Tennis				
	(vii) (viii)	Study (Math., Comp. Sc.)	(1V)	of Tennis				

(5) BASIC METHODS OF SAMPLING:

When the population is large and diverse, a sampling method must be designed so that the sample is representative, unbiased and random, i.e. every subject (or element) in the population has an equal chance of being selected for the sample. The following sampling methods are commonly used for obtaining a random sample.

Random	Stratified	Systematic	Cluster	Convenience
Sampling	Sampling	Sampling	Sampling	Sampling
This method requires that each member of the population be identified and assigned a number. Then a set of numbers drawn randomly from this list forms the required random sample. Note that each member of the population has an equal chance of being selected. For a large population, computers are used to generate random numbers which contain series of numbers arranged in random order.	This method requires that the population be classified into a number of smaller homogeneous strata or subgroups. A sample is drawn randomly from each stratum. For example, a population could be stratified by age, sex, marital status, education, religion, occupation, ethnic background or virtually any characteristic.	This method requires that every kth member (or item) of the population be selected to form the required random sample. For example, we might select every 10th house on a city block for the random sample.	The population area is first divided into a number of sections (or subpopulations) called clusters. A few of those clusters are randomly selected, and sampling is carried out only in those clusters. For example, a community can be divided into city blocks as its clusters. Several blocks are then randomly selected. After this, residents on the selected blocks are randomly chosen, providing a sampling of the entire community.	In convenience sampling, we use the results that are readily available.

TABLE III

*** *** ***

(6) STATISTICAL INFERENCE AND MEASUREMENT OF RELIABILITY:

Definition 1: A <u>statistical inference</u> is an estimate or prediction or some other generalization about a population based on information contained in a random sample of the population. That is, the information contained in the random sample is used to learn about the population.

Definition 2: A <u>measure of reliability</u> is a statement (usually quantified) about the degree of uncertainty associated with a statistical inference.

(7) ELEMENTS OF DESCRIPTIVE AND INFERENTIAL STATISTICAL PROBLEMS:

TABLE IV

FOUR ELEMENTS OF DESCRIPTIVE STATISTICAL PROBLEMS	FIVE ELEMENTS OF INFERENTIAL STATISTICAL PROBLEMS
 The population or sample of interest. One or more variables (characteristics of the population or sample units) that are to be investigated. 	 The population of interest. One or more variables that are to be investigated. The sample of population units.
 Tables, graphs, numerical summary tools. Identification of patterns in the data. 	 4. The statistical inference about the population based on information contained in the random sample of the population. 5. A measure of reliability for the statistical inference.

REFERENCES: