Name \qquad

CHEM 1474

Test \#2
Fall 2010 (Buckley)
Circle the letter corresponding to the best answer for each of the following multiple choice questions. Each multiple choice question is worth 2 points.

For questions $1-4$ consider the reaction below:

$$
2 \mathrm{NO}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

1. The rate of the reaction in terms of NO is given as:
a. $\frac{2 \Delta[\mathrm{NO}]}{\Delta \mathrm{t}}$
b. $-\frac{\Delta[\mathrm{NO}]}{2 \Delta \mathrm{t}}$
c. $\frac{\Delta[\mathrm{NO}]}{2 \Delta \mathrm{t}}$
d. $\frac{\Delta[\mathrm{NO}]}{\Delta \mathrm{t}}$
e. $-\frac{\Delta[\mathrm{NO}]}{\Delta \mathrm{t}}$
2. The rate of formation of $\mathrm{H}_{2} \mathrm{O}$ is:
a. one-half the rate of the reaction
b. one-half the rate of formation of $\mathrm{N}_{2}(\mathrm{~g})$
c. equal to the rate of the reaction
d. twice the rate of the reaction
e. one-half the rate of destruction of NO
3. If the rate of the reaction under a particular set of conditions is $0.10 \mathrm{M} / \mathrm{s}$, the rate of destruction of $\mathrm{H}_{2}(\mathrm{~g})$ is:
a. $\quad 0.20 \mathrm{M} / \mathrm{s}$
b. $0.10 \mathrm{M} / \mathrm{s}$
c. $0.05 \mathrm{M} / \mathrm{s}$
d. $0.40 \mathrm{M} / \mathrm{s}$
e. $0.025 \mathrm{M} / \mathrm{s}$
4. Which of the following changes would result in an increased rate of reaction?
a. increase the concentration of only NO
b. decrease the concentration of only N_{2}
c. increase the concentration of either NO or H_{2}
d. increase the concentration of only H_{2}
e. cannot tell from the information given

Consider the following set of initial rate data for questions 5-9.
The chemical reaction is:

$$
2 \mathrm{ClO}_{2}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{ClO}_{3}^{-}(\mathrm{aq})+\mathrm{ClO}_{2}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell)
$$

Initial Rate Data for Reaction Above			
Experiment \#	$\left[\mathrm{ClO}_{2}\right](\mathrm{M})$	$\left[\mathrm{OH}^{-}\right](\mathrm{M})$	Rate $(\mathrm{M} / \mathrm{s})$
1	0.030	0.010	2.07×10^{-3}
2	0.010	0.010	2.3×10^{-4}
3	0.030	0.030	6.21×10^{-3}

5. What is the order of the reaction with respect to ClO_{2} ?
a. zeroth
b. first
c. second
d. third
e. fourth
6. What is the order of the reaction with respect to OH^{-}?
a. zeroth
b. first
c. second
d. third
e. fourth
7. The rate law for the reaction is:
a. Rate $=\mathrm{k}\left[\mathrm{ClO}_{2}\right]^{2}\left[\mathrm{OH}^{-}\right]$
b. Rate $=\mathrm{k}\left[\mathrm{ClO}_{2}\right]\left[\mathrm{OH}^{-}\right]^{2}$
c. Rate $=k\left[\mathrm{ClO}_{2}\right]^{2}\left[\mathrm{OH}^{-}\right]^{2}$
d. Rate $=k\left[\mathrm{ClO}_{2}\right]^{2}$
e. Rate $=k\left[\mathrm{ClO}_{2}\right]\left[\mathrm{OH}^{-}\right]$
8. The value of the rate constant for the reaction is:
a. $\quad 6.9 \mathrm{M}^{-1} \mathrm{~s}^{-1}$
b. $230 \mathrm{M}^{-2} \mathrm{~s}^{-1}$
c. $2.3 \times 10^{4} \mathrm{M}^{-3} \mathrm{~s}^{-1}$
d. $0.207 \mathrm{~s}^{-1}$
e. $0.069 \mathrm{~s}^{-1}$
9. Under the conditions in Experiment \#2, the rate of destruction of ClO_{2} is:
a. $\quad 1.15 \times 10^{-4} \mathrm{Ms}^{-1}$
b. $2.3 \times 10^{-4} \mathrm{Ms}^{-1}$
c. $0.030 \mathrm{Ms}^{-1}$
d. $4.6 \times 10^{-4} \mathrm{Ms}^{-1}$
e. $9.2 \times 10^{-4} \mathrm{Ms}^{-1}$
10. Place an X in the all boxes below corresponding to true statements about a first-order reaction.
\square the half-life depends on the initial concentration
\square a plot of $\ln [\mathrm{A}]$ vs. time will be linear
\square a plot of $1 /[\mathrm{A}]$ vs. time will be linear
\square the half-life does not depend on the initial concentration
\square the rate of the reaction does not change with concentration
11. Which of the numbered the activation energy for
a. 1
b. 2
c. 3
d. 4
boxes in the diagram represents the indicated reaction?
12. Which of the following equations is the equilibrium expression for the reaction:
$\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftarrows \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
a. $\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{C}_{2} \mathrm{H}_{4}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}}{\left[\mathrm{C}_{2} \mathrm{H}_{6}\right]\left[\mathrm{O}_{2}\right]}$
b. $\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{C}_{2} \mathrm{H}_{6}\right]\left[\mathrm{O}_{2}\right]^{2}}{\left[\mathrm{C}_{2} \mathrm{H}_{4}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}}$
c. $\mathrm{K}_{\mathrm{c}}=\left[\mathrm{C}_{2} \mathrm{H}_{4}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}$
d. $\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{C}_{2} \mathrm{H}_{6}\right]^{2}\left[\mathrm{O}_{2}\right]}{\left[\mathrm{C}_{2} \mathrm{H}_{4}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}}$
e. $\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{C}_{2} \mathrm{H}_{6}\right]\left[\mathrm{O}_{2}\right]}{\left[\mathrm{C}_{2} \mathrm{H}_{4}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}}$
13. The equilibrium expression for the chemical reaction:
$4 \mathrm{HCl}(\mathrm{aq})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{H}_{2} \mathrm{O}(\ell)+2 \mathrm{Cl}_{2}(\mathrm{~g})$
is:
a. $\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{Cl}_{2}\right]^{2}}{[\mathrm{HCl}]^{4}\left[\mathrm{O}_{2}\right]}$
b. $\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}\left[\mathrm{Cl}_{2}\right]^{2}}{[\mathrm{HCl}]^{4}\left[\mathrm{O}_{2}\right]}$
c. $\mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{HCl}]^{4}\left[\mathrm{O}_{2}\right]}{\left[\mathrm{Cl}_{2}\right]^{2}}$
d. $\mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{HCl}]^{4}\left[\mathrm{O}_{2}\right]}{\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}\left[\mathrm{Cl}_{2}\right]^{2}}$
e. $\mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{HCl}]^{4}\left[\mathrm{O}_{2}\right]}{\left[\mathrm{Cl}_{2}\right]^{2}}$
14. At a particular temperature the equilibrium constant for the following reaction is 5.8×10^{-2}.

$$
\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftarrows \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})
$$

What is the value of the equilibrium constant for the reaction:

$$
2 \mathrm{PCl}_{3}(\mathrm{~g})+2 \mathrm{Cl}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{PCl}_{5}(\mathrm{~g})
$$

a. 5.8×10^{-2}
b. 17.2
c. 297
d. 3.36×10^{-3}
e. 0.241
15. The equilibrium constant, K_{p}, is 8.9×10^{-5} for the reaction:

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

Which of the following combinations of pressures represents a system that is at equilibrium?
a. $\mathrm{P}_{\mathrm{N}_{2}}=0.050 \mathrm{~atm}, \mathrm{P}_{\mathrm{H}_{2}}=0.24 \mathrm{~atm}, \mathrm{P}_{\mathrm{NH}_{3}}=0.0035 \mathrm{~atm}$
b. $\mathrm{P}_{\mathrm{N}_{2}}=11 \mathrm{~atm}, \mathrm{P}_{\mathrm{H}_{2}}=0.24 \mathrm{~atm}, \mathrm{P}_{\mathrm{NH}_{3}}=0.0045 \mathrm{~atm}$
c. $\mathrm{P}_{\mathrm{N}_{2}}=0.35 \mathrm{~atm}, \mathrm{P}_{\mathrm{H}_{2}}=9.0 \mathrm{~atm}, \mathrm{P}_{\mathrm{NH}_{3}}=3.5 \mathrm{~atm}$
d. $\mathrm{P}_{\mathrm{N}_{2}}=18 \mathrm{~atm}, \mathrm{P}_{\mathrm{H}_{2}}=0.25 \mathrm{~atm}, \mathrm{P}_{\mathrm{NH}_{3}}=0.0050 \mathrm{~atm}$
e. $\mathrm{P}_{\mathrm{N}_{2}}=0.050 \mathrm{~atm}, \mathrm{P}_{\mathrm{H}_{2}}=0.0050 \mathrm{~atm}, \mathrm{P}_{\mathrm{NH}_{3}}=1.5 \mathrm{~atm}$

Problems. Show your work to receive full credit.
16. (10 points) Show your work.

A first order reaction has the form $\mathrm{A} \rightarrow \mathrm{B}$ with a rate constant of $1.45 \times 10^{-3} \mathrm{~s}^{-1}$.
a. If the initial concentration of A is 0.250 M , how long would it take for the concentration of A to drop to 0.100 M ?
b. What is the half-life of the reaction?
c. What concentration of A is left after a period of 4.0 minutes?
d. If the third-life is defined to be the period of time required for the concentration of A to be one-third of its initial value, what is the third-life of this reaction?
17. (10 points) Show your work.

A second-order reaction has the form $\mathrm{A} \rightarrow \mathrm{B}$.
a. If it takes 1500 s for the concentration of A to drop from 0.500 M to 0.280 M , what is the rate constant for the reaction? Include the units.
b. What is the half-life for the reaction if the initial concentration of A is 0.500 M ?
c. How long would it take for the concentration of A to drop from 0.500 M to 0.150 M ?
d. What is the concentration of A after 1000 s starting from the 0.500 M concentration?
18. (10 points) Show your work.
a. A particular reaction has a preexponential factor, A , of $4.5 \times 10^{11} \mathrm{Ms}^{-1}$ and an activation energy of $45 \mathrm{~kJ} / \mathrm{mol}$. What is the value of this reaction's rate constant at a temperature of $125^{\circ} \mathrm{C}$?
b. At what temperature would the reaction have a rate constant of $1 \times 10^{4} \mathrm{Ms}^{-1}$?

SCRATCH PAPER

Page $\mathbf{8}$ of $\mathbf{8}$

