Name
Period $\qquad$ Date Turned In $\qquad$

## DATA TABLE

| Second Row Elements | Na | Mg | AI | Si | P | S | CI | Ar |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Atomic Radius (in pm) | 186 | 160 | 143 | 118 | 110 | 103 | 100 | 98 |
| Electron Configuration | [ Ne$] 3{ }^{1}$ | [ Ne$] 3 \mathrm{~s}^{2}$ | [ Ne$] 3 \mathrm{~s}^{2} 3 \mathrm{p}^{1}$ |
| First lonization Energy (kJ/mol) | 496 | 738 | 578 | 786 | 1012 | 1000 | 1251 | 1521 |
| Electronegativity Value | 0.93 | 1.31 | 1.61 | 1.9 | 2.19 | 2.58 | 3.16 | None |
| First Column Elements | H | Li | Na | K | Rb | Cs | Fr |  |
| Atomic Radius | 37.1 | 152 | 186 | 227 | 248 | 265 | unknown |  |
| Electron Configuration | $1 \mathrm{~s}^{1}$ | [ He$] 2 \mathrm{~s}^{1}$ | [ Ne ] $2 \mathrm{~s}^{1}$ | [Ar]4s ${ }^{1}$ | [Kr]5s ${ }^{1}$ | [Xe]6s ${ }^{1}$ | [Rn]7s ${ }^{1}$ |  |
| First lonization Energy | 1312 | 520 | 496 | 419 | 403 | 376 | 384 |  |
| Electronegativity Value | 2.2 | 0.98 | 0.93 | 0.82 | 0.82 | 0.79 | 0.70 |  |

## Questions based on research:

1. What trends are apparent in the second row elements? Explain any exceptions to the trend you observe.
a. In Atomic Radius
b. In Electron Configuration
c. In First Ionization Energy
d. In Electronegativity
$1^{\text {st }}$ IE increases as one goes across the second row elements from left to right, except where there is one unpaired pelectron.
Electronegativity increases as one goes across the second row elements from left to right, with the exception of argon, a noble gas.
2. What trends are apparent in the second row elements? Explain any exceptions to the trend you observe.
a. In Atomic Radius

Atomic radius increases as one goes down the first column elements from top to bottom.
b. In Electron Configuration

All elements in this group end in a single " s " electron.
c. In First lonization Energy
$1^{\text {st }}$ IE decreases as one goes down the first column elements from top to bottom.
d. In Electronegativity

Electronegativitydecreases as one goes down the first column elements from top to bottom.

Additional questions on back.
3. Explain which element(s) of the fifteen examined is most likely to form a $\mathbf{- 1}$ ion.

Chlorine is most likely to form a -1 ion because it only needs 1 electron to reach noble gas structure and it has the highest electronegativity value.
4. Explain which element(s) of the fifteen examined is most likely to form a +1 ion.

Francium is most likely to form a +1 ion because its outer electron is in the seventh energy level and it has the lowest electronegativity value.
5. Based on electronegativity values, which two elements would form the most ionic bond?

Francium and chlorine would form the most ionic bond because they have the greatest difference in electronegativity values.
6. Based on electronegativity values, which two elements would form the most covalent bond?

Silicon and phosphorus have the smallest difference in electronegativity values and would therefore form the most covalent bond.
7. What general statement can be made about the configurations of the first column of elements?

They all end in a single $s$ electron, which means they are all very reactive elements.
8. What general statement can be made about the configurations of the second row of elements?

The configurations each add one additional electron as the atomic number increases by one.
9. Which element has the largest atomic radius? Which element one has the smallest atomic radius?

Francium has the largest atomic radius and argon has the smallest atomic radius.
10. Which element has the highest first ionization energy? Why is this true?

Argon has the highest $1^{\text {st }}$ IE because it has a full octet of electrons in the outer energy level and does not want to lose any of them.
What is your group's conclusion about the properties of an element and its placement on the periodic table?
Elements are arranged according to their periodic properties with few exceptions.
Elements in a column tend to have similar chemical properties with some exceptions.

