Slide 1 / 130 Slide 2 / 130

Ionic Compounds and Ionic Bonding

Slide 3 / 130 Slide 4 / 130

Table of Contents: Ionic Compounds and Ionic Bonding

Click on the topic to go to that section

- · Periodic Table Review
- · Valence Electrons and the Octet Rule
- · lons
- · Ionic Bonding
- · Properties of Ionic Compounds
- · Predicting an Ionic Compound's Formula
- · Naming Ionic Compounds
- Formulas and Names of Ionic Compounds with Transition Metals
- · Polyatomic ions
- Formula and Names of Compounds with Polyatomic ions (Ternary Ionic Compounds)
- · Polyatomic Patterns

Periodic Table Review

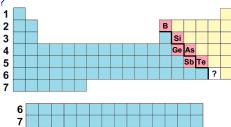
Return to Table of Contents

Slide 5 / 130

Periodic Table - Review

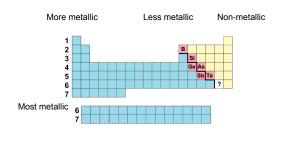
The periodic table is "periodic" because of certain trends that are seen in the elements.

Some of these trends can be seen in the properties of atoms we covered in the last unit: atomic size, ionization energy, electronegativity and metallic character.


Would you predict that elements from the same family/group would have similar physical and chemical properties?

Slide 6 / 130

The Periodic Table of the Elements


The periodic table can be divided into three large classifications of elements.

What type of elements are highlighted in blue, in yellow and in pink? What is unique about the elements that are highlighted in pink?

Metallic Character of the Elements

What the relationship between metallic character and effective nuclear charge? Are they directly or inversely related? Is it accurate to say "Element A is more metallic than element B" even if element B is a non-metal?

- 1 In the periodic table, the elements are arranged in
 - O A alphabetical order
 - O B order of increasing atomic number
 - O C order of increasing metallic properties
 - O D order of increasing neutron content
 - E reverse alphabetical order
 - OF I don't know how to answer this.

Slide 9 / 130

Slide 10 / 130

- 2 Elements ____ exhibit similar physical and chemical properties.
 - A with similar chemical symbols
 - O B with similar atomic masses
 - O C in the same period of the periodic table
 - O D on opposite sides of the periodic table
 - E in the same group of the periodic table

- 3 Which pair of elements would you expect to exhibit the greatest similarity in their physical and chemical properties?
 - O A Li, Na
 - OB Cs, Ba
 - O C Ca, Si
 - O D Ga, Ge
 - E C, O

Slide 11 / 130

Slide 12 / 130

- 4 Which one of the following is a nonmetal?
 - O A W
 - B Sr
 - O C Os
 - OD Ir
 - \bigcirc E s

- 5 Potassium is a _____ and chlorine is a
 - A metal, nonmetal
 - O B metal, metal
 - O C metal, metalloid
 - O D metalloid, nonmetal
 - E nonmetal, metal

Slide 13 / 130 Slide 14 / 130

Valence Electrons and the **Octet Rule**

Return to Table of Contents

Review: Octet Rule

Atoms tend towards having complete outer shells of electrons (remember stability).

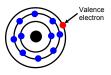
A full outer shell will have:

2 electrons in the s subshell and

6 electrons in the p subshell (s^2p^2 configuration)

Octet rule: atoms tend towards having a total of 8 electrons

8 valence electrons make an octet


Which elements on the periodic table have a complete outer shell? What is true about these elements relative chemical reactivity?

Slide 15 / 130

Valence Electrons

Valence electrons are the electrons in the highest occupied energy level of an element's atoms.

The valence electrons determine the chemical properties of an element. Why do you think this would be true?

To find the number of valence electrons in an atom of a representative element (elements found in the s and p blocks), simply look at its group number.

Atoms in group 3 have 3 valence electrons, atoms in group 17 have 7 valence electrons, etc. Slide 16 / 130

Valence Electrons

Number of valence electrons in neutral atoms: 3 4

> There is one exception: helium has only 2 valence electrons.

> > Slide 18 / 130

Slide 17 / 130

6 How many valence electrons does potassium have?

 \bigcirc A 3

○B 1

OC 19

 \bigcirc D4

E 8

7 How many valence electrons does Aluminum have?

OA 5

○B 7

 \circ C 3

OD 27

○E 13

Slide 19 / 130 Slide 20 / 130

- 8 How many valence electrons does Barium have?
 - O A 1
 - B 2
 - OC 52
 - OD 3
 - E 6

○ False

○ True

9 Arsenic (As) has 6 valence electrons.

Slide 21 / 130

lons

Slide 22 / 130

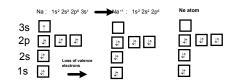
lons

lons are atoms or groups of atoms that have become charged by either *gaining or losing electrons*.

Cations are positive and are formed by elements on the left side of the periodic chart (metals).

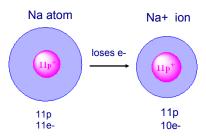
Anions are negative and are formed by elements on the right side of the periodic chart (nonmetals).

Return to Table of Contents


Slide 23 / 130

Slide 24 / 130

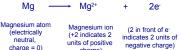
The Formation of Cations


Metals usually give up/lose valence electrons to become more stable.

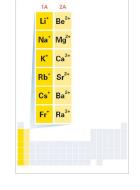
This often results in a noble gas (8 electron) outer shell.

How many electrons does the Na⁺ ion have?

The Formation of Cations

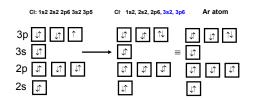

The Na⁺ ion is smaller than the Na atom. Do you remember what factors cause this reduction in size?

Slide 25 / 130 Slide 26 / 130


The Formation of Cations

Cations of Group 1A elements always have a charge of 1+.

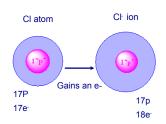
Cations of Group 2A elements always have a charge of 2+.


charge = 0)

The Formation of Anions

Nonmetals usually gain valence electrons.

This results in a noble gas (8 electrons) outer shell



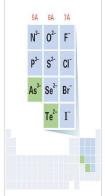
How many electrons does the Cl- have?

Slide 27 / 130

Slide 28 / 130

The Formation of Anions

The Cl- ion is larger than the Cl atom. Do you remember what factors cause this increase in size?


The Formation of Anions

Anions of Group 15 (5A) elements always have a charge of 3-

Anions of Group 16 (6A) elements always have a charge of 2-

Anions of Group 17 (7A) elements always have a charge of 1-

Consider Group 14 (4A) elements, what common charge(s) would you predict for these elements?

Slide 29 / 130

Slide 30 / 130

10	Metals tend to	electrons and
	nonmetals tend to	electrons

- A gain, gain
- O B lose, lose
- O C gain, lose
- O D lose, gain
- O E neither, they keep their electrons

11	Anions tend to be	and cations
	tand to be	

- O A metals, metals
- O B nonmetals, nonmetals
- C metals, nonmetals
- O D nonmetals, metals
- E metalloids, metalloids

12 Metals lose electrons to form cations	13 Anions are formed from nonmetals
○True	○True
○False	○False
	01,1,04,400
Slide 33 / 130	Slide 34 / 130
14 Nonmetals tend to lose electrons forming ions	15 This is the ion formed from a calcium atom
○True	○ A Ca⁺
○False	○ B Ca ²⁺
	○ C Ca-
	○ D Ca²-
Slide 35 / 130	Slide 36 / 130
40. Dheamharana farma an ian with a shares of	
16 Phosphorous forms an ion with a charge of	17 Aluminum forms an ion with a charge of
O A 1+	○ A 2+
○ B 2- ○ C 3+	○ B 1-
○ D 3-	○ C 3+
○ E 2+	○ D 2-
_	○ E 0

18 Of the following, contains the greatest number of electrons. \[\times A \ P^{3+} \\ \times B \ P \\ \times C \ P^{2-} \\ \times D \ P^{3-} \\ \times E \ P^{2+} \]	19 Oxygen forms an ion with a charge of O A 2- O B 2+ O C 3- O D 3+ O E 6+
Slide 39 / 130	Slide 40 / 130
20 lodine forms an ion with a charge of A 7- B 1+ C 2- D 2+ E 1-	21 This is the ion formed from nitrogen A N B N ²⁻ C N ³⁺ D N ³⁻
Slide 41 / 130	Slide 42 / 130
22 Predict the charge of the most stable ion of S? A 3+ B 1- C 6+ D 2+ E 2-	23 ○A +1 ○B +2 ○C +3 ○D +13 ○E -5

Slide 43 / 130 Slide 44 / 130

Ionic Bonding

Introduction to Chemical Bonds

There are three basic types of bonds:

lonic - The electrostatic attraction between ions

Covalent - The sharing of electrons between atoms

Metallic - Each metal atom bonds to other metals atoms within a "sea" of electrons (covered in a later unit)

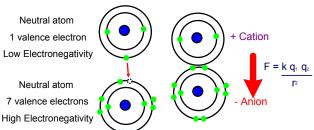
Return to Table of Contents

Slide 45 / 130

Slide 46 / 130

Ionic Bonding

Electronegativity is **how strongly** an atom **attracts electrons**. Atoms with a high electronegativity will be able to attract electrons away from atoms with a much lower electronegativity.


This removal of electrons can occur when the difference in electronegativity between the two atoms is approximately 1.7 or higher.

Once a positive and negative ion are formed, they will be attracted to each other via the electrostatic force:

$$F = \frac{k q_1 q_2}{r_2}$$

Note: The heavier nonmetals from 4,6,5th groups (In, Tl, Sn, Pb, Sb Bi) may act like metals

Ionic Bonding

The atom with high electronegativy attracts valence electrons from the atom with lower electronegativity.

When the atoms become oppositely charged ions the **electrostatic force of attraction** brings them together.

Electrostatic force of attraction = bond

Slide 47 / 130

Slide 48 / 130

Ionic Bonding

Compounds composed of cations and anions are called ionic compounds.

Although they are composed of ions, **ionic compounds are electrically neutral.**


The electrostatic forces that hold ions together in ionic compounds are called ionic bonds.

Ionic Bonds

When sodium and chlorine are close together, sodium's valence electron flies off and "harpoons" the chlorine atom.

The result is a sodium cation (+) next to a chloride anion (-)

These oppositely charged two ions attract: they reel one another together to form an ionic bond.

Ionic Bonds

The electron transfer process in creating an ionic bond:

The dots represents the valence electrons in an atom.

click here for an animation of this reaction

Slide 51 / 130

Slide 52 / 130

Slide 53 / 130

Slide 54 / 130

27 Which of the following compounds would you expect to be ionic?

OA H₂O

OB CO2

O C SrCl₂

OD SO₂

OE H₂S

Slide 55 / 130 Slide 56 / 130

Properties of Ionic Compounds

[*] **Properties of Ionic Compounds**

They are crystalline solids at room temperature They have high melting points They conduct electricity when melted (molten) or dissolved in water (aqueous)

Return to Table of Contents

Slide 57 / 130

Slide 58 / 130

Formula Units

A chemical formula shows the kinds and numbers of atoms in the smallest representative unit of a substance.

A formula unit is the lowest whole-number ratio of ions in an ionic compound.

Every ionic compound has a 3D array of positive and negative ions.

Predicting an Ionic Compound's Formula

Return to Table of Contents

Slide 59 / 130

Predicting an Ionic Compound Formula

Potassium (K) with an electronegativity of 0.8 and oxygen (O) with an electronegativity of 3.5 will form an ionic compound.

> What is the formula for an ionic compound of potassium and oxygen?

How many <u>additional</u> valence electrons does oxygen want?

How many valence electrons does potassium have?

How many potassium atoms will it take to give oxygen the electrons it needs?

The formula unit is K2O

Always Metal First (low electonegativity)

Slide 60 / 130

Predicting an Ionic Compound Formula

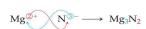
What is the formula for an ionic compound of Mg and N?

How manyadditional valence electrons does N want?

How many valence electrons does Mg have to offer?

How many Mg atoms will it take to give how many N the electrons it needs? (Find the lowest common multiplier first.)

3 Mg: 2 N


The formula unit is Mg₃ N₂

Alternate Method

If you don't like finding least common multipliers, you can use this alternative method:

- 1. Write down the ions side by side along with their charge. Always write the metal first.
- 2. "Criss-cross" the numerical values of the charges.
- 3. Reduce subscripts to lowest ratio.

Slide 63 / 130

Predicting an Ionic Compound Formula

What is the compound formed between Mg and S?

The chemical formula would have to be the lowest ratio of ions.

What would you predict would be the formula for this compound?

Slide 65 / 130

29 The ionic compound formed between Ca and N is:

○ A CaN

OB Ca₂N₂

OC Ca₃N₂

OD Ca₂N₃

○ E I don't know how to do this.

Predicting an Ionic Compound Formula

Example: Write the formula for calcium sulfide.

Step 1: Identify the cation & write its common ion

Calcium is in group 2 → Ca²⁺

Step 2: Identify the anion & write its formula

Sulfur is in group 6 \longrightarrow S^2

Step 3: Criss-cross; reduce subscripts if necessary

Ca²⁺ S²-

CaS

Slide 64 / 130

28 The formula for the ionic compound between Cs and O is:

OA CsO₂

OB OCs2

O C Cs₂O

OD OCs₂

○ E I don't know how to do this.

Slide 66 / 130

30 The ionic compound formed between Al and O

 $\bigcirc A Al_3O_2$

 $^{\bigcirc}$ B AI_2O_3

OC AIO

 \bigcirc D Al₂O₂

○ **F** I don't know how to do this.

31 What is the ionic compound formed between Ca and Al?

- OA CaAl
- OB Ca₃Al₂
- O C Al₂Ca₃
- D No compound is formed.

32 What is the ionic compound formed between P and Br?

- OA P₃Br
- B BrP
- O C This compound is not considered ionic
- D (BrP)₂
- E I don't know how to do

Slide 69 / 130

Slide 70 / 130

33 What is the formula for sodium phosphide?

- OA SP₃
- B NaP
- C Na₃ P
- OD NaP₃
- O E I don't know how to do this.

34 What is the formula for strontium bromide?

- O A SrBr
- B SrBr₂
- C Sr₂Br
- OD BrSr₂

Slide 71 / 130

Slide 72 / 130

35 The formula for barium sulfide is Ba₂S₂.

- ○True
- False

Naming Ionic Compounds

Return to Table of Contents

Naming Binary Ionic Compounds - Cations

Many cations have the same name as the original, neutral atom.

Charge	Formula	Name
+1	H+ Li+ K+ Cs+ Ag+	Hydrogen ion Lithium ion Potassium ion Cesium ion Silver ion
+2	Mg ²⁺ Ca ²⁺ Ba ²⁺ Cd ²⁺	Magnesium ion Calcium ion Barium ion Cadmium ion
+3	Al ³⁺	Aluminum ion

Naming Binary Ionic Compounds - Anions

All monoatomic anions end in "-ide".

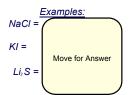
The ions that are produced from Group 7A (or 17) elements are called halide ions.

Can you guess the origin of the name halides?

Group 15	Group 16	6	Group 17		
Nitride N ³⁻ Phosphide P ³⁻)²- }²-	Fluoride Chloride Bromide Iodide	F- Cl- Br- I-	

Slide 75 / 130

Slide 76 / 130


Naming Binary Ionic Compounds

Binary (two-element) compounds are named by writing the name of the cation followed by the name of the anion.

The name of the cation is the same as the metal name.

The name of the anion is the name of the non-metal with the suffix changed to -ide.

Binary ionic compounds end in "-ide."

36 The correct name for Na S is

- A Sodium sulfate○ B Sodium sulfide
- O C Di-sodium sulfide
- O D Sulfur nitride

Slide 77 / 130 Slide 78 / 130

37 The correct name for SrO is ______.

- A strontium oxide
- O B strontium hydroxide
- O C strontium peroxide
- \bigcirc D strontium monoxide
- E strontium dioxide

38	The correct name for Al ₂ O ₃	is	
----	---	----	--

- A aluminum trioxide
- O B dialuminum oxide
- C dialuminum trioxide
- D aluminum oxide
- E aluminum hydroxide

Slide 79 / 130 Slide 80 / 130

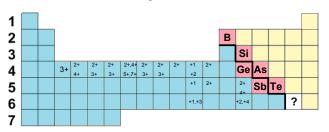
Names and Formulas of lonic Compounds with Transition Metals

Return to Table of Contents

Cations formed by Transition Elements

Recall that s-block metals and some p block elements like aluminum have only one possible ionic charge, based on the Octet Rule.

However, most transition metals (d block elements) can have more than one ionic charge. For this reason, there is a system for designating the charge on each ion.


Sn, Pb from the p-block are called post-transition metals and will form more than one type of ion and behave like transition metals.

or Contents

Slide 81 / 130

Slide 82 / 130

Cations formed by Transition Elements

The 2+ charge is very common among the transition metals as they lose their two "s" electrons first, before losing others from their "d" orbital

Cations Formed by Transition Elements

	1+		2+		3+		4+	
	Copper (I)	Cu+	Cadmium	Cd ²⁺	Chromium (III)	Cr3+	Lead (IV)	Pb ⁴⁺
	Mercury(I)	Hg ₂ ⁺²	Chromium (II)	Cr ²⁺	Cobalt (III)	Co ³⁺	Tin (IV)	Sn ⁴⁺
	Silver	Ag⁺	Cobalt (II)	Co ²⁺	Iron (III)	Fe ³⁺		
		Copper(II)	Cu ²⁺	Manganese (III)	Mn ³⁺			
			Iron (II)	Fe ²⁺				
0.1		Lead (II)	Pb ²⁺					
Only common transition			Mercury (II)	Hg ²⁺				
metals are shown.			Manganese(II)	Mn ²⁺				
metals are shown.		Tin (II)	Sn ²⁺					

Silver, cadmium and zinc only form one cation, Ag, Cd2+ and Zn2+

Note the two mercury cations, which one is a polyatomic ion?

Tin (Sn) and Lead (Pb) act like transition metals and they share two common charges, why do you think this is true?

Slide 83 / 130

Slide 84 / 130

Silver, Zinc, and Cadmium Ions

Why do these ions only have one possible charge? Let's look at their electron configurations.

The "d" orbital of both zinc and cadmium are full and therefore very stable so the only electrons it will lose are the two "s" electrons...

Zn: [Ar]4s²3d¹⁰ Zn²⁺: [Ar]3d¹⁰

The "d" orbital is also full with silver as it has largely taken an electron from it's own "s" orbital to make stabilize the "d" orbital. Therefore, it only has 1 electron left to lose.

Ag: [Kr]5s14d10 Ag+: [Kr]4d10

Cations formed by Transition Elements

We will use the Stock naming system (Roman numerals) to name transition metals.

Formula	Name		
Cu ⁺¹	Copper (I) ion		
Co+2 Fe+2 Mn+2 Pb+2	Cobalt (II) ion Iron (II) ion Manganese (II) ion Iead (II) ion		
Cr∙₃ Fe∗₃	Chromium (III) ion Iron (III) ion		

What would be the names of Cu 2+ and Mn 7+?

Writing Formulas with Transition Metals

The charge on the cation is indicated by the Roman numeral, as shown in this example.

Iron (III) oxide

e₃₊ O₂₋ Write ion formulas.

Fe³⁴ O² Criss-cross charges.

Fe₂O₃ Reduce if necessary.

Writing Formulas with Transition Metals

The charge on the cation is indicated by the Roman numeral, as shown in this example.

Tin (IV) oxide

Sn4+ O2-

Write ion formulas.

Sn4+ O2-

Criss-cross charges.

Sn₂O₄

SnO₂

Reduce if necessary.

Slide 87 / 130

Slide 88 / 130

39 Which metal is capable of forming more than one cation?

- OAK
- OB Cs
- C Ba
- OD AI
- ○F Sn

- 40 Which metal is <u>not</u> capable of forming more than one cation?
 - OA Cu
 - OB Au
 - OC Fe
 - OD Sn
 - OE AI

Slide 89 / 130

Slide 90 / 130

Formulas with Transition Metals

In order to correctly name a formula containing a transition metal, it is necessary to first determine the charge on the cation.

Since all compounds are neutral, then the total positive cation charge must equal the total negative anion charge.

In other words:

Total cation charge + Total anion charge = 0

(charge of cation) (# of cations) + (charge of anion) (# of anions) = 0

Example Formula with Transition Metals

In the case of FeCl₃, we make the following substitutions:

(charge of cation) (# of cations) +(charge of anion) (# of anions) = 0

(x)(1) + (-1)(3) = 0

Thus x = 3 and the cation is Fe^{3+} or iron(III).

Formulas with Transition Metals

A short cut method is to "uncriss-cross" the ions, but you must always double check your ions (or you'll get in trouble!).

FeCl₃:

Fe₁ CI₃

Uncriss-cross.

Check the ions CI does form a 1-ion and Fe³⁺ is Iron (III)

Iron (III) Cloride

Formulas with Transition Metals

Here's another practice problem.

CrO:

 O_1

Uncriss-cross.

o===ō

Cr₁

Check the ions

Cr+ 0-

O forms a 2- ion

and

Cr+ does not exist!

(this formula had to be reduced from Cr₂O₂)

Chromium (II) Oxide

Slide 93 / 130

Slide 94 / 130

41 The name of FeCl₃ is

- O A iron chloride
- \bigcirc B iron (II) chloride
- \bigcirc C iron (III) chloride
- \bigcirc D iron(I)chloride

42

- OA SnO₂
- ○B SnO
- ○C Sn₄O₄
- OD Sn₄O₂
- QE SnO₂

Slide 95 / 130

Slide 96 / 130

43 The formula for copper (II) sulfide is

- OA CuS,
- OB CuS
- \bigcirc C Cu₂ S₂
- D (CuS)₂
- E Cu₂S

44 Which one of the following compounds is copper(I) chloride?

- O A CuCl
- OB CuCl₂
- C Cu₂CI
- OD Cu₂Cl₂
- OE Cu₃Cl₂

45 The charge on the cation in the salt Fe_2O_3 is $46\,$ What is the charge on zirconium ion in $ZrO_{\scriptscriptstyle 2}$? ○ A 2+ OA 1+ ○B 4+ ○ B 2+ ○ C 1+ OC 3+ OD 2-OD 5-○ F 3+ ○ E 6-Slide 99 / 130 Slide 100 / 130

47 48 OA copper nitride OB copper (I) nitride ○ True OC copper (II) nitride ○D copper(III)nitride ○ False ○ E copper(III) nitrogen

> Slide 101 / 130 Slide 102 / 130

Polyatomic Ions

Return to Table of Contents

A polyatomic ion is a group of atoms bonded together that have a charge and acts like a single unit or ion.

Polyatomic Ions

They are not free compounds and like other ions, are not found free in nature.

They are found combined with other ions.

Sulfate = (SO₄)2-

Nitrate = (NO₃)-

Carbonate = (CO₃)²⁻

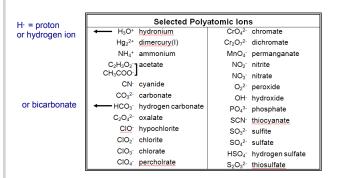
Use () to keep the atoms together.

Do not change the subscripts inside the "()"

Polyatomic Ions

Most of the polyatomic ions contain oxygen atoms.

Many anions names end with "-ite" or "-ate"


In "ite/ate" pairs, the ion with fewer oxygen atoms will have the "ite" ending

> Examples: sulfite /sulfate nitrite /nitrate

Note that the suffix does not indicate the actual number of O atoms.

Polyatomic Ions

Familiarize yourself with the polyatomic ions on your reference sheet Be careful of -ide, -ite, and -ate!

Slide 105 / 130

Formulas and Names of **Ionic Compounds with Polyatomic Ions**

(Ternary Ionic Compounds)

Return to Table of Contents

Writing Formulas for Ternary Ionic Compounds

Slide 106 / 130

Ternary ionic compounds, compounds that contain 3 or more elements, are neutral, just like binary ionic compounds. Therefore, the goal is to find the lowest ratio of cations to anions that will yield a neutral compound.

This ratio is represented in a formula unit.

Examples of formula units

CaCO₃ $Zn(C_2H_3O_2)_2$

AqNO₃

Na₂SO₃

Slide 107 / 130

Slide 108 / 130 **Writing Formulas for**

Ternary Ionic Compounds (con't)

To write a formula, the criss-cross method can again be used.

Example: Write the formula for lithium phosphate.

Step 1: Identify the cation & write its formula

Lithium is in group 1

Step 2: Identify the anion & write its formula

Phosphate is a polyatomic ion --> PO₄3-

Step 3: Criss-cross; reduce subscripts if necessary

 $Li_3^{1+} \longrightarrow Li_3(PO_4)_1$ or simply $Li_3(PO_4)$

Writing Formulas for **Ternary Ionic Compounds**

Example: Write the formula for calcium nitrite.

 Ca^{2+} $(NO_3)^ \longrightarrow$ $Ca(NO_3)_2$

When writing formulas with polyatomic ions, there are two important things to remember:

1) It is helpful to use " () " to keep the atoms together, keeping the charge OUTSIDE the ()

For example:

nitrate (NO₃)1-(CO₃)²⁻ carbonate

2) NEVER alter any symbols or subscripts INSIDE the "()". Once finished, if there is no subscript outside of the "()", remove the "()"

Writing Formulas for Ternary Ionic Compounds

<u>Example 1</u>: Write the formula for lithium chlorate.

Example 2: Write the formula for manganese(III) carbonate.

Move for Answer

Move for Answer

49 The formula for aluminum phosphate is:

- A AIPO₄
- B Al₃(PO₄)
- O C Al₂(PO₄)₃
- D Al₃(PO₄)₃

Slide 111 / 130

Slide 112 / 130

50

- OA Co₃CO₃
- OB Co₂CO₃
- \bigcirc C Co₂(CO₃)₃
- D Co₃(CO₃)₂
- ○E CoCO₃

51 The formula for sodium hydroxide is

- O A Na (OH)₂
- B NaOH
- C Na(OH₂)
- D Na(HO)
- E NaOH₂

Slide 113 / 130

Slide 114 / 130

52 The formula for calcium sulfate is

- O A CaSO
- B Ca₂(SO₄)₂
- C Ca(SO₃)
- D Ca₂(SO₃)₂
- E CaS

53

- OA 1
- ОВ 2
- **○**C 3
- ○D 4
- ○E 5

54

OA 1

○B 2

○c 3

OD 4

○E 5

PRACTICE Writing Formulas for Ionic Compounds

Complete the table by filling in the formula for the ionic compound formed by each pair of cations and anions, as shown for the first pair.

ION	K	NH ₄ ⁺	Mg ²⁺	Fe ³⁺
Cl	KCl			
OH ⁻				
CO ₃ ²⁻				
PO ₄ ³⁻				

Slide 117 / 130

Slide 118 / 130

PRACTICE Writing Formulas for Ternary Ionic Compounds

Write the formula for the following compounds:

1. Magnesium iodide

2. Calcium sulfite

3. Barium hydrogen carbonate

4. Iron (III) phosphate

Move for answer

Naming Ternary Ionic Compounds

Ternary ionic compounds contain three or more different elements due to the presence of polyatomic ion(s).

Just as in binary ionic compounds, the name of the cation is given first, followed by the name of the anion.

Examples

Names of ternary compounds often end in -ite or -ate.

CaCO₃ Zn(C₂H₃O₂)₂ AgNO₃ Na₂SO₃ Move for answer

Slide 119 / 130

Slide 120 / 130

55 The correct name for NaCIO is

- O A sodium chlorate
- B sodium chloride
- O C sodium chlorite
- O D sodium chloride oxide
- E sodium hypochlorite

56 Mg(HCO₃)₂ is

- A Magnesium carbonate
- C Magnesium hydroxide
- O D Magnesium carboxide
- E Magnesium dibicarbonate

57 Ammonium carbonate is

- O A NH₄CO₃
- $\bigcirc B$ (NH₄)₂CO₃
- C NH₄(CO₃)₂
- O D (NH₄)₂CO₂

Naming Ternary Ionic Compounds

If the formula involves a transition or post transition element, you must first deduce the charge so it can be included in the name.

For example: Name Cu₂CO₃

- 1. Un-criss cross the charges.
 - Cu_2 CO_3
- 2. Cu carries a +1 charge

So.... this compound is called copper(I) carbonate

For example: Name Ni(NO₃)₂

Move for answer

Slide 123 / 130

Slide 124 / 130

58

- OA gallium sulfite
- OB gallium (I) sulfite
- ○C gallium (III) sulfite
- OD gallium (III) sulfate

Move for explanation

59

- OA gold (I) flouride
- ○B gold(III) flouride
- OC gold flouride
- OD gold flourine
- E gold triflouride

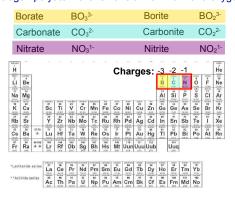
Move for explanation

Slide 125 / 130

Slide 126 / 130

60

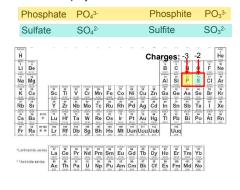
- OA tin carbonate
- ○B tin(II) carbonate
- c tin carbide
- ○D tin tetracarbonate
- ○E tin (IV) carbonate


Polyatomic Patterns

Return to Table of Contents

Slide 127 / 130 Slide 128 / 130

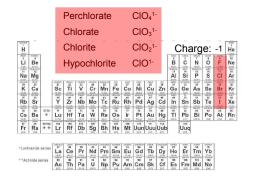
Polyatomic Patterns


Tips for remembering polyatomic ions using patterns: Boron, Carbon, and Nitrogen polyatomic ions have a maximum of 3 oxygens.

Polyatomic Patterns

Tips for remembering polyatomic ions using patterns:

Phosphorus and Sulfur polyatomic ions have a maximum of 4 oxygens.



Slide 130 / 130

Slide 129 / 130

Polyatomic Patterns

Tips for remembering polyatomic ions using patterns: All of the halogens follow the same naming pattern: Per-ate = 4 oxygens, ---ate = 3 oxygens, ---ite = 2 oxygens, --- hypo-ite = 1 oxygen.

