

| NEW JERSEY CENTER |
| :---: | :---: |
| FOR TEACHING \& LEARNING |
| 8th Grade |
| The Number System and Mathematical |
| Operations - Part 1 |
| 2015-11-20 |
| www.njctl.org |

Table of Contents

Addition, Natural Numbers \& Whole Numbers

Addition, Subtraction and Integers
Multiplication and Division of Integers
Operations with Rational Numbers
Converting Repeating Decimals to Fractions
Exponents, Squares, Square Roots \& Perfect Squares
Glossary \& Standards

Slide 3 / 206

Click on a topic to go to that section.

Table of Contents

Slide 3 (Answer) / 206
\qquad

Slide 4 / 206

Return to Table of Contents

Natural Numbers

The first numbers developed were the Natural Numbers, also called the Counting Numbers.

$$
1,2,3,4,5, \ldots
$$

The three dots, (...), means that these numbers continue forever: there is no largest counting number..

Think of counting objects as you put them in a container those are the counting numbers.

Slide 5 / 206

Natural Numbers

Natural numbers were used before there was history.
All people use them.
This "counting stick" was made more than 35,000 years ago and was found in Lebombo, Swaziland.

The cuts in this bone record the number "29."

Natural Numbers and Addition

They were, and are, used to count objects
$>$ goats,
$>$ bales,
> bottles,
$>$ etc.
Drop a stone in a jar, or cut a line in a stick, every time a goat walks past.

That jar or stick is a record of the number.
Slide 7 / 206
\qquad (\square \square
\qquad
\qquad
\qquad

Numbers versus Numerals

Numbers exist even without a numeral, such as the number indicated by the cuts on the Lebombo Bone.

A numeral is the name we give a number in our culture.
Slide 8 / 206
If asked how many tires my car has, I could hand someone the above marbles.
That number is represented by:
4 in our Base 10 numeral system IV in the Roman numeral system 100 in the Base 2 numeral system

Whole Numbers

Counting numbers were developed more than 35,000 years ago.
It took 34,000 more years to invent zero.
This the oldest known use of zero (the dot), about 1500 years ago.
It was found in Cambodia and the dot is for the zero in the year 605.

$$
0,1,2,3,4, \ldots
$$

Why zero took so long to Invent
Horses versus houses.

zero horses = zero houses

Why zero took so long

Would I tell someone I have a herd of zero goats?
Or a garage with zero cars?
Or that my zero cars have zero tires?
Zero just isn't a natural number, but it is a whole number.
Zerjus ista nata number bulis a wien

Slide 13 / 206

Return to Table of Contents

Addition and Subtraction

The simplest mathematical operation is addition.
The inverse of addition is subtraction.
Two operations are inverses if one "undoes" the other.
Inverse operations is a very important concept, and applies to all mathematics.

Slide 14 / 206

Adding Whole Numbers

Let's find the sum of 4 and 5 on a number line.
The number +4 is four steps to the right. Starting at 0 , takes you to 4 .

The number +5 is five steps to the right. Starting at 0 , takes you to 5 .

Adding Whole Numbers

To find the sum " $4+5$ " start at zero and take four steps to the right for the first number.

Then, starting where you ended after those first steps, take five more steps to the right, to represent adding five.

If we were walking, we could look down and see we are standing at 9 .

Therefore, $4+5=9$.

The Commutative Property of Addition

A mathematical operation is commutative if the order doesn't matter.
In this case, addition would be commutative if $4+5=5+4$
Let's test that.
We found that $4+5=9$
How about $5+4$?

The Commutative Property of Addition

A mathematice	This slide and the next 3 slides are a 't matter.
In this case, a	proof of the commutative property through the use of number lines.
Let's test thet We found then	MP.2: Reasoning quantitatively and abstractly.
How about ${ }^{\frac{5}{5}}$	MP.3: Construct viable arguments and critique the reasoning of others.
	Ask on the 3rd slide: Can you create your own pair of numbers and prove that $a+b=b+a$?

Slide 18 (Answer) / 206

The Commutative Property of Addition

First, take five steps to the right.
Then, starting where you ended, take four more steps to the right.
Once more, we could look down and see we are standing at 9 .

The Commutative Property of Addition

So, $4+5=5+4$
Addition is commutative in this case.

The Commutative Property of Addition

But there's nothing special about these numbers.
This is true for any numbers:
$a+b=b+a$

\qquad Inverse Operations
Operations are "inverses" when one of them undoes what the other
does.
What would undo adding 5?
\qquad click

Operations are "inverses" when one of them undoes what the other does.

What would undo adding 5 ?
\qquad
\qquad \square
\qquad
\qquad
\qquad
\qquad

Addition and Subtraction are Inverses

Addition and subtraction are inverses.
Adding a number and then subtracting that same number leaves you where you started.

Starting at 4, add 5 and then subtract 5 .
You end up where you started.

Addition and Subtraction are Inverses

This is true for any two numbers.
Start with a, then add b, then subtract b.
You end up with the number you began with: a.

Slide 24 / 206
Slide 23 / 206
\qquad \square \square \square
\qquad \square

\qquad
\qquad
\square
\square
\qquad -
\qquad

Inverse Operations

We started with the addition question: what number results when we add 5 and 4 ? The answer is 9 .

$$
5+4=9
$$

That leads to two new related subtraction questions.
Starting with 9 , what number do we get when we subtract 5 ?

$$
9-5=4
$$

Starting with 9 , what number do we get when we subtract 4 .

$$
9-4=5
$$

Subtraction was invented to undo addition, but it now can be used to ask new questions.

Subtracting Whole Numbers

Here's what 9-5 looks like on the number line

And, here's 9-4

We Need More Numbers

Subtraction was invented to undo addition.

But this new operation allows us to ask new questions.
And, the number system to that point couldn't provide answers.
For example:
What is the result of subtracting 7 from 4 ?
4-7=?

Slide 27 / 206

Subtracting Whole Numbers

There was no answer to questions like this in the whole number systems.

Which was all there was until about 500 years ago.

Slide 29 / 206
in to the invention of negative numbers.
They were called negative from the Latin "negare" which means "to deny," since people denied that such numbers could exist.

They weren't used much until the Renaissance, and were only fully accepted in the 1800's.

If you had trouble with negative numbers, so did most everyone else.

Integers

Adding the negative numbers to the whole numbers yields the Integers.

$$
\ldots-3,-2,-1,0,1,2,3, \ldots
$$

In this case, "..." at the left and right, means that the sequence continues in both directions forever.

There is no largest integer...nor is there a smallest integer.

Adding and Subtracting Integers

Slide 32 / 206

Now that we have a new operation (subtraction) and new numbers (integers), we need new rules.

The new rules are based on the old ones.
We have to show how to do addition and subtraction with our newly invented negative integers.
\qquad
\qquad
\qquad
\qquad
\qquad \square
\qquad

Adding Integers

Slide 33 / 206

First, let's add a positive and negative integer: $4+(-5)=$?
Before we start, we must understand that -5 means to move 5 spaces to the left of 0 , as shown below.

Now, add the -5 to the end of the 4 .

Therefore, $4+(-5)=-1$.

Adding Integers

Addition is commutative, so we get the same answer for $(-5)+4=$?

Therefore, $(-5)+4=-1$.

Adding Integers

Now let's add two negative integers: $(-4)+(-5)=$?
Like the last example, we start off going to the left 4 spaces, but then we continue to the left 5 spaces.

Therefore, $(-4)+(-5)=-9$.
Don't memorize "rules" to add positive \& negative numbers.
Instead, sketch the number line to perform each addition problem.
That way you know that you are correct every time.

Slide 36 / 206
1 Which number line would be used to show $9+(-1)$?

1 Which number line would be used to show $9+(-1)$?

2 Which number line would be used to show $(-6)+(-3)$?

Slide 37 (Answer) / 206

3 Which number line would be used to show (-7) + 2?

3 Which number line would be used to show $(-7)+2$?

4 Which number line would be used to show $2+8$?

\square
5) $11+(-4)=$

5) $11+(-4)=$

Slide 40 / 206

6) $-4+(-4)=$

Slide 41 (Answer) / 206
6) $-4+(-4)=$

7) $17+(-20)=$

Slide 42 / 206
7) $17+(-20)=$

Slide 43 / 206
8) $-15+(-30)=$

8) $-15+(-30)=$

Slide 43 (Answer) / 206
9) $-5+10=$

Slide 44 (Answer) / 206
9) $-5+10=$

Slide 45 / 206
10) $11+(-4)=$
10) $11+(-4)=$

Subtracting Integers

$$
8-2=6
$$

Since 8 is positive, we need to travel to the right 8 steps.
Next, instead of moving to the right 2 spaces, as in addition, subtraction moves in the opposite direction, which means we move 2 spaces to the left.

Our answer is 6.

Subtracting Integers

How would we show $3-8$?
As in the last example, we would start off going right 3 and then left 8.

Therefore, $3-8=-5$

Adding \& Subtracting Integers

How would we show (-4)-6?
Remember that (-4) is shown by going 4 spaces to the left.
Subtracting 6, take us 6 more spaces to the left.

Therefore, $(-4)-6=-10$

Adding \& Subtracting Integers

The most potentially confusing case is subtracting a negative integer.
How would we show $1-(-6)$?
First, we would go 1 space to the right, because of the 1.
Adding -6 spaces would take us to the left, but we must do the opposite since we are subtracting, moving 6 steps to the right.

Therefore, $1-(-6)=7$

Adding \& Subtracting Integers \qquad $+1$ subtract -6	de $50 / 206$
Therefore, $1-(-6)=7$	
When we subtracted -6 , it was the same as adding +6 .	
This is because -6 is six spaces to the left, and so when you go in the opposite direction, you go 6 spaces to the right.	
The same as adding 6.	
Subtracting a negative number is the same as adding a positive one:	
two minuses make a pl	

Adding \& Subtracting Integers

How would we show -7-(-9)?
First, go 7 spaces to the left, because we're adding -7.
If we were adding -9 we would go 9 spaces to the left, but since we are subtracting -9 , we must go in the opposite direction, 9 to the right.

Therefore, $-7-(-9)=2$
Let's look at this another way.

Adding \& Subtracting Integers

We could rewrite $-7-(-9)$ to be $-7+9$, since subtracting a negative number is the same as adding a positive one.

That yields the same answer: +2

11 Which number line would be used to show 2-8?

11 Which number line would be used to show 2-8?

12 Which number line would be used to show (-7) - 2?

12 Which number line would be used to show (-7) - 2?

Slide 54 (Answer) / 206

13 Which number line would be used to show (-6) - (-3)?

13 Which number line would be used to show (-6) - (-3)?

14 Which number line would be used to show $9-(-1)$?

15) $-2-6=$

Slide 57 / 206
15) $-2-6=$ Slide 57 (Answer) / 206
16) $4-10=$

Slide 58 (Answer) / 206
16) $4-10=$

17) $3-(-8)=$

Slide 59 / 206
17) $3-(-8)=$

18) $-5-(-3)=$ -
18) $-5-(-3)=$ Slide 60 (Answer) / 206
19) $-7-8=$

Slide 61 (Answer) / 206
19) $-7-8=$
-15
20) $-7-2=$

Slide 62 / 206
20) $-7-2=$

21 Convert the subtraction problem into an addition problem.
Slide 63 / 206
-8-(-4)

OA $8+4$
OB $8+(-4)$
OC $-8+4$
OD -8+(-4)

22 Convert the subtraction problem into an addition problem.

 -1-9A $-1+9$
○ $B-1+(-9)$
OC $1+9$
OD $1+(-9)$ \qquad

| 22 Convert the subtraction problem into an addition problem. | |
| :--- | :--- | :--- |
| $-1-9$ | |
| OA $-1+9$ | |
| OB $-1+(-9)$ | |
| OC $1+9$ | B |
| OD $1+(-9)$ | |

23 Convert the subtraction problem into an addition problem.
12-(-5)
Slide 65 / 206

23 Convert the subtraction problem into an addition problem.
12-(-5)

OA $12+5$
OB $12+(-5)$
OC $-12+5$
OD -12 + (-5)

Is Subtraction Commutative?

Subtraction would be commutative if $a-b=b-a$
Let's test that with some numbers
$4-5=-1$
$5-4=1$
Since $-1 \neq 1$, then $4-5 \neq 5-4$
In general, $\mathrm{a}-\mathrm{b} \neq \mathrm{b}-\mathrm{a}$
Subtraction is not commutative.

Multiplication and Division of Integers

Multiplication

Multiplication can be indicated by putting a dot between two numbers, or by putting the numbers into parentheses.
(We won't generally use " x " to indicate multiplication since that letter is used a lot in algebra for variables.)

So multiplying 3 times 2 will be written as:
$3 \cdot 2$
or
(3)(2)
r

Multiplication

Multiplication can be indicated by putting a dot between two numbers, or by puttinc "

(We won't general

 letter is used a lotMP.7: Look for and make use of structure.
So multiplying 3혈
Ask: How is multiplication related to addition?
Note: answer to this question is shown on the next slide.

Slide 68 (Answer) / 206

Multiplication

Multiplication is repeated addition.
So, to find the product of $3 \cdot 2$ we would add the number 2 to itself three times:
$3 \cdot 2=2+2+2$

Slide 69 / 206

Multiplication is Commutative

Since addition is commutative...
And multiplication is just repeated addition,
multiplication is commutative:
$3 \cdot 2=2+2+2=6$

$2 \cdot 3=3+3=6$
$\left\langle\begin{array}{c|c|c|c|c|c|c|ccccccccc}2+3 \\ -10 & -9 & -8 & -7 & -6 & -5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 & & \\ \hline\end{array}\right)$

Slide 70 (Answer) / 206

Multiplication is Commutative

$$
a \cdot b=b \cdot a
$$

Adding a number "a" to itself "b" times yields the same result as adding a number " b " to itself "a" times.
 Adding "b" to itself "a" times also yields "ab".

Multiplying Negative Integers

It works the same way when you multiply a negative number by a positive number.

So, $3 \cdot(-2)$ just indicates to add -2 to itself three times:

Would (-3) • 2 give us the same answer of -6 ? Explain your answer.

Multiplying Negative Integers

Since multiplication is commutative,
$(-3) \cdot 2=2 \cdot(-3)=(-3)+(-3)=-6$
So, this just becomes adding -3 to itself 2 times.

Multiplying a positive and negative integer results in a negative integer:
$(a)(-b)=(-a)(b)=-a b$

Slide 72 (Answer) / 206

Multiplying Negative Integers

So, $3 \cdot(-2)$ just indi
Yes, in multiplication, the order in which you multiply numbers does not matter. Therefore, $3 \cdot(-2)=(-3) \cdot 2$ $=(-3)+(-3)$ $=-6$
\qquad
\qquad
\qquad

Multiplying Positive \& Negative Integers

When multiplying two numbers, if both are positive, the answer is positive.

If one is negative and the other is positive, the answer is negative.

How about if both numbers being multiplied are negative?

Multiplying Positive \& Negative Integers

How do we interpret $(-3)(-2)$?
Since, (3)(-2) means to add -2 to itself 3 times
We could interpret (-3)(-2) to mean to subtract (-2) from itself three times.

We already learned that addition and subtraction are inverses, so subtracting -2 is the same as adding 2 .

So, (-3)(-2) indicates to add 2 to itself 3 times.
So, $(-3)(-2)=(3)(2)=6$

Multiplying \& Dividing Integers

While showing how to multiply integers, we have come across some "shortcuts" for determining the sign of our product.

What generalizations can you make about the sign of your product?

24 What will be the sign of the product
$(-6) \cdot 8$?

Q Positive
O Negative
\qquad
\qquad

24 What will be the sign of the product
(-6) $\cdot 8$?
O Positive
O Negative

Slide 77 (Answer) / 206

25 What will be the sign of the product (-4) (-9)?
(0) Positive

O Negative

25 What will be the sign of the product
$(-4)(-9)$?

. Positive

O Negative

26 Find the product: $9 \cdot(-11)$

Slide 78 (Answer) / 206
$\begin{array}{ll}\stackrel{\rightharpoonup}{0} \\ \stackrel{0}{3} \\ \stackrel{y}{4} & \mathbf{A}\end{array}$
A
\qquad

Slide 79 / 206

26 Find the product: $9 \cdot(-11)$

\qquad
\qquad
\qquad

Slide 80 / 206
27 Find the product: (-12)(-11)

Slide 80 (Answer) / 206

28 Find the product: (-7) 9

28 Find the product: (-7) • 9

Slide 81 (Answer) / 206

Slide 82 / 206
29 Find the product: $(-3) \cdot(-9)$

29 Find the product: $(-3) \cdot(-9)$

Inverse Operations

$$
7(4)=28
$$

This equation provides the answer " 28 " to themultiplication question "what is the product of 7 and 4".

What are the two inverse questions that can be asked and answered based on the above multiplication fact?

Which mathematical operation is the inverse of multiplication?
DISCUSS!

Inverse Operations

$7(4)=28$
There are two division questions are the inverse of this are:
$28 \div 4=7$
This provides the answer "7" to the question "what is 28 divided by 4".

$$
28 \div 7=4
$$

This provides the answer "4" to the question "what is 28 divided by 7".

Inverse Operations

Division asks

If I divide something into pieces of equal size, what will be the size of each piece?

For instance, $15 \div 3$ asks if I divide 15 into 3 pieces, what will be the size of each piece?

The answer is 5 , since $5+5+5=15$
Three equal pieces of 5 will add to equal 15 .

Multiplying \& Dividing Integers

Since multiplication and division are so closely related, we can get the rules for division using the rules of multiplication.

For example, $\frac{30}{6}=5$ because 5 is the number you multiply by 6 to get 30 .
In turn, $30=6$ (5.) so $\frac{30}{6}=5$

Slide 85 / 206
\qquad L \square \square -
\qquad
\qquad

Slide 86 / 206
Multiplying \& Dividing Integers

Mecause -5 is the number you
are so closely related, we can get the
ultiply by 6 to get 30 multiplication.
the number you multiply by 6 to

turn, $-30=6 \cdot(-5)$, so $\frac{-30}{6}=-5$
because -5 is the number you ultiply by 6 to get 30 .
turn, $-30=6 \cdot-5$, so $\frac{-30}{6}=-5$
ie questions on this slide address P6 \& MP7.
Multiplying \& Dividing Integers

What is $\frac{30}{-6} ?$ Why?

What is $\frac{-30}{-6} ?$ Why?

Multiplying \& Dividing Integers

[^0]Slide 87 (Answer) / 206

Multiplying \& Dividing Integers

What generalizations can you make about the sign of the quotient?

\square
\square
\square

30 What is the sign of the quotient of $-69 \div(-3)$?

O Positive
O Negative

30 What is the sign of the quotient of $-69 \div(-3)$?

31 What is the sign of the quotient of $52 \div(-4)$?

Q Positive
O Negative

31 What is the sign of the quotient of $52 \div(-4)$?

Slide 90 / 206
\qquad
\qquad \square \square -
\qquad
\qquad

Slide 90 (Answer) / 206

32 Find the quotient of $-65 \div(-5)$.
32 Find the quotient $-65 \div(-5)$

32 Find the quotient of $-65 \div(-5)$.

33 Find the quotient of $-126 \div(-3)$.
Slide 91 (Answer) / 206

\qquad
\qquad

Slide 92 / 206

33 Find the quotient of $-126 \div(-3)$.

34 Find the quotient of $104 \div(-4)$.
Slide 93 / 206

34 Find the quotient of $104 \div(-4)$.

Slide 93 (Answer) / 206

```
35 Find the quotient of \(-88 \div(11)\).
```

35 Find the quotient of $-88 \div(11)$.

Slide 94 (Answer) / 206

Slide 95 / 206

Operations with Rational

 Numbers
New Numbers: Fractions

Just as subtraction led to a new set of numbers: negative integers.
Division leads to a new set of numbers: fractions.
This results when you ask questions like:
$1 \div 2=$?
$1 \div 3=$?
$2 \div 3=?$
$1 \div 1,000,000=?$

New Numbers: Fractions

$1 \div 2=$? asks the question:

If I divide 1 into 2 equal pieces, what will be the size of each?

The answer to this question cannot be found in the integers.

New numbers were needed.
Slide 97 / 206

Fractions

The space between any two integers can be divided by any integer you choose...as large a number as you can imagine.

There are as many fractions between any pair of integers as there are integers.

Fractions can be written as the ratio of two numbers:

$$
\frac{2}{3}, \frac{1}{4}, \frac{1}{8}, \frac{1}{3}, \frac{4}{5}, \frac{7}{5} \frac{80}{4} \mathrm{tc} .
$$

Or in decimal form by dividing the numerator by the denominator:
$-0 . \overline{666},-0.25,-0.125,0 . \overline{333}, 0.8,1.4,20$, etc.
The bar over "666" and "333" means that pattern repeats forever.
Slide 98 / 206

Fractions

There are an infinite number of fractions between each any integers. Looking closely between 0 and 1, we can locate a few of them.

It's easier to find their location when they are in decimal form since it's clear which integers they're between...and closest to.

Rational Numbers

Rational Numbers are numbers that can be expressed as a ratio of two integers.

This includes all the fractions, as well as all the integers.

What are a few ways you could write 5 as a ratio of two integers?

Slide 100 (Answer) / 206

Rational Numbers

Fractions can be written in "fraction" form or decimal form.
When written in decimal form, rational numbers are either:
Terminating, such as

$$
-\frac{1}{2}=-0.500000000000=-0.5
$$

Repeating, such as

$$
\frac{1}{7}=0.142857142857142857 \ldots=0 . \overline{142857}
$$

Or,

$$
\frac{1}{3}=0.333333333333333333 \ldots=0 . \overline{33}
$$

Fractions and the Negative Sign

When we have a negative fraction, the negative sign can be in different places.

The following all are negative one-half.

$$
\frac{-1}{2} \quad-\left(\frac{1}{2}\right)
$$

Why are they all negative?

Fractions and the Negative Sign

When we have a ner

\[\)| Because the fraction bar signifies |
| :--- |
| division. When dividing a |
| positive by a negative, or a |
| negative by a positive, your |
| answer is negative. A number is |
| also negative if you perform the |
| operation of division and then |
| make the fraction negative. |

\]

Note: This topic is new to 7 th
Grade.

Why are they all negative?

Fractions and the Negative Sign

These two fractions equal positive one-half.
$\frac{-1}{-2} \quad-\left(-\frac{1}{2}\right)$

Why are they both positive?

Fractions and the Negative Sign

Slide 103 (Answer) / 206

These Because the fraction bar signifies division. When dividing a negative by a negative, your answer is positive.

A negative can also be considered the opposite sign of the original number, so the opposite of negative one half is positive one half.
\qquad

Dividing by Zero

One number that is not defined by our numbers and mathematical operations is dividing any number by zero.

The result of that division is "undefined."
This will be critical later when we are working with equations or simplifying fractions.

Dividing by zero is undefined since there is no way to say how many times zero can go into any number.

Review of Operations with Rational Numbers

The following formative assessment questions are review from 7th grade. If further instruction is need, see the presentation at:
http://njctl.org/courses/math/7th-grade/numbers-and-operations-7th-grade/

36 Convert the subtraction problem into an addition problem.
-3.7-(-10.1)

OA -3.7+10.1
OB $3.7+(-10.1)$
OC $-3.7+(-10.1)$
OD $3.7+10.1$

36 Convert the subtraction problem into an addition problem.

37 Convert the subtraction problem into an addition problem.
$-9-3 \frac{1}{2}$
A $-9+3 \frac{1}{2}$
OB $9+\left(-3 \frac{1}{2}\right)$
○ $-9+\left(-3 \frac{1}{2}\right)$
OD $\quad 9+3 \frac{1}{2}$
\qquad

37 Convert the subtraction problem into an addition problem.

$$
-9-3 \frac{1}{2}
$$

A $-9+3 \frac{1}{2}$
OB $\quad 9+\left(-3 \frac{1}{2}\right)$
○ $-9+\left(-3 \frac{1}{2}\right)$

OD $\quad 9+3 \frac{1}{2}$
Slide 107 (Answer) / 206

38 Convert the subtraction problem into an addition problem.
6.5-(-3.2)

OA -6.5 + (-3.2)
В $-6.5+3.2$
OC $6.5+(-3.2)$
OD $6.5+3.2$

39) $-10.5+6.2=$
\square
39) $-10.5+6.2=$

Slide 109 / 206
\qquad
\qquad
\qquad
\qquad \square
\qquad
\qquad
\qquad

Slide 109 (Answer) / 206

40) $-7.3-(-4)=$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Slide 110 (Answer) / 206
40) $-7.3-(-4)=$

41) $4 \frac{1}{2}-7 \frac{2}{3}$

Slide 111 / 206
\square
\qquad

Slide 112 / 206
42) $9.27+(-8.38)=$

42) $9.27+(-8.38)=$

43) $-4.2+(-5.9)=$

43) $-4.2+(-5.9)=$

Slide 113 (Answer) / 206

44) $-2-(-3.95)=$
44) $-2-(-3.95)=$
\qquad

Slide 115 / 206
45) $5-6+(-7.5)=$

Hint: Remember addition and subtraction is solved left to right in the order of operations!

45) $5-6+(-7.5)=$

Hint: Remember addition and subtraction is solved left to right in the order of operations!

Slide 115 (Answer) / 206

46) $19+(-12)-11=$
\qquad
46) $19+(-12)-11=$

Slide 116 (Answer) / 206
\qquad
\qquad
\qquad
\qquad

Slide 117 / 206

47) $-2.3+4.1+(-12.7)=$

Slide 118 / 206
48) $-8.3-(-3.7)+5.2=$
48) $-8.3-(-3.7)+5.2=$

Slide 118 (Answer) / 206
49) $16 \frac{1}{2}-(-9)-21 \frac{2}{5}$

49)

Slide 119 (Answer) / 206

50) $5(-4.82)=$
Slide 120 / 206

50) $5(-4.82)=$
50) $5(-4.82)=$

51) $(3.2)(-6.4)=$
Slide 121 / 206

51) (3.2)(-6.4) =

Slide 121 (Answer) / 206

52) (-5.12)(-9) =
52) ($512(-9)=$

52) (-5.12)(-9) =

Slide 122 (Answer) / 206
53) $4 \frac{1}{3}\left(-2 \frac{2}{5}\right)=$

Slide 123 / 206

	Slide 123 (Answer) / 206

Slide 124 / 206
54) (-2)(-7.5)(-4) =

54) (-2)(-7.5)(-4)=
55) $4 \frac{1}{2}(-2)\left(5 \frac{1}{4}\right)$
部

56) $(-2.5)(-4.1)(3)=$

Slide 125 (Answer) / 206

Slide 126 / 206

56) (-2.5)(-4.1)(3)=

56) (-2.5)(-4.1)(3)

Slide 127 / 206
57 Jane has entered a baking contest. Jane uses 3.1 ounces of flour to make one cinnamon roll. How many ounces of flour does Jane need to make 7 cinnamon rolls?

57 Jane has entered a baking contest. Jane uses 3.1 ounces of flour to make one cinnamon roll. How many ounces of f cinnamon rolls?

21.7 ounces

58 Timmy is shipping 4 boxes of shirts. Each box weighs 6.3 pounds. If it cost 5.20 per pound to ship. How much does Timmy have to spend to ship them?

58 Timmy is shipping 4 boxes of shirts. Each box weighs 6.3 pound hip. How much does
$\$ 131.04$

MP.4: Model with mathematics.

Ask: What connections do you see?

Write a number sentence to describe this situation

Slide 128 (Answer) / 206
\qquad
\qquad
\qquad

60 Find the value of:
$-7 \div \frac{1}{3}$

Slide 130 / 206

Slide 131 (Answer) / 206

62 Find the value of:
$-\frac{21}{8} \div-\frac{1}{4}$
Slide 132 / 206

62 Find the value of:

Slide 132 (Answer) / 206
\qquad

Slide 133 / 206
63 Find the value of:
$19.375 \div(-6.25)$

Slide 133 (Answer) / 206

64 Find the value of:

$$
\frac{45}{-3} \div(-5)
$$

64 Find the value of:

$$
\frac{45}{-3} \div(-5)
$$

Slide 134 (Answer) / 206
$\frac{45}{-3} \div(-5)$

65 Kobe put 8 toy cars in a row. The line of cars was
16.4 meters long. How long was each car?

65 Kobe put 8 toy cars in a row. The line of cars was 16.4 meters long. How long was each car?

\qquad

66 Olivia squeezed $3 / 4$ of a gallon of orange juice. She split the orange juice equally into 6 cups. How many gallons was in each cup?

66 Olivia squeezed $3 / 4$ of a gallon of orange juice. She split the orange juice equallv intn 6 rune How manv gallons was in each cl

1/8 of a gallon
Slide 136 (Answer) / 206

Converting Repeating Decimals to Fractions

Return to
Table of Contents

How can you convert Rational Numbers into Decimals?

Use long division!

Divide the numerator by the denominator.
If the decimal terminates or repeats, then you have a rational number
If the decimal continues forever, then you have an irrational number.

Converting Fractions to Repeating Decimals

Long Division Review
.2121
$3 3 \longdiv { 7 . 0 0 0 0 }$
-66
40
-33
70
66
$\frac{-33}{7}$

67 Determine the decimal equivalent of $\frac{8}{11}$
OA $0 . \overline{8}$
OB $0.7 \overline{2}$
OC $0 . \overline{72}$
OD . 1375

67 Determine the decimal equivalent of $\frac{8}{11}$
OA $0 . \overline{8}$
○В $0.7 \overline{2}$
OC $0 . \overline{72}$
OD. 1375

Slide 140 (Answer) / 206

68 Determine the decimal equivalent of $\frac{23}{33}$

- $0.1 \overline{43}$
$00 . \overline{143}$
○ $0.6 \overline{9}$
$00 . \overline{69}$

69 Determine the decimal equivalent of $\frac{5}{111}$
OA $0 . \overline{045}$
OB $0.0 \overline{45}$
OC 0.222
OD $0 . \overline{2}$

Slide 141 (Answer) / 206
\qquad

Slide 142 / 206

69 Determine the decimal equivalent of $\frac{5}{111}$
OA $0 . \overline{045}$
○в $0.0 \overline{45}$
Oc 0.222
OD $0 . \overline{2}$
Slide 142 (Answer) / 206

70 Determine the decimal equivalent of $\frac{80}{333}$
○A 0.41625
○ $0.2 \overline{40}$
OC $0 . \overline{240}$
OD $0 . \overline{41625}$
D 0.41625

71 What decimal is the equivalent of $\frac{6}{11}$?
Slide 144 / 206
$0.18 \overline{3}$
○ $0 . \overline{183}$
O $0.5 \overline{4}$
$0 . \overline{54}$

71 What decimal is the equivalent of $\frac{6}{11}$?
$0.18 \overline{3}$
$00.1 \overline{83}$
O $0.5 \overline{4}$
$0 . \overline{54}$

From PARCC EOY sample test non-calculator \#2

Repeating Decimals to Fractions

Slide 145 / 206

A rational number is a number that can be written as a simple fraction.

The decimal expansion of a rational number either terminates or repeats.

A repeating decimal is written using a "bar line". The bar line appears over the digit(s) that repeat.

Ex: $0 . \overline{3}=0.333333 \ldots, 0 . \overline{12}=0.121212 \ldots, 1.8 \overline{3}=1.833333 \ldots$
Since a repeating decimal is a rational number, it can be written as a fraction.

But how do we do that?

Repeating Decimals to Fractions

Steps to Convert a Decimal to a Fraction

1. Set x equal to the repeating decimal.
2. Determine how many digits repeat.
3. Multiply both sides of the equation by 10 to that power.
4. Rewrite the equation in partially expanded form.
5. Replace the repeating decimal with x.
6. Solve the 2-step equation.
7. Simplify.

Convert $\mathbf{0 . 1 5}$ to a Fraction

Slide 148 / 206

Steps	1. $\mathrm{x}=0.151515$.
1. Set x equal to the repeating decimal.	2. $x=0 . \frac{151515 \ldots}{2}$ digits repeat
2. Determine how many digits repeat.	3. $10^{2} \mathrm{x}=10^{2}(0.151515 \ldots)$ $100 x=100(0.151515 \ldots)$
3. Multiply both sides of the equation by 10 to that power.	$100 x=15.1515$... 4. $100 x=15+0.1515 \ldots$
4. Rewrite the equation in partially expanded form.	5. $100 x=15+x$
5. Replace the repeating decimal with x .	6. $100 x=15+x$
6. Solve the 2-step equation.	$\frac{99 x}{99}=\frac{15}{99}$
7. Simplify.	7. $\mathrm{x}=\frac{15}{99}=\frac{5}{33}$

Convert $0 . \overline{4}$ to a Fraction

Slide 149 / 206

Steps	
1. Set x equal to the repeating decimal.	2. $x=\frac{0.444 \ldots}{1}$ digit repeats
2. Determine how many digits repeat.	$\begin{aligned} & \text { 3. } 10 x=10(0.444 \ldots) \\ & 10 x=4.444 \ldots \end{aligned}$
3. Multiply both sides of the equation by 10 to that power.	4. $10 x=4+0.444 \ldots$
4. Rewrite the equation in partially expanded form.	5. $10 x=4+x$
5. Replace the repeating decimal with x .	6. $10 x=4+x$ $-\mathrm{x} \quad-\mathrm{x}$
6. Solve the 2-step equation.	$\frac{9 x}{9}=\frac{4}{9}$
7. Simplify.	7. $\mathrm{x}=\frac{4}{9}$

Fraction Form

Write 0.5050 ... as a fraction.

Fraction Form

Write $0.5050 \ldots$ as a fraction.

Fraction Form

Write $0.2727 \ldots$ as a fraction.

Slide 150 (Answer) / 206

Wraction Form	
Write $0.2727 \ldots$ as a fraction.	
	$\frac{27}{99}=\frac{3}{11}$
$\frac{2}{0}$	
$\frac{0}{4}$	

72 What is the fraction form of $0 . \overline{8}$?

72 What is the fraction form of $0 . \overline{8}$?

Slide 152 / 206

Slide 152 (Answer) / 206

73 What is the fraction form of $0 . \overline{26}$?

73 What is the fraction form of $0 . \overline{26}$?

74 What is the fraction form of $0 . \overline{3}$?
\qquad
\qquad

Slide 155 / 206
75 What is the fraction form of $0 . \overline{41}$?
?
Slide 154 (Answer) / 206

75 What is the fraction form of $0 . \overline{41}$?

Slide 155 (Answer) / 206

76 What is the fraction form of $0 . \overline{534}$?

76 What is the fraction form of $0 . \overline{534}$?

Slide 156 (Answer) / 206

Patterns

Look over your answers for the last several questions. Do you notice any patterns?

Patterns

Look over questi

Convert $0 . \overline{9}$ to a Fraction

Interesting Example:

1. $\mathrm{x}=0.999$...
2. $x=0.999$...
$\overline{1}$ digit repeats
3. $10 x=10(0.999 \ldots)$
$10 x=9.999$...
4. $10 x=9+0.999 \ldots$
5. $10 x=9+x$
6. $10 x=9+x$
$\frac{-x}{\frac{9 x}{9}=\frac{9}{9}}$
7. $\mathrm{x}=1$

The digits that repeat will become the numerator. The number of digits that repeat will become the number of 9 's in the denominator. \qquad

Slide 158 (Answer) / 206

Exponents, Squares, Square Roots \& Perfect Squares

Return to Table of Contents
\qquad
\qquad
\qquad
\qquad
\qquad
 \square
\qquad

Powers of Integers

Just as multiplication is repeated addition, exponents are repeated multiplication.

For example, 3^{5} reads as " 3 to the fifth power" $=3 \cdot 3 \cdot 3 \cdot 3 \cdot 3$
In this case " 3 " is the base and " 5 " is the exponent.
The base, 3 , is multiplied by itself 5 times.

Slide 160 / 206
\qquad \square L \square \longrightarrow
\qquad
\qquad
\qquad

Powers of Integers

When evaluating exponents of negative numbers, keep in mind the meaning of the exponent and the rules of multiplication.

For example,
$(-3)^{2}=(-3)(-3)=9$,
is the same as
$(3)^{2}=(3)(3)=9$.

However,
is NOT the same as
$-3^{2}=-(3)(3)=-9$,

Similarly,
$(3)^{3}=(3)(3)(3)=27$
is NOT the same as

Powers of Integers

77 What is $(-7)^{2}$?

O 49
O-49

77 What is $(-7)^{2}$?

O 49
O-49

78 What is $-8^{2} ?$
.64
O-64

78 What is -8^{2} ?

Slide 163 (Answer) / 206

79 What is -2^{4} ?

016
O-16
Slide 164 / 206

79 What is -2^{4} ?

Slide 164 (Answer) / 206
\qquad

Slide 165 / 206
80 What is $(-2)^{6} ?$

064
O-64

81 Evaluate: 4^{3}

81 Evaluate: 4^{3}

Slide 166 (Answer) / 206
81 Evaluate: 4

82 Evaluate: $(-2)^{7}$
Slide 167 / 206

82 Evaluate: $(-2)^{7}$

Slide 168 / 206
83 Evaluate: $(-3)^{4}$
83 Evaluate: $(-3)^{4}$

Special Term: Squares

A number raised to the second power can be said to be "squared."
That's because the area of a square of length x is x^{2} : " x squared."

Area of a Square

The area of a figure is the number of square units needed to cover the figure.

The area of the square below is 16 square units because 16 square units are needed to COVER the figure...

Area of a Square

The area (A) of a square can be found by squaring its side length, as shown below:

$A=s^{2}$

Slide 170 / 206
\qquad \square $\square+2$ \longrightarrow \square
\qquad
\qquad

Slide 171 / 206

84 What is the area of a square with sides of 5 inches?
A $16 \mathrm{in}^{2}$
OB $20 \mathrm{in}^{2}$
OC $25 \mathrm{in}^{2}$
OD $30 \mathrm{in}^{2}$

84 What is the area of a square with sides of 5 inches?
OA $16 \mathrm{in}^{2}$
OB $20 \mathrm{in}^{2}$
OC $25 \mathrm{in}^{2}$
OD $30 \mathrm{in}^{2}$
Slide 172 (Answer) / 206

85 What is the area of a square with sides of 6 inches?
OA $16 \mathrm{in}^{2}$
OB $20 \mathrm{in}^{2}$
OC $24 \mathrm{in}^{2}$
OD $36 \mathrm{in}^{2}$

85 What is the area of a square with sides of 6 inches?
OA $16 \mathrm{in}^{2}$
OB $20 \mathrm{in}^{2}$
OC $24 \mathrm{in}^{2}$
OD $36 \mathrm{in}^{2}$

86 If a square has an area of $9 \mathrm{ft}^{2}$, what is the length of a
side?
OA 2 ft
OB 2.25 ft
OC 3 ft
OD 4.5 ft

Slide 174 / 206

86 If a square has an area of $9 \mathrm{ft}^{2}$, what is the length of a side?

OA 2 ft OB 2.25 ft
OC 3 ft
OD 4.5 ft

Slide 174 (Answer) / 206

87 What is the area of a square with a side length of 16 in?

87 What is the area of a square with a side length of 16 in?

Slide 175 (Answer) / 206

88 What is the side length of a square with an area of 196 square feet?

Square

When you square a number you multiply it by itself.
$5^{2}=$ $=$ so the square of 5 is

You can indicate squaring a number with an exponent of 2, by asking for the square of a number, or by asking for a number squared.

What is the square of seven? click
What is nine squared?
click

Squares

Make a list of the numbers 1-15 and then square each of them.
Your paper should be set up as follows:
$\frac{\text { Number }}{1} \frac{\text { Square }}{1}$
$\begin{array}{ll}1 & 1 \\ 2 & 4\end{array}$
3
(and so on)
\qquad

Slide 177 / 206
\qquad \square \square -
\qquad
\qquad

The Root as an Inverse Operation

Performing an operation and then the inverse of that operation returns us to where we started.

We already saw that if we add 5 to a number and then subtract 5 , we get back to the original number.

Or, if we multiply a number by 7 and then divide by 7 , we get back to the original number.

The Root as an Inverse Operation

Inverses of exponents are a little more complicated for two reasons.
First, there are two possible inverse operations.
The equation $16=4^{2}$ provides the answer 16 to the question: what is 4 raised to the power of 2 ?

One inverse operation is shown by: $4=\sqrt{16}$
This provides the answer 4 to the question: What number raised to the power of 2 yields $16 ?$

This shows that the square root of 16 is 4 .
It's true since (4)(4) = 16

Logs as an Inverse Operation

The other inverse operation will not be addressed until Algebra 2.

Just for completeness, that inverse operation is $2=\log _{4} 16$.
It provides the answer 2 to the question:
To what power must 4 be raised to get 16 .

You'll learn more about that in Algebra II, but you should realize it's the other possible inverse operation.

The Root as an Inverse Operation

Number	Square	
1	1	The numbers in the right column are
2	4	squares of the numbers in the left
3	9	column.
4	16	
5	25	If you want to "undo" squaring a number,
6	36	you must take the square root of the
7	49	number. The symbol for square root is
8	64	called the radical sign and it looks like
9	81	this: $\sqrt{ }$
10	100	
11	121	So, the numbers in the left column are
12	144	the square roots of the numbers in the
13	169	right column. For example:
14	196	
15	225	$\sqrt{81}=9$

Perfect Square		
Number	Square	
1	1	When the square root of a number is a whole number, the number is called a perfect square.
2	4	
3	9	
4	16	
5	25	Since all of the numbers in the right hand column have whole numbers for their square roots, this is a list of the first 15 perfect squares.
6	36	
7	49	
8	64	
9	81	
10	100	
11	121	
12	144	
13	169	
14	196	
15	225	

A Closer Look at Perfect Squares

A number is a perfect square if you can take that quantity of 1×1 unit squares and form them into a square.

For Example:
4 is a perfect square, because you can take 4 unit squares and form them into a 2×2 square.
(Notice that the square root of 4 is the length of one of its sides, since that side times itself equals 4.)

Slide 183 / 206
\qquad
\qquad 20 \square - \quad. (
\qquad

Find the Square Root

You may refer to your chart if you need to.
$\sqrt{4}=\square$
$\sqrt{49}=\square$
$\sqrt{64}=\square$
$\sqrt{1}=$ $\sqrt{0}=$ \qquad

Slide 186 / 206
89 What is $\sqrt{1}$?
89 What is $\sqrt{1}$?

Slide 188 / 206
91 What is the square of 15 ?

91 What is the square of 15 ?

92 What is $\sqrt{256}$?

92 What is $\sqrt{256}$?

Slide 189 / 206

Slide 189 (Answer) / 206

94 What is $\sqrt{196}$?
Slide 191 / 206

94 What is $\sqrt{196}$?

95 What is the square of 18 ?
95 What is the square of 18 ?

Slide 192 / 206
\qquad
\qquad
\qquad -
\qquad
\qquad
\qquad
\qquad

Slide 192 (Answer) / 206
96 What is 11 squared?
96 What is 11 squared?

97 What is 20 squared?
Slide 194 / 206

97 What is 20 squared?

路

Slide 195 / 206

Glossary \&
 Standards

Return to Table
of Contents

Slide 195 (Answer) / 206

Area

The number of square units needed to cover a figure.

					4 units	4 units
1	2	3	4			
5	6	7	8	$\stackrel{n}{2}$		
9	10	11	12	\%		
13	14	15	16			
Area $=16$ square units				Area $=4$ units $x 4$ units Area $=16$ square units		$\begin{aligned} & \text { Area }=\left(4 u^{u n i t s}\right)^{2} \\ & \text { Area }=16 \text { units }^{2} \end{aligned}$

Exponent

A quick way to write repeated multiplication.

also known as Power	What is $72 \overline{2}$	ten to the power of 3
$105=$		
	$\frac{7}{1} \times \frac{7}{2}=49$	$\frac{10}{1} \times \frac{10}{2} \times \frac{10}{3}=$
$7^{2}=49$	1,000	

Slide 197 / 206
\qquad \square
\qquad
\square Lـ_ \square \square Back to Instruction

Fractions

Numbers created through division written as the ratio of two numbers.

| $\frac{2}{3}$ | $\frac{1}{4}$ | $\frac{1}{8}$ | $\frac{1}{3}$ | $\frac{4}{5}$ | $\frac{7}{5}$ | $\frac{80}{4}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | | |
| :---: |

Integers

Positive numbers, negative numbers and zero

Inverse Operation

The operation that reverses the effect of another operation.

Slide 200 / 206

Natural Numbers

Counting numbers

Slide 201 / 206

Perfect Square

A number made by squaring a whole number.

$49 \checkmark$	169	$24 \times$
$\sqrt{49}=7$	$\sqrt{169}=13$	$\sqrt{24}=4.898 \ldots$
$(7)(7)=49$	$(13)(13)=169$	$4.89897 \ldots=$ whole number

Slide 203 / 206

To multiplya number by itself.

What is 4 squared?	What is the square of $6 ?$	What is 10 squared?
$4^{2}=$	$6^{2}=$	$10^{2}=$
$4 \times 4=(4)(4)=$	$6 \times 6=(6)(6)=$	$10 \times 10=(10)(10)=$
16	36	100

Square Root

A value that, when multiplied by itself, gives the number. The result of undoing the squaring of a number.

Standards for Mathematical Practice

MP1 Making sense of problems \& persevere in solving them.
MP2 Reason abstractly \& quantitatively.
MP3 Construct viable arguments and critique the reasoning of others.

MP4 Model with mathematics.
MP5 Use appropriate tools strategically.
MP6 Attend to precision.
MP7 Look for \& make use of structure.
MP8 Look for \& express regularity in repeated reasoning.

Slide 206 / 206
\qquad
\qquad

[^0]: Whe $\begin{aligned} & -5 \text { because }-5 \text { is the number you } \\ & \text { multiply by }-6 \text { to get } 30 \text {. } \\ & \text { In turn, } 30=(-6) \cdot(-5) \text {, so } \frac{30}{-6}=-5\end{aligned}$
 $\begin{aligned} & \text { Whecause } 5 \text { is the number you } \\ & \text { multiply by }-6 \text { to get }-30 \text {. }\end{aligned}$
 In turn, $-30=(-6)$.5.) so $\frac{-30}{-6}=5$

