

Algebra I
Data \& Statistical Analysis

2015-11-25
www.njctl.org

Slide 3 / 141

Slide 4 / 141

Table of Contents

Click on the topic to go to that section
Measures of Central Tendency
Central Tendency Application Problems
Data Displays
Frequency Tables and Histograms
Stem and Leaf Plots
Box and Whisker Plots
Scatter Plots and Line of Best Fit
Determining the Prediction Equation
Choosing a Data Display
Misleading Graphs

Measures of Central Tendency:
 Mean, Median, Mode \& Additional Measures of Data

Slide 5 / 141

Slide 6 / 141

Measures of Central Tendency Key Terms

Mean - The sum of the data values divided by the number of items; average

Median - The middle data value when the values are
written in numerical order
Mode - The data value that occurs the most often

> Other data related terms:

Minimum - The smallest value in a set of data
Maximum - The largest value in a set of data
Range - The difference between the greatest data value and the least data value

Outliers - Numbers that are significantly larger or much smaller than the rest of the data

Minimum and Maximum

$14,17,9,2,4,10,5$

What is the minimum in this set of data?

What is the maximum in this set of data?

Outliers

Outliers - Numbers that are relatively much larger or much smallethan the data

Which of the following data sets have outlier(s)?
A. $1,13,18,22,25$
B. $17,52,63,74,79,83,120$
C. $13,15,17,21,26,29,31$
D. $25,32,35,39,40,41$
$\begin{array}{ll}\text { OA } & \text { higher } \\ \text { OB } & \text { lower } \\ \text { OC } & \text { neither }\end{array}$

Slide $9 / 141$
2 The data set: 1, 20, 30, 40, 50, 60, 70 has an outlier which is \qquad than the rest of the data.

1 Which of the following data sets have outlier(s)?
A. $13,18,22,25,100$
B. $17,52,63,74,79,83$
C. $13,15,17,21,26,29,31,75$
D. $1,25,32,35,39,40,41$

Slide 10 / 141

What is the Median?

Given the following set of data, what is the median?

$$
10,8,9,8,5
$$

Who remembers what to do when finding the median of an even set of numbers?

Slide 11 / 141

Find the Median

When finding the median of an even set of numbers, you must take the mean of the two middle numbers.

Find the median
$12,14,8,4,9,3$

Slide 12 / 141
3 Find the median: 5, 9, 2, 6, 10, 4
OA 5
○B 5.5
○C 6
OD 7.5

4 Find the median: $15,19,12,6,100,40,50$
OA 15
○B 12
OC 19
OD 6

5 Find the median: 1, 2, 3, 4, 5, 6
OA $3 \& 4$

- B 3

OC 4
OD 3.5

Slide 15 / 141

What is the Range

Given a maximum of 17 and a minimum of 2 , what is the range?

Slide 17 / 141
Slide 18 / 141
7 Find the range, given a data set with a maximum value of 100 and a minimum value of 1 .

8 Find the range for the given set of data: $13,17,12,28,35$

Find the Mode

Find the mode

$$
10,8,9,8,5
$$

Find the mode

$$
1,2,3,4,5
$$

What can be added to the set of data above, so that there are two modes? Three modes?

Slide 21 / 141

10 What value(s) must be eliminated so that data set has 1 mode: $2,2,3,3,5,6$?
Find the Mode
Find the mode
Find the mode
What can be added to the set of data above, so that
there are two modes? Three modes?

9 What number can be added to the data set so that there are 2 modes: $3,5,7,9,11,13,15$?
\square A 3
\square B 6
\square С 8
\square D 9
$\square E \quad 10$

Slide 22 / 141

11 Find the mode(s): $3,4,4,5,5,6,7,8,9$
○A 4
○ 5
○C 9
OD No mode

Slide 23 / 141

Finding the Mean

To find the mean of the ages for the Apollo pilots given below, add their ages.
Then divide by 7 , the number of pilots.

Apollo Mission	11	12	13	14	15	16	17
Pilot's age	39	37	36	40	41	36	37

Mean $=\frac{39+37+36+40+41+36+37}{7}=\underline{266}=38$
The mean of the Apollo pilots' ages is 38 years.

Slide 24 / 141
Find the Mean

Find the mean
$10,8,9,8,5$
\square
$\left.\begin{array}{|l|l|}\hline 12 \text { Find the mean } \\ 20,25,25,20,25\end{array}\right]$

13 Find the mean
$14,17,9,2,4,10,5,3$

Slide 27 / 141

14 The data value that occurs most often is called the
OA mode
OB range
OC median
OD mean

Slide 28 / 141

15 The middle value of a set of data, when ordered from lowest to highest is the \qquad .
OA mode
OB range
OC median
OD mean

Slide 29 / 141

Slide 30 / 141

16 Find the maximum value: $15,10,32,13,2$.
OA 2
OB 15
OC 13
OD 32

17 Identify the set(s) of data that has no mode.
OA 1, 2, 3, 4, 5, 1
OB $2,2,3,3,4,4,5,5$
OC $1,1,2,2,2,3,3$,
OD $2,4,6,8,10$

18 Find the range: $32,21,25,67,82$.

Slide 33 / 141

20 If you take a set of data and subtract the minimum value from the maximum value, you will have found the \qquad .

OA outlier
OB median
OC mean
OD range

19 Identify the outlier(s): 78, 81, 85, 92, 96, 145.

Slide 34 / 141

Find...
Find the mean, median, mode, range andoutliers for the data below. High Temperatures for Halloween

Year	Temperature
2003	91
2002	92
2001	92
2000	89
1999	96
1998	88
1997	97
1996	95
1995	90
1994	89
1993	91
1992	92
1991	91

Slide 35 / 141

Slide 36 / 141

High Temperatures for Halloween

Find the mean, median, mode, range and outliers for the data.

Candy	Calories
Butterscotch Discs	60
Candy Corn	160
Caramels	160
Gum	10
Dark Chocolate Bar	200
Gummy Bears	130
Jelly Beans	160
Licorice Twists	140
Lollipop	60
Milk Chocolate Almond	210
Milk Chocolate	210
Milk Chocolate Peanuts	210
Milk Chocolate Raisins	160
Malted Milk Balls	180
Pectin Slices	140
Sour Balls	60
Taffy	160
Toffee	60

Calories from Candy

$\begin{array}{llllllllllllllllllllll}0 & 10 & 20 & 30 & 40 & 50 & 60 & 70 & 80 & 90 & 100 & 110 & 120 & 130 & 140 & 150 & 160 & 170 & 180 & 190 & 200 & 210\end{array}$
\square

Calories from Candy	
$\begin{array}{llllllllllllllllllllll} 0 & 10 & 20 & 30 & 40 & 50 & 60 & 70 & 80 & 90 & 100 & 110 & 120 & 130 & 140 & 150 & 160 & 170 & 180 & 190 & 200 & 210 \end{array}$ Mean Median Mode Range Outliers	Central Tendency Application Problems Return to Table of Contents
Slide 39 / 141	Slide 40 / 141
Application Problems - Method 1 Jae bought gifts that cost $\$ 24, \$ 26, \$ 20$ and $\$ 18$. She has one more gift to buy and wants her mean cost to be $\$ 24$. What should she spend for the last gift? 3 Methods: Method 1: Guess \& Check Try \$30 $\frac{24+26+20+18+30}{5}=23.6$ Try a greater price, such as $\$ 32$ $\frac{24+26+20+18+32}{5}=24$ The answer is $\$ 32$.	Application Problems - Method 2 Jae bought gifts that cost $\$ 24, \$ 26, \$ 20$ and $\$ 18$. She has one more gift to buy and wants her mean cost to be $\$ 24$. What should she spend for the last gift? Method 2: Work Backward In order to have a mean of $\$ 24$ on 5 gifts, the sum of all 5 gifts must be $\$ 24 \quad 5=\$ 120$. The sum of the first four gifts is $\$ 88$. So the last gift should cost $\$ 120-\$ 88=\$ 32$. $245=120$ $120-24-26-20-18=32$
Slide 41 / 141	Slide 42 / 141
Application Problems - Method 3 Method 3: Write an Equation Let $\mathrm{x}=\mathrm{Jae}$'s cost for the last gift. $\begin{aligned} & \frac{24+26+20+18+x}{5}=24 \\ & \frac{88+x}{5}=24 \\ & 88+x=120 \text { (multiplied both sides by } 5 \text {) } \\ & x=32 \text { (subtracted } 88 \text { from both sides) } \end{aligned}$	Application Problems - Method 3 Your test scores are 87, 86, 89, and 88. You have one more test in the marking period. You want your average to be a 90. What score must you get on your last test?

Slide 39 / 141

Application Problems - Method 1

Jae bought gifts that cost $\$ 24, \$ 26, \$ 20$ and $\$ 18$. She has one more gift to buy and wants her mean cost to be $\$ 24$. What should she spend for the last gift?

3 Methods :

Method 1: Guess \& Check
Try \$30
$\frac{24+26+20+18+30}{5}=23.6$

Try a greater price, such as \$32
$\frac{24+26+20+18+32}{5}=24$

The answer is $\$ 32$.

Slide 41 / 141

Slide 42 / 141

Application Problems - Method 3

Method 3: Write an Equation

Let $\mathrm{x}=$ Jae's cost for the last gift.
$\frac{24+26+20+18+x}{5}=24$
$\frac{88+x}{5}=24$
$88+x=120$ (multiplied both sides by 5)
$x=32$ (subtracted 88 from both sides)

Central Tendency Application Problems

21 Your test grades are $72,83,78,85$, and 90 . You have one more test and want an average of an 82. What must you earn on your next test?	22 Your test grades are $72,83,78,85$, and 90 . You have one more test and want an average of an 85. Your friend figures out what you need on your next test and tells you that there is "NO way for you to wind up with an 85 average." Is your friend correct? Why or why not? Yes No
Slide 45 / 141	Slide 46 / 141
Consider the Data Set Consider the data set: $50,60,65,70,80,80,85$ The mean is: The median is: The mode is: What happens to the mean, median and mode if 60 is added to the set of data? Mean: Median: Mode:	Consider the Data Set Consider the data set: $55,55,57,58,60,63$ - The mean is \square - the median is \square - and the mode is \square What would happen if a value x was added to the set? How would the mean change: if x was less than the mean? if x equals the mean? if x was greater than the mean?
Slide 47 / 141	Slide 48 / 141
Consider the Data Set Let's further consider the data set: $55,55,57,58,60,63$ - The mean is 58 - the median is 57.5 - and the mode is 55 What would happen if a value, " x ", was added to the set? How would the median change: if x was less than 57 ? if x was between 57 and 58 ? if x was greater than 58 ?	Consider the Data Set Consider the data set: $10,15,17,18,18,20,23$ - The mean is 17.3 - the median is 18 - and the mode is 18 What would happen if the value of 20 was added to the data set? How would the mean change? How would the median change? How would the mode change?

Consider the Data Set

Consider the data set: $55,55,57,58,60,63$

- The mean is 58
the median is 57.5
and the mode is 55

What would happen if a value, " x ", was added to the set?

How would the mode change:
if x was 55 ?
if x was another number in the list other than 55 ?
if x was a number not in the list?

23 Consider the data set: $78,82,85,88,90$. Identify the data values that remain the same if " x " is added to each value.mean
\square B median
\square C mode
$\square \mathrm{D}$ range
$\square E$ minimum

Slide 51 / 141

Data Displays

Slide 53 / 141

Slide 52 / 141

Data Display Examples

Ticket Sales for School Play

	Friday	Saturday	Sunday
7 PM	78	67	65
9 PM	82	70	30
Matinee	adole NA	35	82

24 In a recent poll in Syracuse, New York, 3,000 people were asked to pick their favorite baseballteam. The accompanying circle graph shows the results of that poll.

A 300
B 500
C 1200
D 1800

From the New York State Education Department.
Office of Assessment Policy, Development Addidininistration. Internet. Available from
Assessment Poicy, Development Adadininistration. Internet. Avaliable from.
www.yysedregents.org/IntegratedAlgebra; accessed 17, June, 2011.

Vocabulary

A frequency table shows the number of times each data item appears in an interval.

To create a frequency table, choose a scale that includes all of the numbers in the data set.

Next, determine an interval to separate the scale into equal parts.
The table should have the intervals in the first column, tally in the second and frequency in the third.

Time	Tally	Frequency
$10-19$	IIII	4
$20-29$		0
$30-39$	IH	5
$40-49$	IIII	4
$50-59$		0
$60-69$	III	3

Slide 57 / 141

Determine Range, Scale and Interval

Create a Frequency Table

Length of Time Walking
$15 \quad 30 \quad 1545$
$45 \quad 30 \quad 30 \quad 60$
$\begin{array}{llll}30 & 60 & 15 & 30\end{array}$
$45 \quad 45 \quad 60 \quad 15$

Frequency Table

The following are the test grades from a previous year.
Organize the data into a frequency table

95	85	93
77	97	71
84	63	87
39	88	89
71	79	83
82	85	

$95 \quad 85 \quad 93$
9771
$84 \quad 6387$
717983
8285

95	85	93
77	97	71
84	63	87
39	88	89
71	79	83
82	85	

Step 1: Find the range of the data then determine a scale and interval.

Hint: Divide the range of data by the number of intervals you would like to have and then use the quotient as an approximate interval size.

Slide 59 / 141

Create a Frequency Table

$95 \quad 85 \quad 93$
$\begin{array}{ll}77 & 97 \\ 71\end{array}$
$84 \quad 63 \quad 87$
$\begin{array}{lll}39 & 88 & 89\end{array}$
$\begin{array}{ll}71 & 79 \\ 83\end{array}$
8285

Slide 58 / 141

Slide 60 / 141

Test Grades

Grade | | Tally |
| :--- | :--- | Frequency

Histogram

A histogram is a bar graph that shows data in intervals.

Since the data is shown in intervals,there is no space between the bars.

Test Grades

Slide 63 / 141

Histograms

Notice that the test scores are closely grouped except one.
In statistics when a value is much different then the rest of the data set it is called an outlier.

1. How many students scored an A ?
2. How many students scored an 87 ?
3. How are histograms and bar graphs alike?
4. How are histograms and bar graphs different?
5. Why are there no spaces between the bars of a histogram?

Slide 64 / 141

25 In the following data what number is the outlier? $\{1,2,2,4,5,5,5,13\}$

Slide 65 / 141

In the following data what number is the outlier?
$\{27,27.6,27.8,27.8,27.9,32\}$

27 In the following data what number is the outlier? $\{47,48,51,52,52,56,79\}$

Create a Frequency Table and Histogram

Slide 69 / 141

Compare and Contrast Bar Graphs and Histograms

Both compare data in different categories and use bars to show amounts.

Histograms show data in intervals, the height of the bar shows the frequency in the interval and there are no spaces between the bars.

Bar Graphs show a specific value for a specific category, and have a space between bars to separate the categories.

Create a Frequency Table and Histogram
Test Scores
875395
$85 \quad 8959$
868287
$40 \quad 90 \quad 72$
$48 \quad 68 \quad 57$
6485

Stem and Leaf Plots

Slide 71 / 141

Slide 72 / 141

Stem-and-Leaf Plots

A type of graph that shows each data value and the number of occurrences. The leaf is the last digit and the stem consists of the remaining digits
Example:
List of math test grades for Bobby:
73, 42, 67, 94, 78, 99 84, 91, 82, 86, 94

First, order from least to greatest:
$42,67,73,78,82,84,86,91,94,94,99$
Bobby's Test Grades

| 4 | 2 | |
| :--- | :--- | :--- | :--- |
| 6 | 7 | |
| 7 | 38 | |
| 8 | 246 | Key: $4 \mid 2=42$ |
| 9 | 1449 | |

Stem-and-Leaf Plots

Create a stem-and-leaf for the data.
Remember:
the leaf is the last digit and the stem consists of the remaining digits include a key

Daily Temperatures:
82, 95, 102, 78, 84, 96, 90, 80, 75, 101

31 Jorge made the accompanying stem-and-leaf plot of the weights, in pounds, of each member of the wrestling team he was coaching. What is the mode of the weights?

Slide 81 / 141

The Stem and the Leaf

The stem is the first digit (the tens digit) which goes on the left.
The leaf is the second digit (the ones digit) which goes on the right. Be sure to organize the leaves in numerical order.

Test Scores			
95	85	93	
77	97	71	
84	63	87	
39	88	89	
71	79	83	
82	85		

Slide 83 / 141

The Stem and the Leaf

Compare the stem and leaf plot to the frequency table from before.

Test Scores			
95	85	93	
77	97	71	Key $3 \mid 9=39$
84	63	87	
39	88	89	
71	79	83	
82	85		

Stem	Leaf
3	9
4	
5	
6	3
7	1179
8	23455789
9	357

Grade	Tally	Frequency
$30-39$	1	1
$40-49$		0
$50-59$		0
$60-69$	I	1
$70-79$	IIII	4
$80-89$	HIIIII	8
$90-99$	III	3

Example

Test Scores			Stem	Leaf
87	53	95	4	08
85	89	59		
86	82	87	5	379
40	90	72	6	48
48	68	57	7	2
64	85		8	2556779
	Sco		9	05
95	85	93		
77	97	71		y $40=40$
84	63	87		
39	88	89		
71	79	83		
82	85			

Slide 87 / 141

Box and Whisker Plots

Return to Table of Contents

Stem and Leaf Plots

Stem and Leaf plots contain the information needed to make a histogram.

1. Compare the stem and leaf plot to the histogram. How are they alike? How are they different?
2. Can you make a stem and leaf plot from either a frequency table or histogram? Can you make a frequency table from a histogram?
3. How can you make a histogram from a stem and leaf plot?
(Rotate the stem and leaf plot to demonstrate)

Stem	Leaf
4	08
5	379
6	48
7	2
8	2556779
9	05

Slide 88 / 141

Box and Whisker Plot

A box and whisker plot is a data display that organizes data into four groups

The median divides the data into an upper and lower half

The median of the lower half is the lower quartile.

The median of the upper half is the upper quartile.

The least data value is the lower extreme

The greatest data value is the upper extreme.

34 The median is
○A 87
OB 104
OC 122
OD 134

Slide 93 / 141

35 The lower quartile is
OA 87
OB 104
OC
122
OD
134

Slide 94 / 141

36 The upper quartile is
○A 87
OB 104
○C 122

OD
134

Slide 95 / 141

Slide 96 / 141

37 In a box and whisker plot, 75% of the data is between
OA lower extreme and the median
OB lower extreme and the upper extreme
OC lower quartile and the upper extreme
OD lower extreme and the upper quartile

38 In a box and whisker plot, 50% of the data is between
OA lower extreme and the median
OB lower extreme and the upper extreme
OC lower quartile and the upper quartile
OD median and the upper extreme

Slide 101 / 141

Slide 102 / 141

Draw the Plot

Create a box and whisker plot by plotting all 5 pieces of information. Then draw the plot.

Lower Extreme = 88
Lower Quartile $=105$
Median = 122
Upper Quartile $=133$
Upper Extreme $=148$

Create a box and whisker plot by plotting all
5 pieces of information. Then draw the plot.

40 Compare the two box and whisker plots.

Wrestling Team Weights

Last year's team had a greater median.

OTrue
OFalse

41 Compare the two box and whisker plots.

Wrestling Team Weights

Both teams have about the same range.

OTrue
OFalse

Slide 106 / 141

43 Compare the two box and whisker plots.
Wrestling Team Weights

50% of the wrestlers weighed between 105 and 130 last year.

OTrue
O False

Slide 107 / 141

Try this!

Stem	Leaf	Lower Extreme $=$ Lower Quartile $=$ Median $=$
2	66689	Upper Quartile $=$ Upper Extreme $=$
3	56789	
4	0011123458	
5	02335567	
6	12347	
7	03	

Slide 108 / 141

Try this!

Stem	Leaf	
10	7	Lower Extreme $=$
11	56	Lower Quartile $=$
12	9	Median $=$
13	24	Upper Quartile $=$
14	0224589	
15	2344445	

$\langle ||||||||||||||\mid$

Scatter Plots and the Line of Best Fit	Scatter Plot		
		$\begin{array}{\|l\|} \hline \text { Test } \\ \text { Score } \\ \hline \end{array}$	*
	45	89	$\bigcirc{ }^{\circ}$
	30	78	
	50	90	
	60	92	
	40	85	x_{m}^{∞}
	48	${ }_{9}^{87}$	${ }^{3}$ Time spent studying
			What do you observe?
		$\begin{gathered} \text { A scater } \\ \text { of } d a \end{gathered}$	is a graph that shows a set that has two variables.

Slide 111 / 141

Slide 112 / 141

Slide 113 / 141

Draw a Line

Notice that the points form a linear like pattern
To draw a line of best fit, use two points so that the line is as close as possible to the data points.

Our line is drawn so that it fits as close as possible to the data points. This line was drawn through $(35,82)$ and $(50,90)$.

Slide 114 / 141

44 Consider the scatter graph to answer the following: Which 2 points would give the best line of fit?

OA A and D
OB B and C
OC C and D
OD there is no pattern

45 Consider the scatter graph to answer the following: Which 2 points would give the best line of fit?

OA A and D
$O B B$ and C
OC C and D
$O D$ there is no pattern

Determining the Prediction Equation

Return to Table of Contents

Slide 117 / 141

Draw a Line

The points form a linear like pattern, so use two of the points to draw a line of best fit.

Our line is drawn so that it fits as close as possible to the data points. This line was drawn through $(35,82)$ and $(50,90)$.

Slide 118 / 141

Prediction Equation

Use the two points that formed the line to write an equation for the line.

$$
\begin{aligned}
& \text { Find } m \\
& \text { Find b } \\
& m=\frac{90-82}{50-35} \\
& m=\frac{8}{15} \\
& 90=\frac{8}{15} 50+b \\
& 90=\frac{80}{3}+b \\
& \frac{190}{3}=b \\
& S=\frac{8}{15} t+\frac{190}{3}
\end{aligned}
$$

Where S is the score for t minutes of studying.
This equation is called the Prediction Equation.

Slide 119 / 141

Extrapolation

Prediction Equations can be used to predict other related values.

$$
S=\frac{8}{15} t+\frac{190}{3}
$$

If a person studies 15 minutes, what would be the predicted score?

$$
S=\frac{8}{15}(15)-\frac{190}{3} \approx 71.3
$$

This is an extrapolation, because the time was outside the range of the original times.

Slide 120 / 141

Interpolation

If a person studies 42 minutes, what would be the predicted score?

$$
S=\frac{8}{15}(42)-\frac{190}{3} \approx 85.7
$$

This is an interpolation, because the time was inside the range of the original times.

What is Wrong?

Interpolations are more accurate because they are within the set.
The farther points are away from the data set the less reliable the prediction.

Using the same prediction equation, consider:
If a person studies 120 minutes, what will be there score?

$$
S=\frac{8}{15}(120)+\frac{190}{3} \approx 127.3
$$

What is wrong with this prediction?

What is the Prediction?

If a student got an 80 on the test, What would be the predicted length of their study time?

$$
\begin{aligned}
80 & =\frac{8}{15} t+\frac{190}{3} \\
16.7 & =\frac{8}{15} t \\
31.25 & =t
\end{aligned}
$$

The student studied about 31 minutes.

Slide 124 / 141

47 Consider the scatter graph to answer the following: What is the y-intercept of the line of best fit going through A and D ?
A 9
B 10
C 11
D 12

Slide 125 / 141

48 Consider the scatter graph to answer the following The equation for our line is $y=-1 x+12$. What would the prediction be if $x=7$? Is this an interpolation or extrapolation?
OA 5, interpolation

OB 5, extrapolation
OC 6, interpolation
OD 6, extrapolation

X	Y
3	9
4.5	8
5	7
6	5
8	4
9	3
10	1

49 Consider the scatter graph to answer the following: The

Slide 126 / 141

equation for our line is $y=-1 x+12$. What would the prediction be if $x=14$? Is this an interpolation or extrapolation?

OA -4, interpolation
OB -4, extrapolation
OC -2 , interpolation
OD -2 , extrapolation

50 Consider the scatter graph to answer the following: The equation for our line is $y=-1 x+12$. What would the prediction be if $\mathrm{y}=11$? Is this an interpolation or extrapolation?

OA 1, interpolation
OB 1, extrapolation
OC 2, interpolation
D 2, extrapolation

Slide 129 / 141

Choosing a Data Display

Return to Table of Contents

51 In the previous questions, we began by using the table at the right. Which of the predicted values $(7,5)$ or $(14,-2)$ willbe more accurate and why?
OA (7,5); it is an interpolation
OB $(7,5)$; there already is a 5 and a 7 in the table
OC
$(14,-2)$ it is an extrapolation
OD $(14,-2)$; the line is going down and will become negative

X	Y
3	9
4.5	8
5	7
6	5
8	4
9	3
10	1

Slide 130 / 141

Part to a Whole

A circle graph is used to illustrate a part to whole relationship

Slide 131 / 141

What You Have Learned

You have also learned about:

- Bar Graphs
- Histograms

- Frequency Tables
- Box and Whisker Graphs
- Stem and Leaf Graphs

15

52 Choose the best data display to show the number of hours of video games played each week for two months.

OA bar graph
OB histogram
OC circle graph
OD frequency table
OE stem-and-leaf
OF box-n-whisker

53 Choose the best data display to show the lower 25% of the scores on a math test.

OA bar graph
OB histogram
OC circle graph
OD frequency table
OE stem-and-leaf
OF box-n-whisker

54 Choose the best data display to show the number of students that earned an A, B, C, $D \& E$ on the last test.

OA bar graph
OB histogram
OC circle graph
OD frequency table
OE stem-and-leaf
OF box-n-whisker

Slide 135 / 141

55 Choose the best data display to show the percent of students that earned an $A, B, C, D \& E$ on the last test.

OA bar graph
OB histogram
OC circle graph
OD frequency table
OE stem-and-leaf
OF box-n-whisker

Slide 136 / 141

56 Choose the best data display to show the interval of grades for 50% of the students.

OA bar graph
OB histogram
OC circle graph
OD frequency table
OE stem-and-leaf
OF box-n-whisker

Slide 141 / 141

59 Super Crunch Cheeze Puffs is coming out with a new "healthy" snack food. Determine which of the graphs would best fit their "healthy" advertising needs.

