Slide 1 / 141

We, at the New Jersey Education Association, are proud founders and supporters of NJCTL, an independent non-profit organization with the mission of empowering teachers to lead school improvement for the benefit of all students.

Table of Contents

Click on the topic to go to that section

Measures of Central Tendency Central Tendency Application Problems Data Displays Frequency Tables and Histograms Stem and Leaf Plots Box and Whisker Plots Scatter Plots and Line of Best Fit Determining the Prediction Equation Choosing a Data Display Misleading Graphs Slide 2 / 141

NEW JERSEY CENTER FOR TEACHING & LEARNING

Algebra I

Data & Statistical Analysis

2015-11-25

www.njctl.org

Slide 4 / 141

Measures of Central Tendency: Mean, Median, Mode & Additional Measures of Data

Return to Table of Contents

Slide 5 / 141

Measures of Central Tendency Key Terms

 $\underline{\text{Mean}}$ - The sum of the data values divided by the number of items; average

<u>Median</u> - The middle data value when the values are written in numerical order

Mode - The data value that occurs the most often

Other data related terms:

Minimum - The smallest value in a set of data

Maximum - The largest value in a set of data

 $\underline{\text{Range}}$ - The difference between the greatest data value and the least data value

 $\underline{\text{Outliers}}$ - Numbers that are significantly larger or much $\$ smaller than the rest of the data

Slide 6 / 141

Minimum and Maximum

14, 17, 9, 2, 4, 10, 5

What is the minimum in this set of data?

What is the maximum in this set of data?

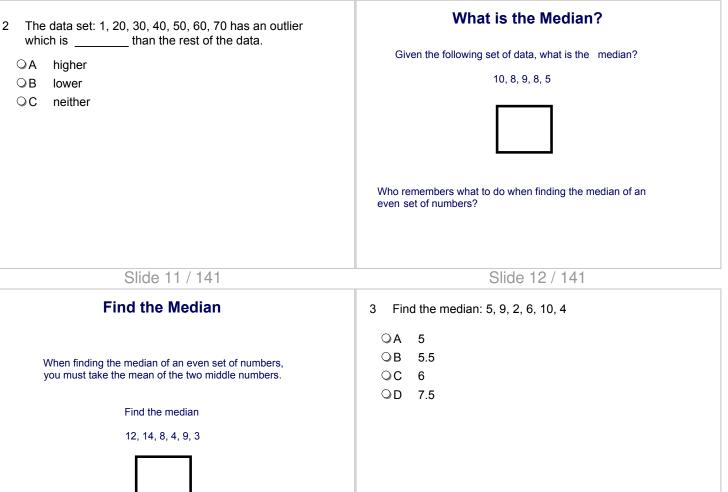
Slide 7 / 141

Outliers

 $\underline{Outliers}$ - Numbers that are relatively much larger or much smallethan the data

Which of the following data sets have outlier(s)?

A. 1, 13, 18, 22, 25


B. 17, 52, 63, 74, 79, 83, 120

- C. 13, 15, 17, 21, 26, 29, 31
- D. 25, 32, 35, 39, 40, 41

- 1 Which of the following data sets have outlier(s)?
 - A. 13, 18, 22, 25, 100
 - B. 17, 52, 63, 74, 79, 83
 - $C. \ 13, 15, 17, 21, 26, 29, 31, 75$
 - D. 1, 25, 32, 35, 39, 40, 41

Slide 9 / 141

Slide 10 / 141

4 Find the median: 15, 19, 12, 6, 100, 40, 50 ○A 15 ○B 12 ○C 19 ○D 6	 5 Find the median: 1, 2, 3, 4, 5, 6 A 3 & 4 B 3 C 4 D 3.5
Slide 15 / 141	Slide 16 / 141
What is the Range Given a maximum of 17 and a minimum of 2, what is the range?	 6 Find the range: 4, 2, 6, 5, 10, 9 A 5 B 8 C 9 D 10
Slide 17 / 141	Slide 18 / 141
7 Find the range, given a data set with a maximum value of 100 and a minimum value of 1.	8 Find the range for the given set of data: 13, 17, 12, 28, 35

Slide 19 / 141

Find the Mode Find the mode 10, 8, 9, 8, 5 Find the mode 1, 2, 3, 4, 5 What can be added to the set of data above, so that there are two modes? Three modes?								 9 What number can be added to the data set so that there are 2 modes: 3, 5, 7, 9, 11, 13, 15 ? A 3 B 6 C 8 D 9 E 10
		Slid	e 21	/ 14	.1			Slide 22 / 141
10 What value(s) must be eliminated so that data set has 1 mode: 2, 2, 3, 3, 5, 6 ?							 11 Find the mode(s): 3, 4, 4, 5, 5, 6, 7, 8, 9 ○ A 4 ○ B 5 ○ C 9 ○ D No mode 	
		Slid	e 23	/ 14	.1			Slide 24 / 141
Finding the Mean To find the mean of the ages for the Apollo pilots given below, add their ages. Then divide by 7, the number of pilots.							Find the Mean Find the mean 10, 8, 9, 8, 5	
Apollo Mission11121314151617Pilot's age39373640413637Mean = $39 + 37 + 36 + 40 + 41 + 36 + 37$ 77= $266 = 38$ The mean of the Apollo pilots' ages is 38 years.								

12 Find the mean 20, 25, 25, 20, 25 Slide 27 / 141	13 Find the mean 14, 17, 9, 2, 4,10, 5, 3
Silue 27 / 141	Slide 28 / 141
 14 The data value that occurs most often is called the A mode B range C median D mean 	 15 The middle value of a set of data, when ordered from lowest to highest is the A mode B range C median D mean
Slide 29 / 141	Slide 30 / 141
 16 Find the maximum value: 15, 10, 32, 13, 2. A 2 B 15 C 13 D 32 	 17 Identify the set(s) of data that has no mode. A 1, 2, 3, 4, 5, 1 B 2, 2, 3, 3, 4, 4, 5, 5 C 1, 1, 2, 2, 2, 3, 3, D 2, 4, 6, 8, 10

Slide 31 / 141

18 Find the range: 32, 21, 25, 67, 82.	19 Identify the outlier(s): 78, 81, 85, 92, 96, 145.

Slide 33 / 141

20	If you take a set of data and subtract the
	minimum value from the maximum value,
	you will have found the

ОA

ΟВ

ОC

ОD

outlier

median

mean


range

Slide 34 / 141 Find...

Find the mean, median, mode, range and outliers for the data below. High Temperatures for Halloween

Year	Temperature
2003	91
2002	92
2001	92
2000	89
1999	96
1998	88
1997	97
1996	95
1995	90
1994	89
1993	91
1992	92
1991	91
	•

Slide 35 / 141

Slide 36 / 141 Find the mean, median, mode, range and outliers for the data.

I the mean, median, mode, range and outliers for the data.				
Candy	Calories			
Butterscotch Discs Candy Corn Caramels Gum Dark Chocolate Bar Gummy Bears Jelly Beans Licorice Twists Lollipop Milk Chocolate Almond Milk Chocolate Almond Milk Chocolate Peanuts Milk Chocolate Raisins Malted Milk Balls Pectin Slices Sour Balls Taffy Toffee	60 160 160 10 200 130 160 140 60 210 210 210 210 210 160 180 140 60 160 60 160 60			
lottee	60			

Slide 37 / 141

Пу ф30

 $\frac{24+26+20+18+30}{5} = 23.6$

Try a greater price, such as \$32

 $\frac{24+26+20+18+32}{5} = 24$

The answer is \$32.

Slide 41 / 141

Application Problems - Method 3

Method 3: Write an Equation

Let x = Jae's cost for the last gift.

$$\frac{24 + 26 + 20 + 18 + x}{5} = 24$$

$$\frac{38 + x}{5} = 24$$

88 + x = 120 (multiplied both sides by 5)

x = 32 (subtracted 88 from both sides)

Slide 38 / 141

Central Tendency Application Problems

Return to Table of Contents

Slide 40 / 141

Application Problems - Method 2

Jae bought gifts that cost \$24, \$26, \$20 and \$18. She has one more gift to buy and wants her mean cost to be \$24. What should she spend for the last gift?

Method 2: Work Backward

In order to have a mean of \$24 on 5 gifts, the sum of all 5 gifts must be \$24 5 = \$120.

The sum of the first four gifts is \$88. So the last gift should cost 120 - 888 = 32.

24 5 = 120

120 - 24 - 26 - 20 - 18 = 32

Slide 42 / 141

Application Problems - Method 3

Your test scores are 87, 86, 89, and 88. You have one more test in the marking period.

You want your average to be a 90. What score must you get on your last test?

· •
Ð
S.
2
S
_
∢
~

- 21 Your test grades are 72, 83, 78, 85, and 90. You have one more test and want an average of an 82. What must you earn on your next test?
- 22 Your test grades are 72, 83, 78, 85, and 90. You have one more test and want an average of an 85. Your friend figures out what you need on your next test and tells you that there is "NO way for you to wind up with an 85 average." Is your friend correct? Why or why not?

⊖Yes

⊖No

Answer

Slide 45 / 141

Consider the Data Set

Consider the data set: 50, 60, 65, 70, 80, 80, 85

The mean is:

The median is:

The mode is:

What happens to the mean, median and mode if 60 is added to the set of data?

Mean:

Median:

Mode:

Slide 47 / 141

Consider the Data Set

Let's further consider the data set: 55, 55, 57, 58, 60, 63

- · The mean is 58
- · the median is 57.5
- · and the mode is 55

What would happen if a value, "x", was added to the set?

How would the median change:

- if x was less than 57?
- if x was between 57 and 58?
- if x was greater than 58?

Slide 46 / 141

Slide 48 / 141

Consider the Data Set

Consider the data set: 10, 15, 17, 18, 18, 20, 23

Answer

- The mean is 17.3
- the median is 18
- · and the mode is 18

What would happen if the value of 20 was added to the data set?

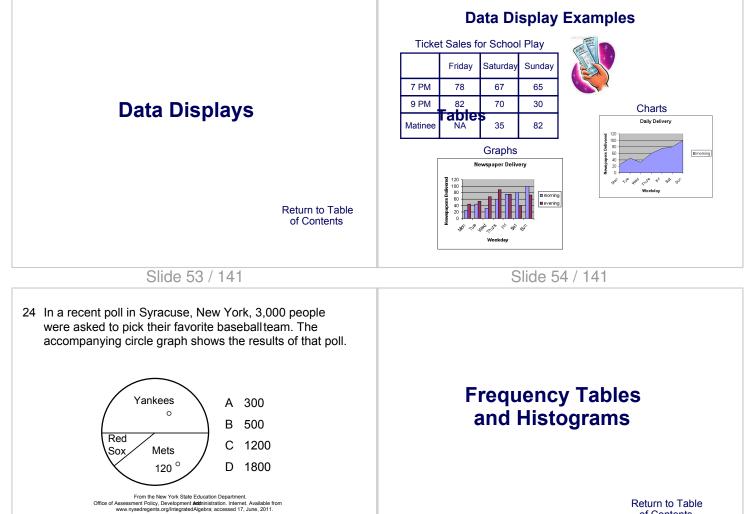
How would the mean change? How would the median change? How would the mode change? Slide 49 / 141

Consider the Data Set

Consider the data set: 55, 55, 57, 58, 60, 63

- · The mean is 58
- the median is 57.5
- · and the mode is 55

What would happen if a value, "x", was added to the set?


How would the mode change:

- if x was 55?
- if x was another number in the list other than 55?
- if x was a number not in the list?

- 23 Consider the data set: 78, 82, 85, 88, 90. Identify the data values that remain the same if "x" is added to each value.
 - ΠA mean
 - ⊡В median
 - ПC mode
 - D range
 - ΠE minimum

Slide 51 / 141

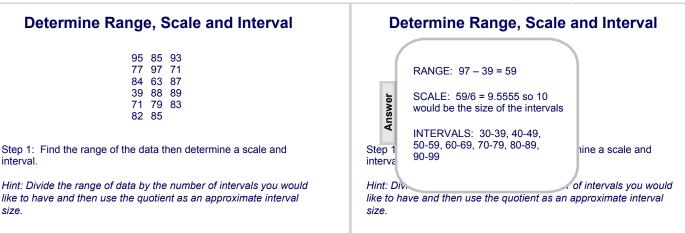
Slide 52 / 141

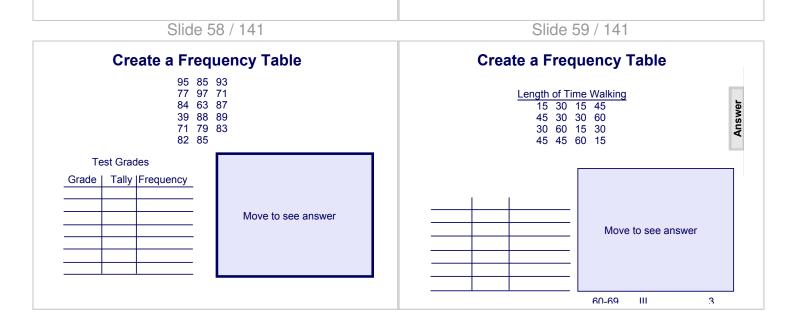
of Contents

Slide 55 / 141

Vocabulary

A <u>frequency table</u> shows the number of times each data item appears in an interval.


To create a frequency table, choose a $\underline{\text{scale}}$ that includes all of the numbers in the data set.


Next, determine an interval to separate the scale into equal parts.

The table should have the intervals in the first column, tally in the second and frequency in the third.

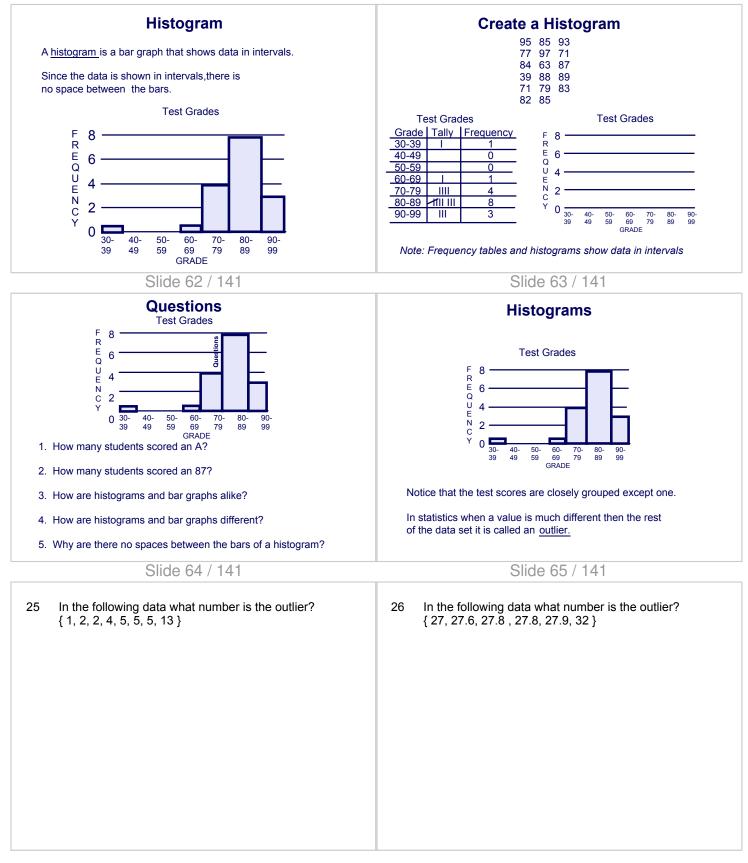
Time	Tally	Frequency
10-19		4
20-29		0
30-39	Ш	5
40-49		4
50-59		0
60-69	III	3

Slide 57 / 141

Slide 56 / 141

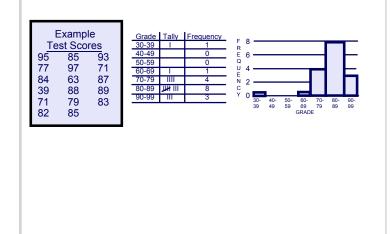
Frequency Table

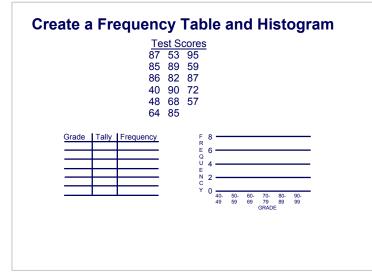
The following are the test grades from a previous year.


Organize the data into a frequency table.

9585937797718463873988897179838285

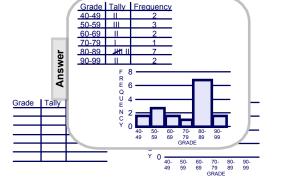
Slide 57 (Answer) / 141


Slide 60 / 141



27 In the following data what number is the outlier? { 47, 48, 51, 52, 52, 56, 79 }

Create a Frequency Table and Histogram

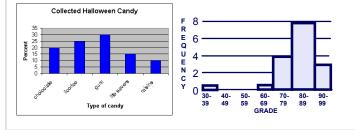


Slide 68 / 141

Slide 68 (Answer) / 141

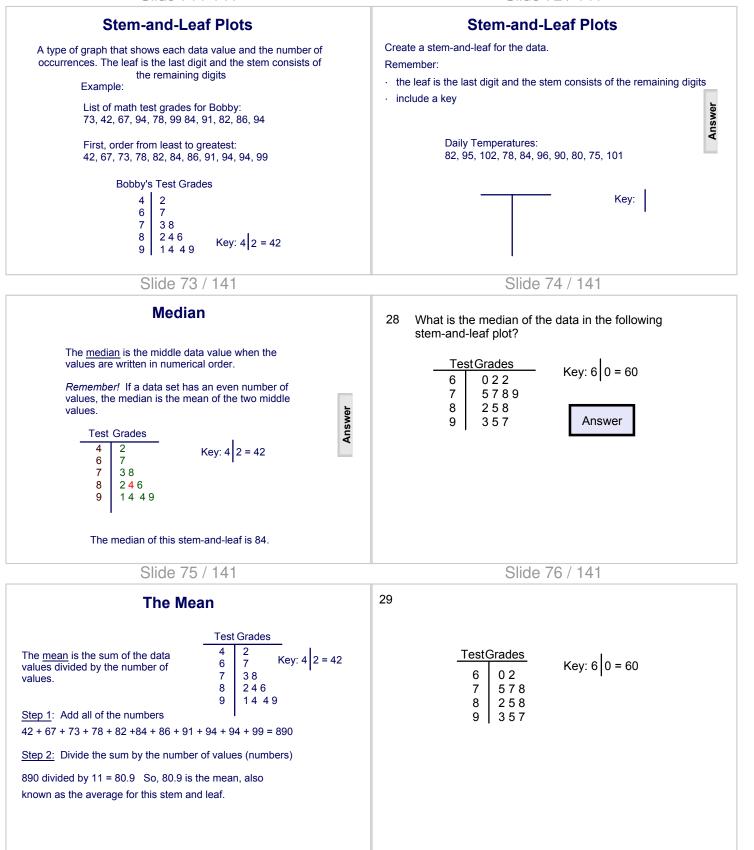
Create a Frequency Table and Histogram

Slide 70 / 141

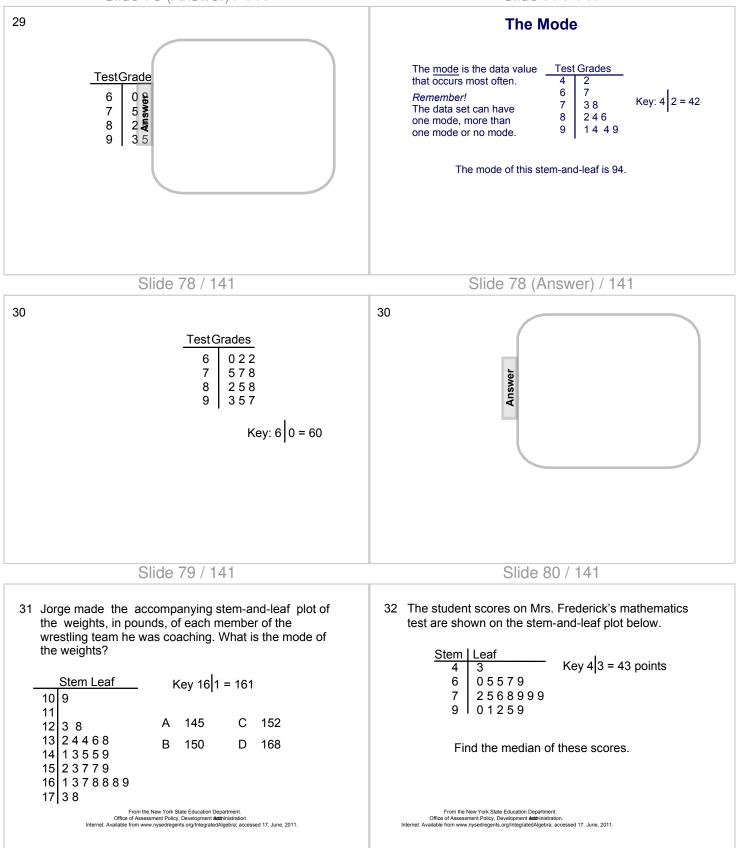

Slide 69 / 141

Compare and Contrast Bar Graphs and Histograms

Both compare data in different categories and use bars to show amounts.

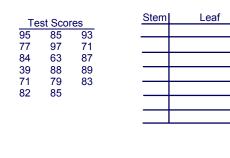

Histograms show data in intervals, the height of the bar shows the frequency in the interval and there are no spaces between the bars.

Bar Graphs show a specific value for a specific category, and have a space between bars to separate the categories.

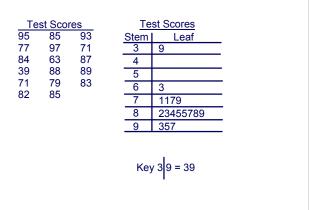


Return to Table of Contents Slide 71 / 141

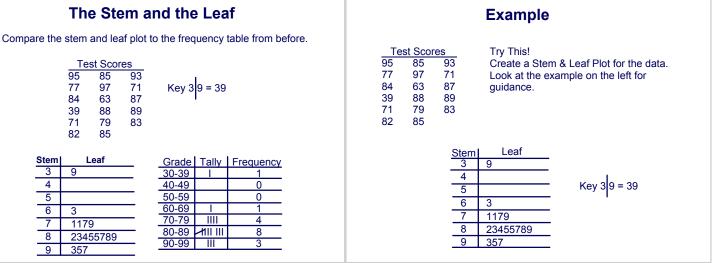
Slide 76 (Answer) / 141

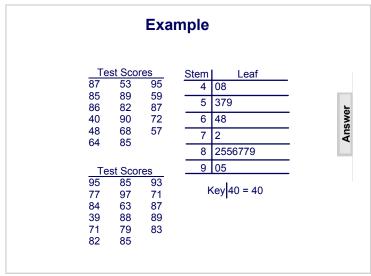


Slide 81 / 141



The *stem* is the first digit (the tens digit) which goes on the left. The *leaf* is the second digit (the ones digit) which goes on the right. Be sure to organize the leaves in numerical order.


Slide 83 / 141

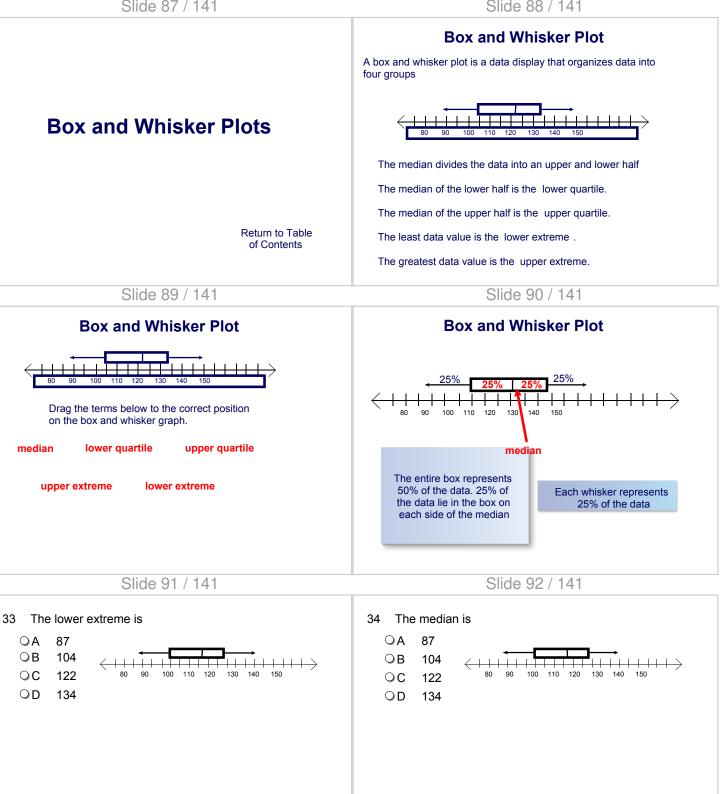

The Stem and the Leaf

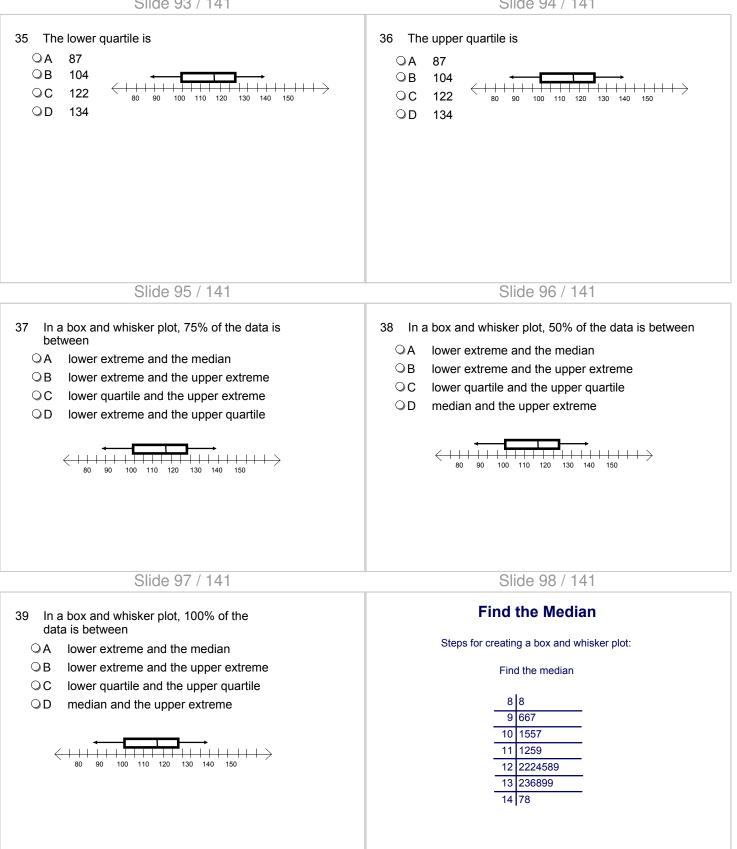
Slide 84 / 141

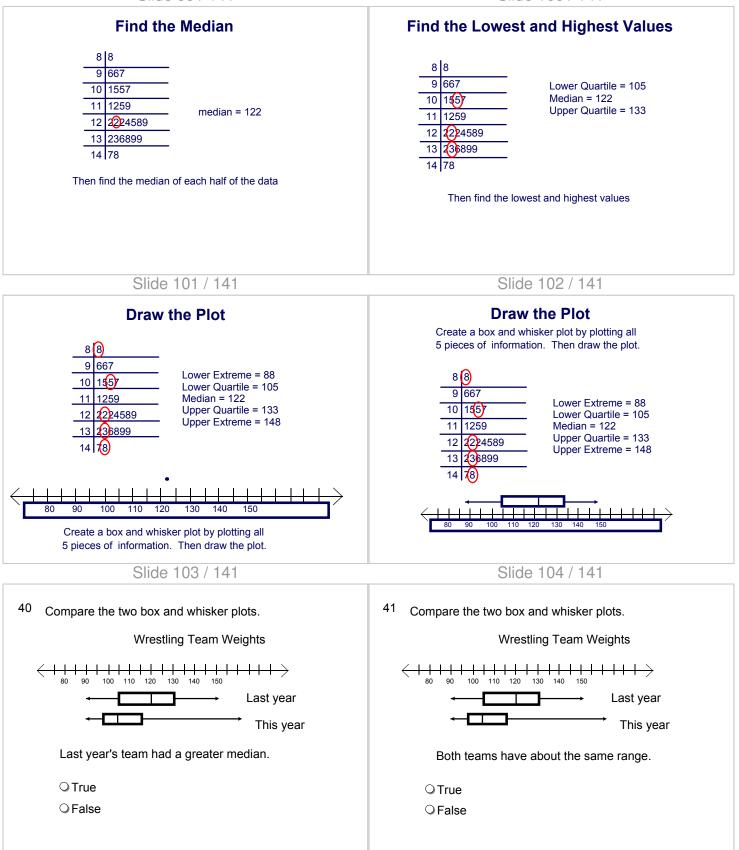
Slide 85 / 141

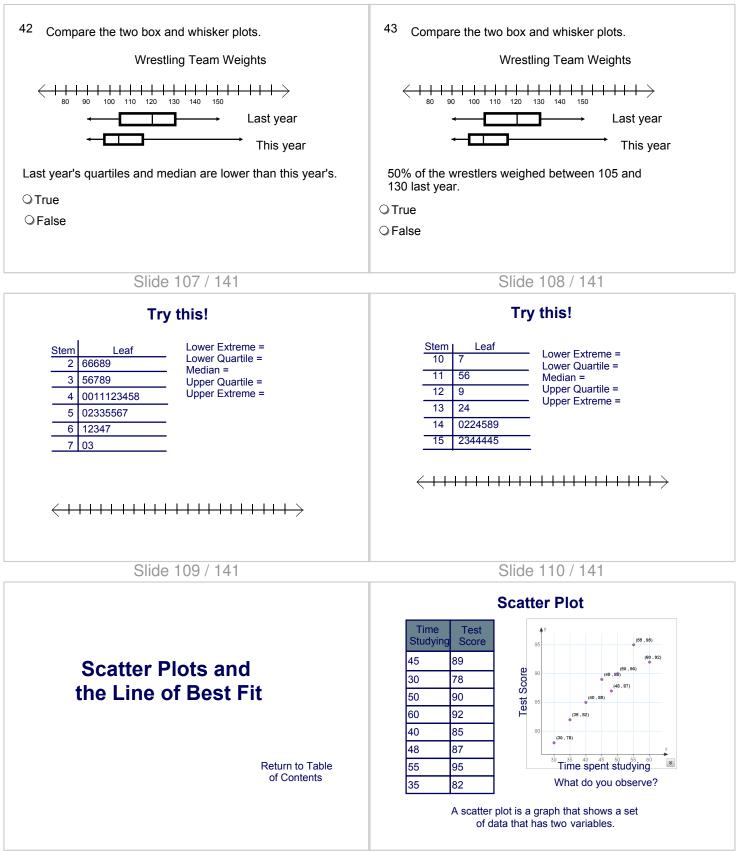

Slide 86 / 141

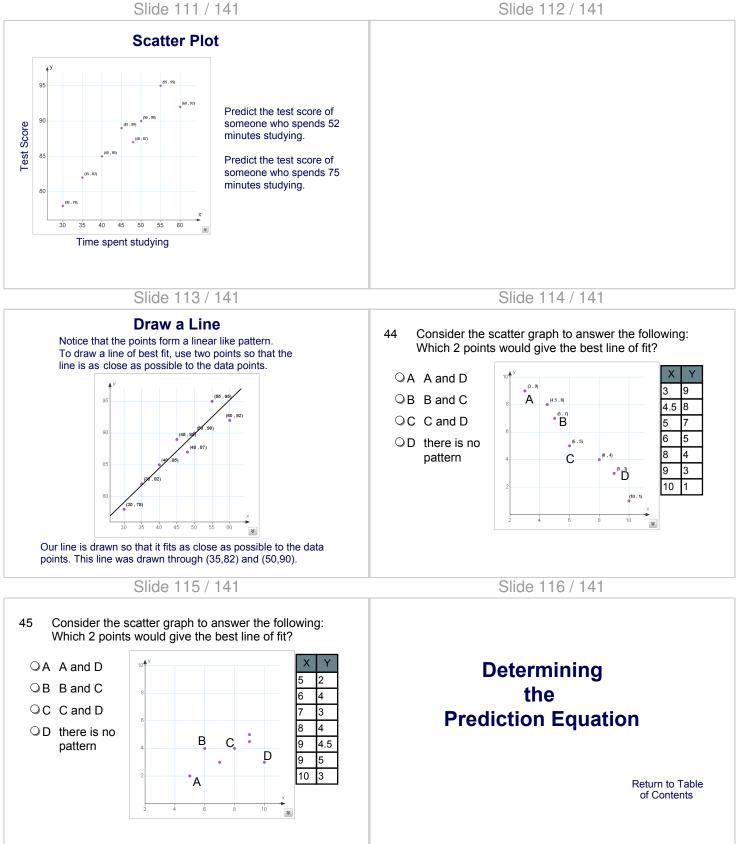
Stem and Leaf Plots


Stem and Leaf plots contain the information needed to make a histogram.

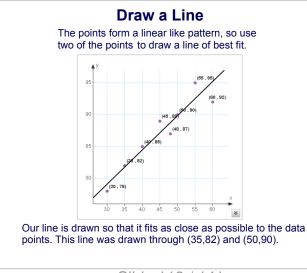

1. Compare the stem and leaf plot to the histogram. How are they alike? How are they different?


 Can you make a stem and leaf plot from either a frequency table or histogram? Can you make a frequency table from a histogram?
 How can you make a histogram from a stem and leaf plot? (Rotate the stem and leaf plot to demonstrate)


Slide 87 / 141



Slide 105 / 141



Slide 111 / 141

Slide 112 / 141

Slide 117 / 141

Slide 119 / 141

Extrapolation

Prediction Equations can be used to predict other related values.

$S = \frac{8}{15}t + \frac{190}{3}$

If a person studies 15 minutes, what would be the predicted score?

$$S = \frac{8}{15}(15) - \frac{190}{3} \approx 71.3$$

This is an extrapolation, because the time was outside the range of the original times.

Slide 121 / 141

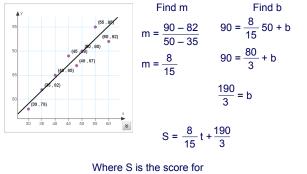
What is Wrong?

Interpolations are more accurate because they are within the set.

The farther points are away from the data set the less reliable the prediction.

Using the same prediction equation, consider:

If a person studies 120 minutes, what will be there score?


$$S = \frac{8}{15} (120) + \frac{190}{3} \approx 127.3$$

What is wrong with this prediction?

Slide 118 / 141

Use the two points that formed the line to write an equation for the line.

t minutes of studying.

This equation is called the Prediction Equation.

Slide 120 / 141

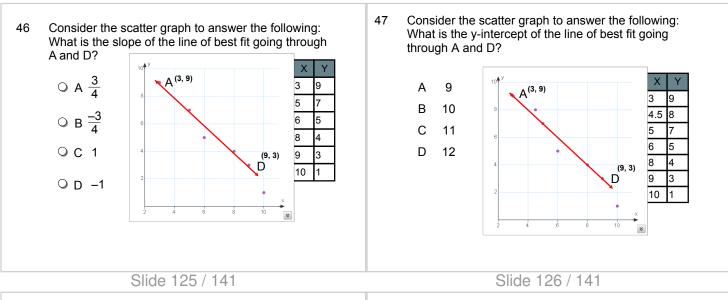
Interpolation

If a person studies 42 minutes, what would be the predicted score?

$$S = \frac{8}{15} (42) - \frac{190}{3} \approx 85.7$$

This is an interpolation, because the time was inside the range of the original times.

Slide 122 / 141


What is the Prediction?

If a student got an 80 on the test, What would be the predicted length of their study time?

$$80 = \frac{8}{15}t + \frac{190}{3}$$
$$16.7 = \frac{8}{15}t$$
$$31.25 = t$$

The student studied about 31 minutes.

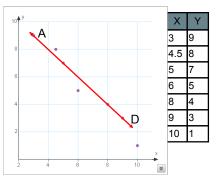
Slide 123 / 141

4.5 8

8 4

9 3

10


7

6 5

49 Consider the scatter graph to answer the following: The equation for our line is y = -1x + 12. What would the prediction be if x = 14? Is this an interpolation or extrapolation?

- OB −4, extrapolation
- ○C –2, interpolation
- \bigcirc D –2, extrapolation

Slide 127 / 141

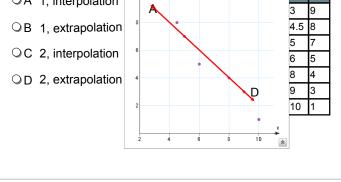
Consider the scatter graph to answer the following

the prediction be if x = 7? Is this an interpolation or

The equation for our line is y = -1x + 12. What would

48

extrapolation?


OA 5, interpolation

OB 5, extrapolation

OC 6, interpolation

OD 6, extrapolation

50 Consider the scatter graph to answer the following: The equation for our line is y = -1x + 12. What would the prediction be if y = 11? Is this an interpolation or extrapolation? • A 1, interpolation

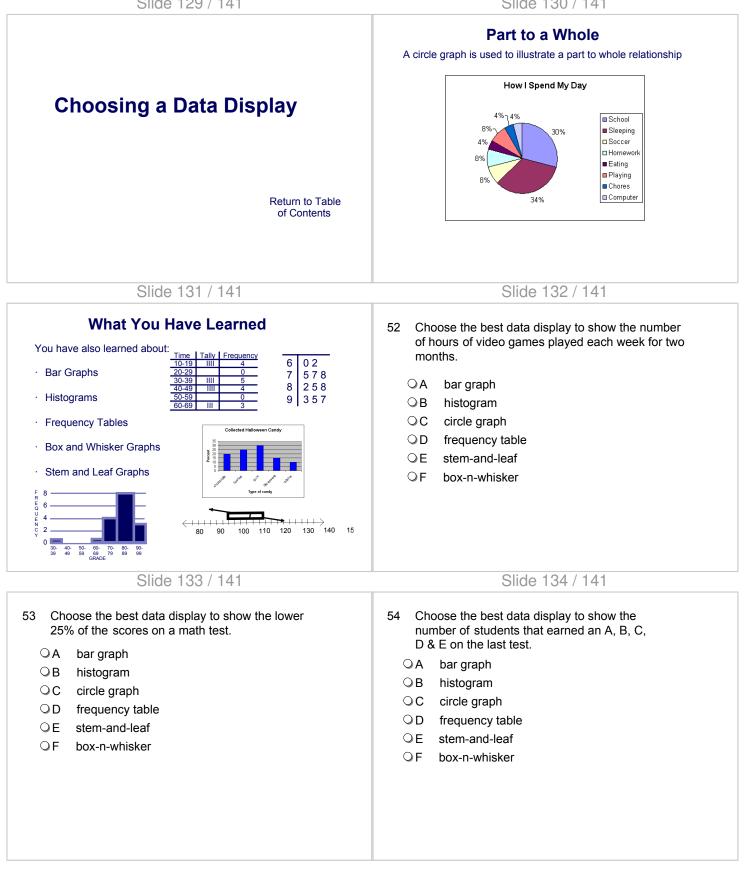
Slide 128 / 141

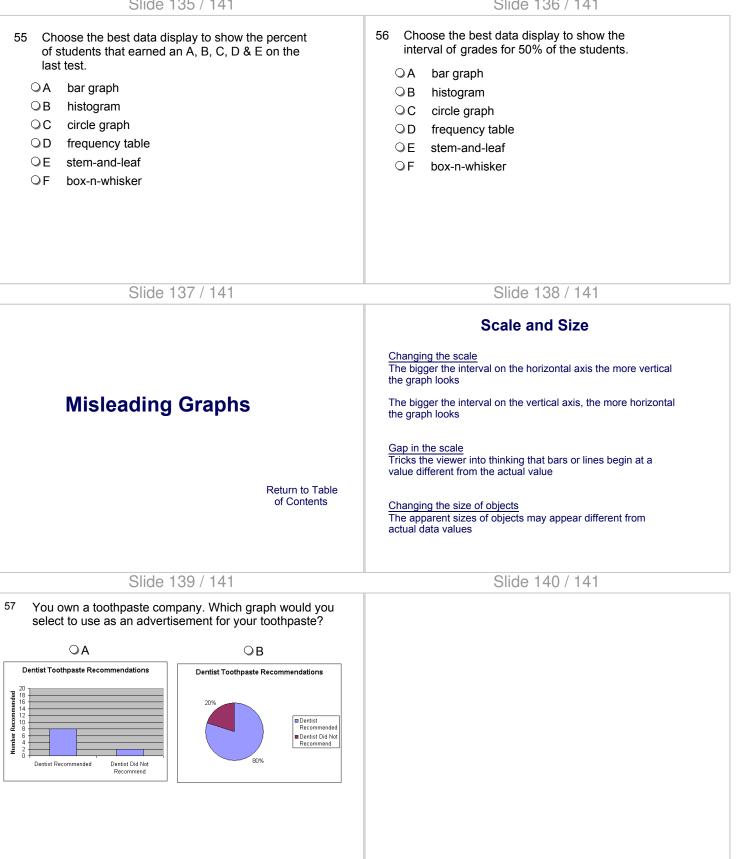
- 51 In the previous questions, we began by using the table at the right. Which of the predicted values (7,5) or (14, -2) will be more accurate and why?
 - \bigcirc A (7,5); it is an interpolation
 - \bigcirc B (7,5); there already is a 5 and a 7 in the table
 - OC (14, -2) it is an extrapolation
- s going down 8 negative 9 10

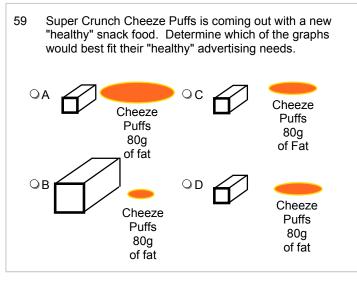
9

7

5


4


3


4.5 8

(14, -2); the line is going down and will become negative Slide 129 / 141

Slide 130 / 141

