Chem 1711

You should be able to write names and the corresponding chemical formulas for binary molecular compounds, ionic compounds involving both monatomic and polyatomic ions, and both binary and oxoacids. The rules of chemical nomenclature that we will follow were laid down by the International Union of Pure and Applied Chemists (IUPAC), and will lead you to establishing the systematic or IUPAC names of compounds. *NOTE*: There are really only 2 compounds that we will refer to by their common names: H₂O, water and NH₃, ammonia.

Before we can engage in a productive discussion of nomenclature, we must first discuss the characteristics of molecular vs. ionic compounds.

Mo	Molecular Compounds		Ionic Compounds			
٠	composed of molecules	•	composed of ions			
•	molecule: neutral groups of atoms bonded together	•	ions: single atoms (<i>monatomic</i>) or groups of atoms bonded together (<i>polyatomic</i>) that carry positive or negative charge			
•	the smallest piece of a molecular compound that has the same physical and chemical properties of that compound is a single molecule	•	monatomic ions formed by gain or loss of electrons			
•	atoms within a molecule are held together by covalent (shared electron) bonds	•	cation: positively charged ion; formed by loss of electrons; metals like to lose electrons and form cations			
•	molecular compounds can be identified by their constituent elements; they are composed of nonmetals only (or nonmetal and semimetal)	•	anion: negatively charged ion; formed by gain of electrons; nonmetals like to gain electrons and form anions			
•	binary molecular compounds: only 2 elements present (i.e. PF_5 , SO_3 , $SiCl_4$)	•	ions carry charge, but an ionic compound is electrically neutral			
•		•	an ionic compound must have both cations and anions; cations and anions are held together by "ionic bonds" – the electrostatic attraction of oppositely charged species			
•		•	smallest piece of an ionic compound that has the same physical and chemical properties of that compound is a formula unit (given by the chemical formula)			
•		•	ionic compounds can be identified by their constituent elements; they are composed of metals (cations) and nonmetals (anions)			
•	structurally a molecular compound is a collection of individual, discrete molecules	•	structurally an ionic compound has a long range, repeating 3-dimensional order with precise arrangement of cations and anions			

Naming Cations:

- recall that metals prefer to lose electrons and form cations
- for main group metals, maximum and frequently only positive charge (cation charge) is equal to the element's group number: i.e. for Al (group 3A) \rightarrow Al³⁺
- there are two types of metals: Type I metals are those that form only one cation (of one charge) and Type II metals are those that can form more than one cation (with more than one charge)
- Type I metals (relatively small group *KNOW THEM AND THEIR CHARGE*): alkali earth metals – group 1A metals – are always +1: Li⁺, Na⁺, K⁺, Rb⁺, Cs⁺ alkaline earth metals – group 2A metals – are always +2: Be²⁺, Mg²⁺, Ca²⁺, Sr²⁺, Ba²⁺ miscellaneous others – charge always = group number: Al³⁺, Ga³⁺, Y³⁺, Sc³⁺, La³⁺, Zn²⁺, Cd²⁺, Ag⁺
- to name a Type I metal ion: Na^+ , sodium ion; Ca^{2+} , calcium ion; Ga^{3+} , gallium ion; etc.
- Type II metals include most heavier main group metals and transition metals. If a metal is *NOT* a Type I metal it is, by default, a Type II metal.
- to name a Type II metal ion you must indicate the ion's charge using a stock number a roman numeral equal to the charge in parentheses after the element's name: Ni²⁺, nickel (II) ion; Ni³⁺, nickel (III) ion; Pb²⁺, lead (II) ion; Pb⁴⁺, lead (IV) ion; etc.
- there are really only 2 polyatomic cations that you will need to know: NH_4^+ , ammonium ion; H_3O^+ , hydronium ion
- see Table 1 for the names, formulas and charges of Type I metals and the 2 common polyatomic cations

Naming Anions:

- recall that nonmetals prefer to gain electrons and form anions
- for monatomic nonmetal anions, the maximum and only negative charge (anion charge) is equal to the element's group number minus 8: i.e. for S (group 6A) → S²⁻
- to name a monatomic anion, add the suffix *-ide* to the stem of the element name: S²⁻, sulf*ide* ion; Br⁻, brom*ide* ion; P³⁻, phosph*ide* ion; etc.
- see Table 2 for names and charges of monatomic anions
- there are *MANY* polyatomic anions that you need to know for polyatomic anions, know name, formula and charge rules for polyatomic oxoanions (anions with oxygen) exist, but cannot be applied without a fairly comprehensive familiarity with the anions; in short – *MEMORIZE THEM*
- basic rule for naming oxoanions, add the suffix *-ate* to the stem of the element name: SO₄²⁻, sulfate ion; PO₄³⁻, phosphate ion; ClO₃⁻, chlorate ion; NO₃⁻, nitrate ion; etc.
- for elements that form more than one oxoanion, add the suffix -*ite* to the stem of the element name to indicate fewer oxygens: SO₃²⁻, sulf*ite* ion; ClO₂⁻, chlor*ite* ion; NO₂⁻, nitr*ite* ion; etc.
- Cl, Br, and I form a series of 4 oxoanions with 1 4 oxygens. Use per______ate to name the ion with 4 O's and hypo______ate to name the ion with 1 O: ClO₄, *perchlorate* ion; ClO⁻, *hypochlorite* ion; etc.
- for protonated oxoanions (oxoanion with 1 or more H⁺ ion), add the word *hydrogen* to the oxoanion name: HSO₄⁻, *hydrogen* sulfate ion; HSO₃⁻, *hydrogen* sulfate ion; HPO₄²⁻, *hydrogen* phosphate ion; H₂PO₄⁻, *dihydrogen* phosphate ion; etc. *NOTE:* for protonated oxoanions the anion charge changes in addition to the name and formula.

- some miscellaneous anions that don't fit with the groups listed above: OH⁻, hydroxide ion (really a protonated oxide ion); C₂H₃O₂⁻, acetate ion; C₂O₄²⁻, oxalate ion; MnO₄⁻, permanganate ion; CrO₄²⁻, chromate ion; Cr₂O₇²⁻, dichromate ion; S₂O₃²⁻, thiosulfate ion; CN⁻, cyanide ion
- see Table 3 for names, formulas and charges of the more common polyatomic anions

Names and Formulas of Substances

I have broken this down into name \rightarrow formula and formula \rightarrow name sections for molecular compounds, ionic compounds, binary acids, and oxoacids.

Binary	y Molecular	Com	pounds:	(see	Table	4 for	prefixes	to	indicate	"how	many")

name → formula		formula → name		
•	identify the elements present, and number of atoms of each element present from name	•	name the elements in the order that they appear in the chemical formula	
•	elements will appear in the chemical formula in the same order as they are written in the name	•	use the appropriate prefixes to indicate how many atoms of each element are present in the formula	
•	write the chemical formula using symbols for the elements and numerical subscripts to indicate how many atoms of each element present	•	add the suffix $-ide$ to the stem of the 2^{nd} element name	
•	<i>example</i> : sulfur trioxide \rightarrow SO ₃	•	<i>example</i> : $SF_6 \rightarrow$ sulfur hexafluoride	

Ionic Compounds:

name → formula		formula → name		
•	identify the cation and anion from the given name, including identification of each ion's symbol or formula and charge	•	the name is written with the cation first and the anion second	
•	write the chemical formula with the cation 1^{st} and the anion 2^{nd}	•	identify whether the cation is a Type I metal, a Type II metal, or a polyatomic cation and then name it appropriately	
•	determine how many cations and anions will be in the formula based on their charges; remember that the ionic compound is neutral overall	•	name the anion appropriately; remember that a monoatomic anion name will end with <i>-ide</i> while an oxoanion name will end with <i>-ate</i> or <i>-ite</i>	
•	to indicate more than one polyatomic ion, put parentheses around the ion formula with a subscript outside of the ()	•	DO NOT use prefixes (<i>like those in Table 4</i>) to indicate how many cations or anions are present; this can be determined based on the charges of the individual ions and knowing that the compound must be neutral overall	
•	<i>example</i> : ammonium sulfate \rightarrow NH ₄ ⁺ and SO ₄ ²⁻ \rightarrow (NH ₄) ₂ SO ₄	•	<i>examples</i> : Ni(NO ₃) ₂ \rightarrow nickel (II) nitrate; vs. KBr \rightarrow potassium bromide	

Acids:

Let me make a few general comments about acids.

- At this point we will be considering the aqueous acids meaning compounds that are dissolved in water to produce an aqueous solution. This is indicated with (*aq*) written after the chemical formula.
- You will be able to recognize an acid by its formula as a compound with one or more H⁺ ion(s) bonded to an anion. Binary acids have H⁺ and a monatomic anion (names and formulas included in Table 2 as appropriate). Oxoacids have H⁺ with an oxoanion (names and formulas included in Table 3 as appropriate).
- Acids are composed of H⁺ ion(s) and anions but are electrically neutral overall. Therefore, knowing the charge on the anion allows you to determine the number of hydrogen ions that must be in the acid's chemical formula.

Binary Acids:

nan	ne → formula	forn	nula → name
•	if the acid name follows this formula: hydroic acid, it is a binary acid (H ⁺ 's with monatomic anion); <i>the prefix hydro- is the big</i> <i>identifier here</i>	•	if the acid is a binary acid there will be only 1 element in addition to hydrogen in the formula
•	identify the anion and its charge	•	to name a binary acid, use this formula: hydroic acid
•	determine the number of H ⁺ ions required for a neutral compound	•	the stem of the element name (other than H) goes in the blank
•	write the chemical formula; H appears first	•	
•	<i>example: hydrosulfuric</i> acid \rightarrow anion is S ²⁻ \rightarrow therefore 2 H ⁺ 's required \rightarrow H ₂ S (aq)	•	<i>example</i> : HI (aq) \rightarrow <i>hydro</i> iod <i>ic</i> acid

Oxoacids:

na	me → formula	formula → name		
•	if the acid name follows the formulas: <i>ic</i> acid or <i>ous</i> acid, it is an oxoacid (H^{+*} s with an oxoanion)	•	if the acid is an oxoacid there will be H, O and 1 other element in the chemical formula	
•	if the name of the acid is <i>ic</i> acid, then the oxoanion name ends in $-ate$; if the name of the acid is <i>ous</i> acid, then the oxoanion name ends in $-ite$	•	identify and name the oxoanion in the chemical formula	
•	identify the oxoanion; write its formula with charge	•	if the oxoanion name ends in <i>-ate</i> , then the corresponding oxoacid is named using the formula: <i>ic</i> acid	
•	determine how many H ⁺ ions are required for a neutral compound	•	if the oxoanion name ends in <i>-ite</i> , then the corresponding oxoacid is named using the formula: <i>-ous</i> acid	
•	write the chemical formula; H appears first	•		
	<i>examples</i> : sulfuric acid \rightarrow acid of the sulfate ion \rightarrow SO ₄ ²⁻ \rightarrow 2 H ⁺ 's required \rightarrow H ₂ SO ₄ (aq) vs. chlorous acid \rightarrow acid of the chlorite ion \rightarrow ClO ₂ ⁻ \rightarrow 1 H ⁺ required \rightarrow HClO ₂ (aq)	•	<i>examples</i> : HNO ₃ (aq) \rightarrow acid of NO ₃ ⁻ \rightarrow nitrate ion \rightarrow therefore nitric acid vs. HNO ₂ (aq) \rightarrow acid of NO ₂ ⁻ \rightarrow nitrite ion \rightarrow therefore nitrous acid	

	formula and charge	name
Group 1A:	Li ⁺	lithium ion
	Na ⁺	sodium ion
	K ⁺	potassium ion
	Rb⁺	rubidium ion
	Cs ⁺	cesium ion
Group 2A:	Be ²⁺	beryllium ion
	Mg ²⁺	magnesium ion
	Ca ²⁺	calcium ion
	Sr ²⁺	strontium ion
	Ba ²⁺	barium ion
Others:	Al ³⁺	aluminum ion
	Ga ³⁺	gallium ion
	Y ³⁺	yttrium ion
	Sc ³⁺	scandium ion
	La ³⁺	lanthanum ion
	Zn ²⁺	zinc ion
	Cd^{2+}	cadmium ion
	Ag ⁺	silver ion
yatomic Cations:	$\mathrm{NH_4^+}$	ammonium ion
	H ₃ O ⁺	hydronium ion

Table 1: Names, Formulas , and Charges for Type I and Polyatomic Cations

 Table 2: Names and Charges for Monatomic Anions (and formulas of corresponding acids where appropriate)

	formula and charge	name	corresponding acid	acid name
Group 5A:	N ³⁻	nitride ion		
	P ³⁻	phosphide ion		
	As ^{3–}	arsenide ion		
Group 6A:	O ^{2–}	oxide ion	H ₂ O	water
	S ²⁻	sulfide ion	H ₂ S	hydrosulfuric acid
	Se ^{2–}	selenide ion	H ₂ Se	hydroselenic acid
	Te ²⁻	telluride ion	H ₂ Te	hydrotelluric acid
Group 7A:	F⁻	fluoride ion	HF	hydrofluoric acid
	Cl⁻	chloride ion	HCl	hydrochloric acid
	Br⁻	bromide ion	HBr	hydrobromic acid
	I-	iodide ion	HI	hydroiodic acid

	formula and charge	name	corresponding acid	acid name
Group 4A:	CO ₃ ²⁻	carbonate ion	H ₂ CO ₃	carbonic acid
	HCO ₃ ⁻	hydrogen carbonate ion	-	
	SiO ₃ ²⁻	silicate ion		
Group 5A:	NO ₃ ⁻	nitrate ion	HNO ₃	nitric acid
	NO ₂ ⁻	nitrite ion	HNO ₂	nitrous acid
	PO ₄ ³⁻	phosphate ion	H ₃ PO ₄	phosphoric acid
	HPO ₄ ^{2–}	hydrogen phosphate ion		
	$H_2PO_4^-$	dihydrogen phosphate ion		
	AsO ₄ ³⁻	aresenate ion	H ₃ AsO ₄	arsenic acid
	SbO ₄ ³⁻	antimonate ion		
Group 6A:	SO4 ²⁻	sulfate ion	H ₂ SO ₄	sulfuric acid
	HSO ₄ ⁻	hydrogen sulfate ion		
	SO ₃ ²⁻	sulfite ion	H ₂ SO ₃	sulfurous acid
	HSO ₃ ⁻	hydrogen sulfite ion		
	SeO ₄ ^{2–}	selenate ion	H ₂ SeO ₄	selenic acid
	SeO ₃ ^{2–}	selenite ion	H ₂ SeO ₃	selenous acid
	TeO ₄ ²⁻	tellurate ion	H ₂ TeO ₄	telluric acid
	TeO ₃ ²⁻	tellurite ion		
Group 7A:	ClO ₄ ⁻	perchlorate ion	HClO ₄	perchloric acid
	ClO ₃ ⁻	chlorate ion	HClO ₃	chloric acid
	ClO ₂ ⁻	chlorite ion	HClO ₂	chlorous acid
	ClO-	hypochlorite ion	HCIO	hypochlorous acid
	BrO ₄ ⁻	perbromate ion	HBrO ₄	perbromic acid
	BrO ₃ ⁻	bromate ion	HBrO ₃	bromic acid
	BrO ₂ ⁻	bromite ion	HBrO ₂	bromous acid
	BrO ⁻	hypobromite ion	HBrO	hypobromous acid
	IO ₄ ⁻	periodate ion	HIO ₄	periodic acid
	IO ₃ ⁻	iodate ion	HIO ₃	iodic acid
	IO ₂ ⁻	iodite ion	HIO ₂	iodous acid
	IO-	hypoiodite ion	HIO	hypoiodous acid
Organic Anions:	$C_2H_3O_2^-$	acetate ion	HC ₂ H ₃ O ₂	acetic acid
	C ₂ O ₄ ²⁻	oxalate ion	$H_2C_2O_4$	oxalic acid
Miscellaneous:	OH⁻	hydroxide ion		
	MnO ₄ ⁻	permanganate ion		
	Ш	1		

 Table 3: Names, Formulas and Charges for Common Polyatomic Anions (and formulas of corresponding acids where appropriate)

CrO ₄ ²⁻	chromate ion	
$Cr_2O_7^{2-}$	dichromate ion	
$S_2O_3^{2-}$	thiosulfate ion	
CN⁻	cyanide ion	
CNO-	cyanate ion	
CNS ⁻	thiocyanate ion	

Table 4: Numerical Prefixes for Naming Molecular Compounds

number	prefix
1*	mono-*
2	di–
3	tri–
4	tetra-
5	penta-
6	hexa–
7	hepta-
8	octa–
9	nona–
10	deca–
11	undeca-
12	dodeca-

* *mono*- is rarely used to indicate one atom of an element in a formula; the most common use of mono- is in carbon *mon*oxide

** Note: frequently a prefix ending in a- before oxide be truncated with the a- being dropped; i.e. N_2O_4 is named dinitrogen *tetro*xide instead of dinitrogen *tetra*oxide. This is called an elision.