\qquad

WORK 3 OF \#1 THROUGH \#4

SHOW YOUR WORK FOR PARTIAL CREDIT
THE LAST PAGES ARE A PERIODIC TABLE AND A SCRATCH SHEET
$\mathbf{R}=\mathbf{0 . 0 8 2 0 6}$ lit-atm $/ \mathrm{mol}-\mathrm{K}$
$R=8.3145 \mathrm{~J} / \mathrm{mol}$
$h=6.626 \times 10^{-34} \mathrm{~J}-\mathrm{s}$
$\mathrm{c}=2.9979 \times 10^{8} \mathrm{~m} / \mathrm{s}$
1
$\Delta H_{\text {vaporization }}$ for $\mathrm{H}_{2} \mathrm{O}$ at $100{ }^{\circ} \mathrm{C}=40,700 \mathrm{~J} / \mathrm{mole}$

1. For (a)-(j) give either the correct name or correct formula in the blank
(a) Calcium nitrate
(b) Potassium phosphate \qquad
(c) Iron(II)bromide \qquad
(d) hydroiodic acid \qquad
(e) $\mathrm{H}_{2} \mathrm{SO}_{3}$
(f) $\mathrm{N}_{2} \mathrm{O}_{4}$ \qquad
(g) $\mathrm{Na}_{2} \mathrm{SO}_{4}$ \qquad
(h) $\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2}$ Type II ($\mathrm{Ni}=$ Nickel)
(i) $\mathrm{P}_{4} \mathrm{~S}_{4}$
(j) AlF_{3} \qquad
(k) Write a balanced equation for the following reaction:

Aqueous sodium chloride reacts with aqueous lead(II)nitrate (lead $=\mathrm{Pb})$ to form solid lead(II)chloride and aqueous sodium nitrate.
2. Vitamin C, chemical name ascorbic acid, has formula $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{6}$. (Note Avogadro's number is $6.022 \times 10^{+23}$)
(a) What is the molar mass of vitamin C ?
(b) What is the percent composition of oxygen in vitamin C ?
(c) How many moles of vitamin C are there in 23.8 g of vitamin C .
(d) How many individual O atom atoms are there in vitamin C ?
3. An unknown compound was analyzed and found to have a composition of 31.89% carbon, 5.35% hydrogen, and 62.76 \% chlorine. In a separate experiment the molar mass was found to be $112.99 \mathrm{~g} / \mathrm{mol}$. Determine the empirical and molecular formulas of the compound.
4. Balance the following equations
(a) $\mathrm{NaOH}(\mathrm{aq})+\mathrm{FeBr}_{3}(\mathrm{aq}) \longrightarrow \mathrm{NaBr}(\mathrm{aq})+\mathrm{Fe}(\mathrm{OH})_{3}(\mathrm{~s})$
(b) $\mathrm{HCl}(\mathrm{aq})+\mathrm{MgCO}_{3}(\mathrm{aq}) \longrightarrow \mathrm{MgCl}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})$
$(\mathrm{c}) \quad \mathrm{Cu}_{2} \mathrm{O}(\mathrm{s})+\mathrm{C}(\mathrm{s}) \longrightarrow \mathrm{Cu}(\mathrm{s})+\mathrm{CO}(\mathrm{g})$
(d) $\mathrm{Cr}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{Cr}_{2} \mathrm{O}_{3}(\mathrm{~s})$
(e) $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{Al}_{2} \mathrm{~S}_{3}(\mathrm{~s}) \longrightarrow \mathrm{Al}(\mathrm{OH})_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$
(f) $\mathrm{TiCl}_{4}(\mathrm{l})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{HCl}(\mathrm{aq})+\mathrm{TiO}_{2}(\mathrm{~s})$

