STAT303 Sec 509 Spring 2001 Exam #2 Form A

Instructor: Julie Hagen Carroll

1. Don't EVEN open this until you are told to do so.

- 2. There are 20 multiple-choice questions on this exam, each worth 5 points. There is partial credit. Please mark your answers **clearly** on the scantron. Multiple marks will be counted wrong.
- 3. Please turn in BOTH YOUR SCANTRON AND YOUR EXAM. Since you may not get your copy back, BE SURE AND MARK YOUR SCANTRON CORRECTLY.
- 4. You will have 60 minutes to finish this exam.
- 5. If you are caught cheating or helping someone to cheat on this exam or talking to someone after class about this exam, you both will receive a grade of **zero** on the exam. You must work alone.
- 6. This exam is worth 100 points, and will constitute 20% of your final grade.
- 7. Good luck!

- 1. Using the page of graphs, which picture best represents P(Z < 1.5)? Ans: the shaded area will be about 93% and it will be shaded on the left
 - A. F
 - B. E
 - C. D
 - D. C
 - E. B
- 2. Again using the page of graphs, which picture best represents P(-2.5 < Z < 2.5)? Ans: the area shaded will be about the center 99%
 - A. A
 - B. B
 - C. C
 - D. D
 - E. E

3. Let $p_{90} \sim N(0.7, 0.048^2)$. What is $P(p_{90} < 0.6)$?

- A. 0.9812
- B. 2.08
- C. -2.08
- D. 0.0188
- E. 0.7881
- 4. Which of the following is NOT one of the properties of the sampling distribution of the sample proportion, *p*?
 - A. $\sigma_p = \sqrt{\pi(1-\pi)/n}$
 - B. normal in shape if $n\pi \geq 5$
 - C. $\mu(p) = \pi$
 - D. None of the above are a property.
 - E. Two of the above are NOT properties.
- 5. Which of the following is/are true?
 - A. If two events, A and B, are independent, then they can't both happen.
 - B. If two events, A and B, are independent, then they're conditional probabilities are equal.
 - C. If two events, A and B, are dependent, then we sum their probabilities to get P(A and B), instead of multiplying them.
 - D. If two events, A and B, are independent, then knowing one happened tells us nothing about the other.
 - E. Two of above statements are true.

Afraid to	Gender		
walk alone?	men	women	Total
+		+	
no	9	4	13
I	37.50	16.67	54.1
+		+	
yes	4	7	1
	16.67	29.17	45.83
+		+	
Total	13	11	24
	54.17	45.83	100.00
Pearson cl	hi2(1) =	2.5926 Pr	= 0.107

- 6. Using the output above, is there any difference between the proportion of men and women who are afraid to walk alone? A difference would be saying there's some relationship between *Gender* and *Afraid*, so no difference would mean 'being afraid or not' is independent of 'gender'.
 - A. Since the *p*-value is larger than 5%, we can not say the two categories are *independent*, so it seems there is some difference.
 - B. Since the *p*-value is larger than 5%, we can not say the two categories are *dependent*, so, no, there's no statistical difference.
 - C. Of course there's a difference. The proportion of 'afraid' women is more than half, where the men is less than half
 - D. Since the *p*-value is larger than 5%, we can not say the two categories are *dependent*, so it seems there is some difference.
 - E. Since the *p*-value is larger than 5%, we can not say the two categories are *independent*, so, no, there's no statistical difference.
- 7. Let $p_{60} \sim N(0.5, 0.065^2)$. What is the range of the middle 95% of these p_{60} 's? In other words, what are pA_{60} and pB_{60} such that $P(pA_{60} < p_{60} < pB_{60}) = 0.95$ (centered at the mean, $\pi = 0.5$)?
 - A. (-1.645, 1.645) B. (0.39, 0.61) C. (-1.96, 1.96)
 - D. (0.435, 0.565)
 - E. (0.37, 0.63)

- 8. Why do we need a larger sample when the proportion is really small (or large)?
 - A. Small proportions are harder to find, so we need more data to compensate.
 - B. Small proportions need more accuracy (smaller standard deviations), so we need more data.
 - C. Small proportions cause the distribution to be skewed, so we need more data to make it look normal.
 - D. We just need $n \ge 5$.
 - E. None of the above are correct statements.
- 9. We want to know the true percent of votes for Student Body President candidate A will get. Since we don't know this proportion, we poll 250 students to make sure we get 'good' results. Are the conditions for the normal approximation met in this situation, *i.e.*, can we use the normal curve to calculate a confidence interval from our data?
 - A. No, the proportion changes from day to day.
 - B. No, the data is categorical, so we can never use a continuous curve.
 - C. No, students will vote just like the person in front of them.
 - D. Yes, this is the only method we have, so we have to use the normal approximation.
 - E. Yes, all of the conditions are met as long as the true percent is between 4 and 96%.
- 10. What is the 70th percentile for the distribution of p's, where $p_{25} \sim N(0.5, 0.1^2)$?
 - A. 0.70
 - B. 0.52
 - C. 0.57
 - D. 0.552
 - E. 0.56
- 11. Which of the following would produce the narrowest confidence interval for π , the true population proportion?
 - A. a 95% interval with a sample size, n = 20B. a 90% interval with a sample size, n = 100C. a 90% interval with a sample size, n = 40D. a 95% interval with a sample size, n = 100E. a 95% interval with a sample size, n = 40

- 12. Which of the following normal curves would be the *widest*?
 - A. $p_{50} \sim N(0.4, 0.069^2)$ B. $p_{50} \sim N(0.5, 0.071^2)$ C. $p_{25} \sim N(0.5, 0.1^2)$ D. $p_{50} \sim N(0.6, 0.069^2)$ E. $p_{25} \sim N(0.4, 0.098^2)$
- 13. What z-scores do you need for a 83% confidence interval?
 - A. ± 0.83 B. ± 0.085 C. ± 0.955 D. ± 1.37 E. ± 0.7967
- 14. What is the 57th percentile for the standard normal, $Z \sim N(0, 1^2)$?
 - A. 0.57 B. 0.43 C. 0.7157 D. 0.18 E. 0.2843 Х p(X) 0 0.4 2 0.3 4 0.2 6 0.1
- 15. What are the mean, μ_X , and standard deviation, σ_X , for the distribution above?
 - A. $\mu_X = 2, \sigma_X = 8$ B. $\mu_X = 2, \sigma_X = 2.83$ C. $\mu_X = 3, \sigma_X = 2.83$ D. $\mu_X = 2, \sigma_X = 2$ E. $\mu_X = 3, \sigma_X = 2$
- 16. Using the same distribution, what is P(X = 3)?
 - A. 0, you can't have a 3 in the distribution above.
 - B. 0, X is continuous, so all '=' probabilities are 0.
 - C. 0.5, since it's in the middle.
 - D. 0.5, since it's the mean and median.
 - E. 0.25, since it's halfway between 2 and 4.

- 17. Why do we always use the sample proportion, p, instead of just the count, X?
 - A. Counts vary more.
 - B. Every p will be closer to π than any X will be to $n\pi$.
 - C. The sampling distribution of p will be normal, but the distribution of X won't.
 - D. All of the above are true.
 - E. It's doesn't matter which we use since p is just a scale change on X.
- 18. Let X be a non-standard normal, say $X \sim N(5, 3^2)$. What is P(2 < X < 6)?
 - A. 0.788
 - B. 0.5294
 - C. 0.4706
 - D. 0.212
 - E. 0.0228

```
95% CI for 0-1 proportion pi (approximate):
n = 132, p = .45
Lower Limit = .36513107
Upper Limit = .53486893
```

- 19. The confidence interval above is for the true proportion of male students in STAT303 classes. Is it *statistically* plausible to say that the classes are about half-and-half (50% males and females)?
 - A. No, there are only 45% males.
 - B. We can't determine plausibility with a confidence interval.
 - C. No, we are only looking at one class, so we can't make any statements about the other classes.
 - D. Yes, there's a statistical difference between the 59 males and 73 females.
 - E. Yes, it's plausible that the true proportion of males is 50%.
- 20. Given $p_{50} \sim N(0.6, 0.069^2)$, what is p* such that $P(p_{50} > p*) = 0.40$?
 - A. 0.25
 B. 0.6173
 C. 0.6554
 D. 0.3446
 E. 0.5724

 $1A, 2A, 3D, 4B, 5D, 6B, 7E, 8C, 9E, 10D, 11B\\12C, 13D, 14D, 15D, 16A, 17A, 18C, 19E, 20B$