Course Notes
 Statistical Pattern Recognition (COMP136)
 Department of Computer Science, Tufts University

Fall 2014
Roni Khardon

This note illustrates how one can infer the complete from of a distribution from its dependence on the random variable and how this can be helpful in other calculations.

- A Beta distribution, $\operatorname{Beta}(p \mid a, b)$, over $p \in[0,1]$ has the following form and properties:

$$
\begin{aligned}
\operatorname{Pr}(p) & =\frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} p^{a-1}(1-p)^{b-1} \\
\Gamma(x) & =\int_{0}^{\infty} \mu^{x} e^{-\mu} d \mu \\
\Gamma(1) & =1 \\
\Gamma(x+1) & =x \Gamma(x) \quad \text { and for integers } \Gamma(x+1)=x! \\
E[p] & =\frac{a}{a+b} \\
\operatorname{Mode}[p] & =\frac{a-1}{a+b-2}
\end{aligned}
$$

- Suppose that we know that $\operatorname{Pr}(p) \propto p^{2}(1-p)^{2}$; can we find the precise form of the distribution? Yes, the missing constant is $\frac{\Gamma(3+3)}{\Gamma(3) \Gamma(3)}=\frac{5!}{2!2!}=30$ and the distribution is $\operatorname{Pr}(p)=30 p^{2}(1-p)^{2}$.
- What is the value of $\int_{0}^{1} p^{3}(1-p)^{5} d p$?

We can calculate the integral directly but instead we can infer the value through the constant factor of the Beta distribution.
$\int_{0}^{1} p^{3}(1-p)^{5} d p=\frac{\Gamma(4) \Gamma(6)}{\Gamma(4+6)} \int_{0}^{1} \frac{\Gamma(4+6)}{\Gamma(4) \Gamma(6)} p^{3}(1-p)^{5} d p=\frac{\Gamma(4) \Gamma(6)}{\Gamma(4+6)} \cdot 1=\frac{3!5!}{9!}=\frac{1}{504}$

- A univariate Normal distribution, $\mathcal{N}\left(x \mid \mu, \sigma^{2}\right)$, over $x \in R$ has the following form and properties:

$$
\begin{aligned}
\operatorname{Pr}(x) & =\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} \\
E[x] & =\text { Mode }[x]=\mu \\
\operatorname{Var}[x] & =\sigma^{2}
\end{aligned}
$$

- Suppose that we know that $\operatorname{Pr}(x) \propto e^{5 x-8 x^{2}}$; can we find the precise form of the distribution?

Yes, here too we can calculate the constant term. The distribution depends on x via $e^{-\frac{\left(x^{2}-2 \mu x\right)}{2 \sigma^{2}}}=e^{-\frac{x^{2}}{2 \sigma^{2}}} e^{\frac{\mu x}{\sigma^{2}}}$ and the remaining terms $\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{\mu^{2}}{2 \sigma^{2}}}$ do not depend on x.
From this we conclude that $8=\frac{1}{2 \sigma^{2}}$ or $\sigma^{2}=\frac{1}{16}$ and that $5=\frac{\mu}{\sigma^{2}}=16 \mu$ and $\mu=\frac{5}{16}$. Therefore the distribution is $\mathcal{N}\left(x \left\lvert\, \frac{5}{16}\right., \frac{1}{16}\right)$. This trick is known as "completing the square".

