Student name (print): \qquad honor pledge: \qquad

1. Which of these choices is the general electron configuration for the outermost electrons of elements in the alkaline earth group?
A. ns^{1}
B. $n s^{2}$
C. $n s^{2} n p^{4}$
D. $n s^{2} n p^{5}$
E. $n s^{2} n p^{6}(n-1) d^{6}$
2. Consider the element with the electron configuration $[\mathrm{Xe}] 6 \mathrm{~s}^{2} 4 \mathrm{f}^{7}$. This element is
A. a representative element.
B. a lanthanide element.
C. a nonmetal.
D. an actinide element .
E. a noble gas.
3. The representative elements are those with unfilled energy levels in which the "last electron" was added to
A. an s orbital.
B. an s or p orbital.
C. a d orbital.
D. a p or d orbital.
E. an f orbital.
4. Which of these species make an isoelectronic pair: $\mathrm{Cl}^{-}, \mathrm{O}^{2-}, \mathrm{F}, \mathrm{Ca}^{2+}, \mathrm{Fe}^{3+}$?
A. Ca^{2+} and Fe^{3+}
B. O^{2-} and F
C. F and Cl^{-}
D. Cl^{-}and Ca^{2+}
E. none of these
5. Which one of these ions has the largest radius?
A. Cl^{-}
B. K^{+}
C. S^{2-}
D. Na^{+}
E. O^{2-}
6. Which of these elements has the greatest electron affinity (largest positive value)?
A. Mg
B. Al
C. Si
D. P
E. S
7. The first ionization energy of sodium is 495.9 $\mathrm{kJ} / \mathrm{mol}$. The energy change for the reaction $\mathrm{Na}(\mathrm{s})$ -$---->\mathrm{Na}^{+}(\mathrm{g})+\mathrm{e}^{-}$is therefore
A. $495.9 \mathrm{~kJ} / \mathrm{mol}$.
B. less than $495.9 \mathrm{~kJ} / \mathrm{mol}$.
C. greater than $495.9 \mathrm{~kJ} / \mathrm{mol}$.
D. equal to the electron affinity of sodium.
E. equal to the $2^{\text {nd }}$ ionization energy of sodium.
8. Which of these compounds is most likely to be ionic?
A. KF
B. CCl_{4}
D. CO_{2}
C. CS_{2}
E. ICl
9. Which of these compounds is most likely to be ionic?
A. NCl_{3}
B. BaCl_{2}
D. SO_{2}
C. CO
E. SF_{4}
10. Which of these compounds is most likely to be covalent?
A. $\mathrm{Rb}_{2} \mathrm{~S}$
B. SrCl_{2}
C. CS_{2}
D. CaO
E. MgI_{2}
11. The Lewis dot symbol for the a lead atom is
A. $\cdot \dot{\mathrm{P}} \mathrm{b}$:
D. ${ }^{-P b} \cdot$
B. $\mathrm{Pb} \cdot$
E. : $\dot{\mathrm{Pb}}$.
C. $\cdot \dot{\mathrm{Pb}} \cdot$
12. Calculate the energy change for the reaction

$$
\mathrm{K}(\mathrm{~g})+\mathrm{Br}(\mathrm{~g})-\cdots-->\mathrm{K}^{+}(\mathrm{g})+\mathrm{Br}^{-}(\mathrm{g})
$$

given the following ionization energy (IE) and electron affinity (EA) values

	$\underline{\text { IE }(\mathrm{kJ} / \mathrm{mol})}$
$\mathrm{K}:$	EA $(\mathrm{kJ} / \mathrm{mol})$ Br: 1140

A. $-1,092 \mathrm{~kJ} / \mathrm{mol}$
B. $-95 \mathrm{~kJ} / \mathrm{mol}$
D. $1,092 \mathrm{~kJ} / \mathrm{mol}$
C. $95 \mathrm{~kJ} / \mathrm{mol}$
E. $1,187 \mathrm{~kJ} / \mathrm{mol}$
13. Which of these elements has the greatest electronegativity?
A. Mg
B. Ga
C. Si
D. Ba
E. Pb
14. Which of these bonds would have the greatest polarity (i.e., highest percent ionic character)?
A. S-P
B. $\mathrm{Si}-\mathrm{S}$
C. $\mathrm{Si}-\mathrm{Se}$
D. $\mathrm{Si}-\mathrm{Cl}$
E. Si-I
15. The total number of bonding electrons in a molecule of formaldehyde $\left(\mathrm{H}_{2} \mathrm{CO}\right)$ is
A. 3 .
B. 4 .
C. 6 .
D. 8 .
E. 18 .
16. The total number of lone pairs in NCl_{3} is
A. 6 .
B. 8 .
C. 9 .
D. 10 .
E. 13.
17. The number of resonance structures for the nitrate ion needed to illustrate that all three NO bonds are equivalent is:
A. 1 .
B. 2 .
C. 3 .
D. 4 .
E. none of these.
18. How many covalent bonds will a neutral nitrogen atom usually form in a stable molecule?
A. 1
B. 2
D. 5
C. 3
E. 8
19. What is the formal charge on the central nitrogen atom in $\mathrm{N}_{2} \mathrm{O}$ (the atomic order is $\mathrm{N}-\mathrm{N}-\mathrm{O}$)?
A. 0
B. +1
D. -2
C. -1
E. +2
20. What is the formal charge on the singly bonded oxygens in the Lewis structure for the carbonate ion?
A. -2
B. -1
C. 0
D. +1
E. +2
21. Each of the three resonance structures of NO_{3}^{-} has how many lone pairs of electrons?
A. 7
B. 8
C. 9
D. 10
E. 13
22. Which of these molecules has an atom with an incomplete octet?
A. NF_{3}
B. $\mathrm{H}_{2} \mathrm{O}$
C. AsCl_{3}
D. GeH_{4}
E. BF_{3}
23. Which of these molecules has an atom with an expanded octet?
A. HCl
B. AsCl_{5}
C. ICl
D. NCl_{3}
E. Cl_{2}
24. Use bond energies to estimate the enthalpy change for the reaction of one mole of CH_{4} with chlorine gas to give $\mathrm{CH}_{3} \mathrm{Cl}$ and hydrogen chloride.

$$
\begin{aligned}
& \mathrm{BE}(\mathrm{C}-\mathrm{H})=414 \mathrm{~kJ} / \mathrm{mol} \\
& \mathrm{BE}(\mathrm{C}-\mathrm{Cl})=326 \mathrm{~kJ} / \mathrm{mol} \\
& \mathrm{BE}(\mathrm{H}-\mathrm{Cl})=432 \mathrm{~kJ} / \mathrm{mol} \\
& \mathrm{BE}(\mathrm{Cl}-\mathrm{Cl})=243 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

A. $-101 \mathrm{~kJ} / \mathrm{mol}$
B. $-106 \mathrm{~kJ} / \mathrm{mol}$
C. $+331 \mathrm{~kJ} / \mathrm{mol}$
D. $+106 \mathrm{~kJ} / \mathrm{mol}$
E. $+101 \mathrm{~kJ} / \mathrm{mol}$
25. According to the VSEPR theory, the shape of the SO_{3} molecule is
A. pyramidal.
B. tetrahedral.
C. trigonal planar.
D. distorted tetrahedron (seesaw).
E. square planar.
26. The shape of the SF_{4} molecule is
A. tetrahedral.
B. trigonal pyramidal.
C. trigonal planar.
D. square planar.
E. distorted tetrahedron (seesaw).
27. According to VSEPR theory, the shape of the
PH_{3} molecule is best described as
A. linear.
B. trigonal planar.
C. tetrahedral.
D. bent.
E. trigonal pyramidal.
28. The shape of the ClF_{3} molecule is best described as
A. distorted tetrahedron.
B. trigonal planar.
C. tetrahedral.
D. T-shaped.
E. trigonal pyramidal.
29. According to the VSEPR theory, the molecular shape of the carbonate ion, $\mathrm{CO}_{3}{ }^{2-}$, is
A. square planar.
B. tetrahedral.
C. pyramidal.
D. trigonal planar.
E. octahedral.
30. According to the VSEPR theory, which one of the following species should be linear?
A. $\mathrm{H}_{2} \mathrm{~S}$
B. HCN
C. BF_{3}
D. $\mathrm{H}_{2} \mathrm{CO}$
E. SO_{2}
31. According to VSEPR theory, which one of the following molecules has tetrahedral geometry?
A. NH_{3}
B. CCl_{4}
C. CO_{2}
D. SF_{4}
E. PCl_{5}
32. Which of the following substances is/are bent?
(i) $\mathrm{H}_{2} \mathrm{~S}$ (ii). CO_{2} (iii) ClNO (iv) $\mathrm{NH}_{2}{ }^{-} \quad$ (v) O_{3}
A. only (iii)
B. only (i) and (v)
C. only (i), (iii), and (v)
D. all are bent except for (iv)
E. all are bent except for (ii)
33. The bond angle in $\mathrm{Cl}_{2} \mathrm{O}$ is expected to be approximately
A. 90 .
B. 109.5 .
C. 120 .
D. 145 .
E. 180 .
34. The F-S-F bond angles in SF_{6} are
A. 90 and 180 .
B. 109.5 .
C. 120 .
D. 180 .
E. 90 and 120 .
35. The C-N-O bond angle in nitromethane, $\mathrm{CH}_{3} \mathrm{NO}_{2}$, is expected to by approximately
A. 60 .
B. 90 .
C. 109.5 .
D. 120 .
E. 180 .
36. Complete this sentence: The PCl_{5} molecule has
A. nonpolar bonds, and is a nonpolar molecule.
B. nonpolar bonds, but is a polar molecule.
C. polar bonds, and is a polar molecule.
D. polar bonds, but is a nonpolar molecule.
37. Predict the molecular geometry and polarity of the SO_{2} molecule.
A. linear, polar
B. linear, nonpolar
C. bent, polar
D. bent, nonpolar
E. none of these
name: \qquad

Multiple choice score (74 pts) \longrightarrow, ,

Short answer score (31 pts) \qquad ,
total \qquad

Short Answer:

1. (18 pts) Write proper Lewis structures for the following "stable" molecules. Be sure to include any formal charges on atoms and all valence electrons in your structures. Accurate molecule geometries are not required here (but are welcome!).
XeF_{4}

zenon tetrafluoride \begin{tabular}{c}
$\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)^{-}$ \\
acetate anion \\
(two resonance structures)

\quad

$\mathrm{CH}_{2} \mathrm{CCH}_{2}$ \\
allene
\end{tabular}

$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{CH}_{3}$ methylacetate

$\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}$
cyclopentanone (ring of $5 \mathrm{C}^{\prime} \mathrm{s}$)

$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$ ethanol
$\mathrm{CH}_{3} \mathrm{NO}_{2}$ nitromethane (provide two resonance structures here)
2. (7 pts) Of the above, which would have a dipole moment (name them here).
3. (6 pts) Write Lewis structures for the following stable compounds and then draw a picture of the molecule with accurate geometries at the atoms (also indicate the geometry at each atom in words). Be sure to show all valence electrons and any formal charges.
$\mathrm{CH}_{3} \mathrm{CCH}$
propyne
$\left(\mathrm{NH}_{4}\right)\left(\mathrm{HCO}_{3}\right)$
ammonium bicarbonate salt
(draw separate structure/picture for each ion)

PERIODIC TABLE

	I A	II A	III A	IV A	V A	VI A	VII A	\leftarrow	VIII A-		I B	II B	III B	IV B	V B	VI B	VII B	VIII B
	1																	2
	H											Metals	Nonm	als				He
	1.0079											Metals	Nonm					4.0026
	3	4											5	6	7	8	9	10
	Li	Be											B	C	N	0	F	Ne
	6.941	9.012											10.811	12.011	14.007	15.999	18.998	20.180
	11	12											13	14	15	16	17	18
	Na	Mg				d Tra	sition	lemen					AI	Si	P	S	Cl	Ar
	22.99	24.305				dran	,	左					26.982	28.086	30.974	32.066	35.453	39.948
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
-	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Ш	39.098	40.078	44.955	47.88	50.941	51.996	54.938	55.847	58.933	58.69	※3.546	65.39	69.723	72.610	74.921	78.960	79.904	83.80
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
	$85.4 \circledast 8$	87.620	88.906	91.224	92.906	95.940	(97.907)	101.07	102.906	106.42	107.87	11241	114.82	118.71	121.75	127.60	126.90	131.29
	55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
	Cs	Ba	La*	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
	132.91	137.33	138.91	178.49	180.95	183.85	186.21	190.20	192.22	195.08	196.97	200.59	204.38	207.20	208.98	(208.99)	(209.99)	(222.02)
	87	88	89	104	105	106												
	Fr	Ra	$\mathrm{Ac}^{* *}$	Unq	Unp	Uns												
	(223.02)	(26.03)	(227.03)	(261.11)	(262.11)	(262.12)							Gas					
													iq		78.96	- Atom	ic mass	mot^{-1})

f Transition Elements

*Lanthanides (Rare Earths)	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	140.12	140.91	144.24	(144.92)	150.36	151.97	157.25	158.93	16250	164.94	167.26	168.93	173.04	174.97

**Actinides	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	232.04	(231.04)	(238.05)	(237.05)	(244.06)	(243.06)	(247.07)	(247.07)	(242.06)	(252.08)	(257.10)	(258.10)	(259.10)	(200.11)

From Principles of Electronic Materials and Devices, Second Edition, S. O. Kasap (© McGraw-Hill, 2002)
http://Materials. Usask. Ca

exam 4 Key

