

BUSINESS CASE TEMPLATE

PROJECT OVERVIEW

Project description

Summary of capital expenditure required

Summary of how much energy could be saved

Summary of potential cost savings as a result of energy saved

Scope of works

Be prescriptive about what you want and how to go about implementation. Specify the location/s of the project. Specify the desired outcome/s.

Code requirements

Your contractors should be able to specify any codes and relevant legislation that applies to your project. For example, a hot water supply system must comply with: Section 8 of AS/NZS 3500.4:2003 Heated Water Services, or clause 3.38 of AS/NZS 3500.5:2000

Measurement and verification

Before you implement a large project you may wish to establish a method for measuring the energy savings achieved.

This will involve understanding your current energy use or 'baseline' and determining a method to measure the results. This could involve using historical billing data, using temporary data loggers or even installing permanent energy sub-metering.

MONEY, SAVINGS & INCENTIVES

Costs

Cost of purchasing asset/s	
Cost of installation labour	
Cost of specialist consultant/s	
Cost of measurement and verification	
Recommend the preferred contractor	
(quotes attached in Appendix)	
Total upfront cost	

Energy saving

Calculate the potential energy saving based on the system or products currently used on common property in relation to this particular project.

Funding

Make a recommendation on how the project could be funded, for example, the maintenance sinking fund, funds raised though a special levy, a loan from a bank.

Rebates and incentives

State how much of the cost could be covered by a financial incentive or government rebates that the project is eligible for.

For example: "This lighting project will generate around 858 Energy Saving Certificates (ESC) under the NSW Energy Saving Scheme and this will equate \$18,000 that can be used to offset the cost of this project."

Payback period

Estimate the payback period by stating the

- 1. Amount of energy used by the current asset/s
- 2. Potential amount of energy that can be saved
- 3. Estimate of the reduction in maintenance costs Capital Rebates and Overall as a result of the project being implemented cost incentives cost (\$) (\$) (\$) 4. Total cost of installation / alterations = ÷ Energy used Energy usage Your energy Energy cost Other cost Total cost at completion currently tarriff savings savings savings (KWh/year) (KWh/year) (\$/KWh) (\$/year) (\$/year) (\$/year)) × = = Ш Payback period (years)

GETTING IT DONE

Timeline

Expected length of time to complete project Preferred start date

Estimated end date

Potential disruptions for residents living in the apartment building

Risk identification

Identify any potential risks, who is responsible for each risk, and explain how these could be mitigated.

Implementation plan

Steps for implementation include:

Outline the next steps so the executive committee and owners corporation are clear on what happens next if they vote to approve the project. You might list points like:

- Obtain additional quotations from nominated specialist contractors using the technical specification provided in the Appendix as a guide
- Assess tenders and appoint contractor
- Getting a specialist to gauge compatibility with existing infrastructure

APPENDIX

- Attach quotes that have been sourced from suppliers of licensed contractors
- Attach reports from any professional that have already been consulted
- Attach details of the technology options available
- Measurement and Verification plan (pending an initial baseline audit of existing energy costs)