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This study investigated the need for a pointcut for parallelizable loops in an aspect-

oriented programming environment. Several prototype solutions exist for loop pointcuts, 

but the solutions are not very granular. In particular, they are not able to differentiate 

between loops that are parallelizable and those that are not. Being able to identify 

parallelizable loops automatically, as part of an aspect-oriented compiler’s weaving 

process, is particularly important because (1) manually identifying parallelizable loops is 

known to be a difficult problem and (2) aspectizing parallelized loops can lead to a 

reduction in code tangling and an increase in separation of concerns. 

 

This paper describes the concepts behind the loop-pointcut problem. It then describes the 

approach used in this study for implementing a solution in the form of an aspect-oriented 

Java compiler with a parallelizable loop pointcut. Identifying parallelizable loops is 

known to be a difficult problem, and as such, this study’s parallelizable loop pointcut 

implements a heuristic solution. The pointcut identifies many parallelizable loops as 

being parallelizable, but in erring on the side of conservatism, there are some 

parallelizable loops that the pointcut is unable to identify as parallelizable. 

 

To test the parallelizable-loop pointcut, the pointcut was applied to a benchmark set of 

parallelizable programs. There were two versions of each benchmark program – (1) an 

aspect-oriented version, where the aspect-oriented compiler’s weaver added the multi-

threading functionality, and (2) a non-aspect-oriented version, where the benchmark 

program’s source code directly implemented the multi-threading functionality. For each 

benchmark program, the output from the aspect-oriented version was compared to the 

output from the non-aspect-oriented version. The study found that each loop that was 

deemed parallelizable by the aspect-oriented benchmark program was executed in 

parallel (with multiple threads) by both versions of the program – the aspect-oriented 

version and the non-aspect-oriented version. There were some loops in the non-aspect-

oriented benchmark programs that were deemed parallelizable and executed in parallel, 

but those same loops were deemed non-parallelizable by their associated aspect-oriented 

benchmark program. This discrepancy is explained by the study’s conservative approach 

to identifying loops as parallelizable. 
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Chapter 1  

Introduction 

 

Background 

This paper describes the need for an aspect pointcut for loops that can be safely 

parallelized. Having such a pointcut should enable programmers to write programs that 

are relatively elegant and relatively efficient. The elegance can be achieved through 

improved separation-of-concerns and low coupling characteristics that are common in 

aspect-oriented programs.  The efficiency can be achieved through the parallelization of 

loops that are found to be parallelizable. 

This Introduction chapter provides the study’s problem statement, goal, and 

significance. In addition, the Introduction chapter presents barriers and issues, the 

research question addressed by the study, and limitations and delimitations of the study. 

Next, the Review of the Literature chapter provides background information that sets the 

context for the study. In particular, the literature review chapter presents concepts and 

significant findings of relevant prior studies. Next, the Methodology chapter describes the 

manner in which the study was conducted. In doing so, it describes techniques from prior 

studies that the study drew from, presents the steps taken in conducting the study, and 

lists resource requirements. The Results chapter provides the study’s outcomes. In 

particular, the design and implementation of a parallelizable loop detection algorithm was 

one of the significant outcomes of this study, and, as such, the Results chapter provides 

an in-depth explanation of the parallelizable loop detection algorithm. In addition, the 
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chapter provides results from the study’s tests that illustrate the success in implementing 

a loop pointcut as part of an aspect-oriented compiler. Finally, the Conclusions, 

Implications, Recommendations, and Summary chapter ascertains whether the study’s 

goals have been met, discusses the impact of the study’s results on future research, and 

makes recommendations for related future research. 

 

Problem Statement 

Loops sometimes contain operations that can be executed in a parallel manner via a 

multitasking environment or a multiprocessing environment. When loops with 

parallelizable operations are executed in parallel, such parallelization can lead to 

improved performance (Harbulot & Gurd, 2004, p. 323). However, traditional loop 

parallelization techniques (adding thread code directly to the original program code), can 

create substantial code tangling between the program’s original primary concern(s) and 

the newly introduced parallelization concern (Harbulot & Gurd, 2004). Tangled code 

leads to programs that lack modularity and cohesion. As such, tangled-code programs 

tend to be hard to understand and develop. Also, they tend to be hard to maintain because 

changing the functionality of tangled programs requires developers to go through the 

process of mentally untangling and then retangling the code (Kiczales et al., 1997). 

Furthermore, tangled-code modules tend to be hard to reuse since they don’t focus on just 

one task (Laddad, 2003). Using aspects for parallelizable loops (with the introduction of a 

parallelizable loop pointcut) can help to untangle the code by separating the loops’ core 

concerns from the loops’ cross-cutting parallelizing concern (Harbulot & Gurd, 2004). 
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Such separation can lead to programs that are easier to maintain and program modules 

that are easier to reuse (Laddad, 2003). 

 

Dissertation Goal 

One goal of this study was to define a pointcut for loops that are safely 

parallelizable. To achieve this goal, the study formalized the constraints involved in 

classifying a loop as parallelizable. Another goal of this study (the primary goal) was to 

implement the defined parallelizable loop pointcut. To achieve this goal, the researcher 

designed and implemented an algorithm that determines whether a given loop is 

parallelizable. Determining whether a loop is parallelizable is known to be a very difficult 

problem (Aho, Lam, Sethi, & Ullman, 2007; Kyriakopoulos & Psarris, 2004), so much of 

this study’s effort focused on that issue. The final goal of this study was to modify an 

existing aspect-oriented compiler so that its matching and weaving mechanisms worked 

with the new parallelizable loop pointcut. 

 

Research Question and Hypothesis 

With the primary goal of this study being the implementation of a parallelizable loop 

pointcut, the study’s primary question was whether the parallelizable loop pointcut could 

be implemented correctly. The study’s researcher hypothesized that it could be 

implemented correctly. To test the hypothesis, the study used the parallelizable loop 

pointcut to apply multi-threading advice to a benchmark set of programs that were known 

to be parallelizable. There were two versions of each benchmark program – (1) an aspect-

oriented version, where the aspect-oriented compiler’s weaver added the multi-threading 
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functionality, and (2) a non-aspect-oriented version, where the benchmark program’s 

source code directly implemented the multi-threading functionality. The study added 

print statements to the benchmark programs to determine whether the two versions for 

each benchmark program produced the same output in terms of the program’s 

calculations (e.g., matrix multiplication) and also in terms of the number of threads used 

to execute each of the parallelizable loops. In comparing the outputs, the study showed 

that a parallelizable loop pointcut could be implemented correctly. More specifically, it 

showed that an aspect-oriented compiler with a parallelizable loop pointcut could detect 

parallelizable loops and apply the multi-threading advice correctly. 

 

Relevance and Significance 

In the past, prototype solutions for loop pointcuts have been relatively coarse, with 

each prototype implementing just one loop pointcut construct (Eaddy & Aho, 2006; 

Harbulot & Gurd, 2006; Rajan & Sullivan, 2005; Rho, Kniesel, & Appeltauer, 2006). In 

reviewing the relevant research literature, no prior studies were found that implemented a 

loop pointcut that verified whether a matched loop join point was parallelizable. By 

implementing that verification process, this study’s pointcut can prevent inappropriate 

attempts to parallelize code that is inherently non-parallelizable. 

Being able to aspectize the parallelization of loops is particularly important because 

loop parallelization code is a heterogeneous concern, and heterogeneous concerns tend to 

have tangled code. A heterogeneous concern is a concern in which the code is present in 

multiple places and the context code (the code in which the heterogeneous code is 

embedded) is different (Trifu & Kuttruff, 2005). By aspectizing the parallelization of 
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loops, this study’s parallelizable loop pointcut has made it easier to reduce code tangling 

with loop parallelization code. And a reduction in code tangling can lead to 

improvements in maintenance, debugging, and code reuse (Eaddy & Aho, 2006). 

By implementing an aspect pointcut that targets parallelizable loops, this study has 

made it easier for programmers to introduce safe parallelization to their programs, and 

therefore should make it more likely that such parallelization occurs. The benefit of such 

parallelization is made clear by Amdahl’s Law, which states that the speedup of a 

parallelized program is a function of f, the fraction of the program’s executed code that is 

parallelized, and p, the number of processors employed to run the program (Aho et al., 

2007): 

1

(1− 𝑓) + (𝑓 𝑝⁄ )
 

So, for example, if 80% of a program’s executed code is parallelized, and 10 processors 

are used, then the speedup is approximately 3.57. 

This study’s focus on speeding up the execution of loops has been deemed to be a 

worthwhile goal. According to (Aho et al., 2007), programs typically spend most of their 

time executing loops, so improving the performance of loops can have a significant 

impact on the overall performance of programs.  

 

Barriers and Issues 

 

Why Have this Study’s Goals Not Been Met in the Past? 

Aspect-oriented programming is a relatively new technology, having originated in 

1997 (Kiczales et al., 1997). As such, aspect pointcuts have been developed for just a 
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subset of Java’s constructs and there is a need for more and finer-grained aspects (Eaddy 

& Aho, 2006; Harbulot & Gurd, 2006; Rho et al., 2006). 

This study’s focal construct, the loop, is more difficult to map to a pointcut(s) than 

other constructs because loops don’t have standard arguments (like method arguments) or 

identifiers that can be used to identify them (Harbulot & Gurd, 2006). Labels cannot be 

used effectively to identify loops because programmers use labels infrequently. 

Additionally, labels could not have been used to identify loops in this study because 

labels appear only in source code, not in a program’s resulting generated bytecode, and 

this study’s aspect-oriented compiler identified pointcut join points at the bytecode level. 

If pointcut join points were identified at the source code level, then there would be a 

need for different pointcuts for while, do, and for loops. In that case, programmers’ 

personal preferences for loop types would impact which pointcuts were used, and the 

types of pointcuts used could impact the effectiveness of a particular program’s 

aspectization (Harbulot & Gurd, 2006). To avoid such programmer-specific variability, 

this study identified pointcut join points at the bytecode level, rather than at the source 

code level. That identification process required an understanding of bytecode. That 

increased this study’s challenge since an understanding of bytecode is less common than 

an understanding of Java source code. 

 

Degree of Difficulty of this Study’s Solution 

This study’s literature review found only a few studies that implemented loop 

pointcuts that matched at the bytecode level. One such example was Harbulot and Gurd’s 

LoopsAJ aspect-oriented compiler. It was particularly appealing as a possible starting 
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point for this study because LoopsAJ differentiates between loops with different numbers 

of exit points, and that differentiation is known to be helpful when identifying loops that 

are parallelizable (Bik & Gannon, 1997; Harbulot & Gurd, 2006). Unfortunately, as this 

dissertation effort progressed, it became clear that the LoopsAJ code was difficult to 

work with. In an email correspondence, Dr. Harbulot said he was “sorry the code is not of 

better quality,” and he acknowledged that his prototype’s code “could have been written 

more cleanly” (personal communication, June 22, 2009). 

This study’s primary challenge was the determination of whether a given loop was 

parallelizable. A parallelizable loop is a loop which can have its iterations executed in 

any order on different processors. Determining the parallelizability of a loop is known to 

be a difficult problem, particularly when array references and nested loops are involved 

(Blume et al., 1994; Kyriakopoulos & Psarris, 2004). Most studies that attempt to detect 

loop parallelizability engage in data dependency analysis. Data dependency analysis, 

described in detail later on, can be quite complex, and NP-complete in certain 

circumstances (Aho et al., 2007; Kyriakopoulos & Psarris, 2004). 

To avoid having to “reinvent the wheel,” this study’s researcher initially planned to 

borrow from the ReLooper tool, which, according to (Dig, Tarce, Radoi, Minea, & 

Johnson, 2009), was supposed to determine whether a loop can be safely executed in 

parallel. Unfortunately, as this dissertation effort progressed, it became clear that the 

ReLooper code was difficult to work with. Dr. Dig, one of ReLooper’s chief architects, 

said “We are now at the third re-implementation of the program analysis for detecting 

races in loops over arrays. This is a very hard problem to solve statically. I know that our 

third attempt is not ready for a release” (personal communication, May 31, 2011). In a 
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subsequent email, Dr. Radoi, another one of ReLooper’s chief architects, stated that 

ReLooper was being rewritten, this time using Scala instead of Java (personal 

communication, February 14, 2012). The purpose of this study was to implement a 

parallelizable loop pointcut as part of an aspect-oriented compiler. Since the most popular 

and extensible aspect-oriented compilers are written in Java, it would have been difficult 

to use ReLooper’s Scala code within the context of this study. 

 

Limitations and Delimitations 

A limitation is something that might affect the study, but it is not under the 

researcher’s control. As noted above, this study implemented a parallelizable loop 

pointcut and used it to apply multi-threading advice to a benchmark set of programs that 

were known to be parallelizable. By the nature of benchmarks, the benchmark programs’ 

subject areas and algorithms were out of the control of the researcher. As such, they were 

considered a limitation of the study. The researcher attempted to choose benchmark 

programs that lent themselves equally well to manual and aspectized loop parallelization, 

but some of the benchmark programs did not lend themselves equally well to 

aspectization. Consequently, the study’s parallelizable loop pointcut was unable to detect 

some of the benchmark program loops as parallelizable, even though they were shown to 

be parallelizable in the non-aspect-oriented versions of the benchmark programs, where 

the source code directly implemented the multi-threading functionality. Based on 

Zhong’s findings, this result was not surprising (Zhong, Mehrara, Lieberman, & Mahlke, 

2008). Zhong found that parallelizable-loop detection tools were less effective at 

identifying parallelizable loops than manual analysis. 
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Another limitation of the study is the nature of the parallelizable loop detection 

mechanism in terms of static versus dynamic. Since aspect-oriented compilers use static 

techniques to match pointcuts, and this study relied on an existing aspect-oriented 

compiler as a starting point, this study’s solution necessarily relied on static techniques 

for matching its new parallelizable loop pointcut. 

A delimitation is something that might affect the study, and it is under the 

researcher’s control. As noted above, most studies that attempt to detect loop 

parallelizability engage in data dependency analysis, and data dependency analysis can be 

quite complex, and NP-complete in certain circumstances. With such a difficult problem, 

this study designed and implemented a heuristic solution – a solution that identifies some 

parallelizable loops as parallelizable, but not all such loops. The aggressiveness of the 

heuristic solution was in in the control of the researcher, where “aggressiveness” refers to 

the effort in identifying a higher percentage of parallelizable loops as parallelizable. With 

such parallelizable-loop detection aggressiveness in the control of the researcher, it is 

considered to be a delimitation of the study. 

 

Definitions of Terms 

AspectBench Compiler (abc) – an alternative compiler to AspectJ’s original compiler, 

AspectJ Compiler (ajc). abc was specifically designed to be extensible. 

 

back edge – An edge from y to x is a back edge if x dominates y. 

 

code tangling – When a module incorporates multiple concerns such that the concerns are 

intermixed within the module. 

 

concern – A functionally cohesive unit that must be implemented as part of a program’s 

overall goal. 
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control-flow graph – An illustration of a  program’s possible execution paths, using 

nodes for program instructions and edges for connections between instructions. A 

connection arrow goes from node A to node B if A’s instruction might be executed 

immediately before node B’s instruction. 

 

cross-iteration dependence – When the execution of a statement in one iteration of a loop 

is dependent on the execution of a statement in another iteration of the loop. 

 

dependence (in a program dependency graph) – A node B is dependent on node A if the 

only way to reach B from the program’s starting point is by going through A. 

 

dominator – A node x is a dominator of node y (i.e., it dominates node y) if for every 

path from the starting node to node y, the path goes through node x. 

 

Jimple – An intermediate representation of Java code between source code and bytecode. 

In this study, the Jimple application programming interface (API) was used 

extensively to implement the analysis of Java constructs. 

 

join point shadow (in a program dependency graph) – A subset of nodes in a PDG region 

such that the nodes form a single-entry-single-exit sequence of nodes in the PDG’s 

corresponding control-flow graph. 

 

natural loop – A natural loop for back edge y to x is the set of nodes along a path from x 

to y, excluding the paths that revisit node x. 

 

parallelizable loop – A loop which can have its iterations executed in any order on 

different processors such that the loop’s functionality is unaffected. 

 

program dependency graph (PDG) – An illustration of a  program’s control 

dependencies, using nodes for program instructions and regions and edges for 

connections between them. A connection arrow goes from node A to node B if node 

B is dependent on node A. This definition is for PDGs used in this study. Other 

PDGs exist which have more features. 

 

region (in a program dependency graph) – A region is a set of nodes in a PDG such that 

either all of the region’s nodes are executed or none of them are executed. 

 

separation of concerns – When a program’s functional behaviors are implemented in 

separate modules with minimal overlap between the functional behaviors. 

 

shadow matching – The process of matching pointcuts in an aspect file with join points in 

a program that is being aspectized. 

 

shared object – An object that is accessed in different iterations of the same parallel loop. 
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Soot – A software framework that helps to analyze, manipulate, and optimize Java code. 

In this study, Soot’s application programming interface (API) was used extensively 

to implement the analysis of Java constructs and the analysis of nodes in a program’s 

program dependency graph. 

 

transcut – A pointcut that contains a group of other pointcuts, such that the transcut 

pointcut matches a join point if the transcut’s contained pointcuts match with join 

points inside the transcut join point. The contained pointcuts and contained join 

points must be in the same order, but they do not have to be contiguous. 

 

worker object creation pattern – A design pattern where a method call is replaced with 

code that (1) instantiates an object that contains the method as one of the object’s 

members, and (2) calls the object’s method. 

 

Summary 

This Introduction chapter has provided an overview of the study’s primary goal – 

implementing a pointcut for parallelizable loops for an aspect-oriented compiler. The 

introduction presented the need for such a pointcut and the significance of implementing 

such a pointcut. Next, the introduction discussed barriers to the success of this study and 

limitations and delimitations of the study. Finally, this Introduction chapter presented 

definitions of terms that are used throughout the remainder of this paper. 
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Chapter 2  

Review of the Literature 

 

Introduction 

The purpose of this Review of the Literature chapter is to provide background 

information intended to help the reader understand the basic concepts and needs in the 

study’s domain, which is aspect pointcuts for parallelizable loops. It presents significant 

findings of relevant prior studies. The chapter begins with a description of the general 

need for more finely grained pointcuts in aspect-oriented compilers. Next, loop types and 

loop pointcuts are discussed in the context of one of the prior studies upon which this 

study is based – Harbulot and Gurd’s LoopsAJ study (2006). 

The most challenging portion of this study was the detection of parallelizable loops. 

With that in mind, the literature review first presents a discussion of loop parallelizability 

in general. It then overviews various techniques that prior studies have used for 

parallelizing loops. It then presents various techniques that prior studies have used for the 

detection of loops that are safely parallelizable. 

 

Fine-Grained Pointcut Code Coverage 

Most aspect-oriented compilers are limited in their coverage of the language that 

they aspectize. Various independent studies have indicated the need for greater coverage 

through an increased number of pointcuts (Rajan & Sullivan, 2005; Rho et al., 2006). For 

example, Kniesel and Austermann (2002) found that to achieve 100% aspectized code 
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coverage of a program for quality assurance purposes (as required by a customer contract 

noted in their study), it would be necessary to have access to every statement in the 

program. Such comprehensive access would include pointcuts for loops. Several studies 

have provided prototype solutions for loop pointcuts, but their resulting loop pointcuts 

are somewhat general in nature – they identify a loop, but they don’t attempt to detect 

whether the loop is parallelizable (Eaddy & Aho, 2006; Harbulot & Gurd, 2006; Rajan & 

Sullivan, 2005; Rho et al., 2006). Providing a parallelizable loop pointcut would not only 

further the goal of having more fine-grained pointcut code coverage, but it would also 

help programs to receive the benefit of parallelized loops, as discussed earlier in this 

paper. 

 

Loop Types and Loop Pointcuts 

Harbulot and Gurd (2006) found that three basic types of loops exist, each with their 

own aspectization capabilities. The three types are classified according to a loop’s 

number of exit nodes and number of successor nodes. An exit node corresponds to a 

statement within a loop that causes the loop to terminate. A successor node corresponds 

to a statement that can possibly execute immediately after the loop’s termination. The 

three loop types, as shown in Figure 1, are: (1) a loop with one exit node and one 

successor node, (2) a loop with more than one exit node and one successor node, and (3) 

a loop with more than one successor node. 
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Harbulot and Gurd (2006) implemented a pointcut for just the first type of loop 

shown in Figure 1. They chose to implement that type of loop, with its one-exit-node, 

one-successor-node structure, because it has the most potential for aspectization 

functionality. Specifically, it can handle before, after, and around aspect advice, and it 

can provide context exposure. Context exposure means that a loop’s pointcut arguments 

are accessible and accurate. A loop’s pointcut arguments consist of min, max, and step, 

which correspond to the three components in a for loop’s heading. For example, the 

min, max, and step values for the following for loop header are 0, 10, and 1, respectively: 

for (int i=0; i<10; i++) 

In the above code, the reason for min being 0 and max being 10 should be self-evident. 

The reason that step is 1 is because the index variable i increments by 1 at the end of each 

loop iteration. 

If a loop contained a break statement, the break statement would represent an 

exit node and cause the loop to fall into the loop type characterized by having more than 

one exit node and one successor node. If a pointcut were developed for that type of loop, 

it would lend itself to before, after, and around advice, but not context exposure. The 

1 exit node and 

1 successor 

 

≥ 2 exit nodes and 

1 successor node: 

≥ 2 successor 

nodes: 

Figure 1.  Three types of loops 
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break statement would cause the loop’s iteration space (the set of iterations that the 

loop executes) to become unknown. That would cause the loop’s max argument to 

become the largest possible upper limit to the loop’s number of iterations rather than the 

actual upper limit to the loop’s number of iterations. That uncertainty would lead to a 

lack of context exposure (Harbulot & Gurd, 2006). 

If a loop had more than one successor node, then there would be multiple places 

where after advice would have to go. If the aspect compiler handled multiple weaving 

points, then after advice would be possible. With multiple successor nodes, the end of the 

loop would be unclear. Consequently, around advice wouldn’t work. Multiple successor 

nodes imply that a loop has multiple exit nodes, and, as explained above, multiple exit 

nodes lead to a lack of context exposure (Harbulot & Gurd, 2006). Note Figure 2, a 

modified version of (Harbulot & Gurd, 2006, p. 69), which shows the aspect-oriented 

characteristics of the three types of loops. 

 

Although Harbulot and Gurd (2006) did not implement pointcuts for the bottom two 

types of loops shown in Figure 2, they recognized that having a pointcut for the second 

type of loop could be useful. Specifically, they recognized that a loop with multiple exit 

 

 Before After Around 

Context 

exposure 

1 exit node, 1 

successor node 
√ √ √ √ 

Multiple exit nodes, 

1 successor node 
√ √ √ x 

Multiple successor 

nodes 
√ 

√, (if multiple 

weaving points) 
x x 

 

Figure 2.  Different loop types and their weaving capabilities 
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nodes and one successor node could have around advice applied to it. However, loops 

with multiple exit nodes are generally considered to be unsafe candidates for 

parallelization (Aho et al., 2007). That should make sense because with more than one 

exit point, one of the exit points would normally be based on a condition within the body 

of the loop. If the loop were to be parallelized, then presumably one of the processor’s 

loop iterations would find a true condition and want to exit the loop. But to exit the loop 

and preserve the original program’s integrity, the program would have to (1) immediately 

stop the other processors’ loop iterations, and (2) check to make sure that the other 

processors’ loop iterations hadn’t executed code that should not have been executed prior 

to the exit condition becoming true, and undo those executions if appropriate. The second 

case is impractical because the effort involved in implementing it (if that’s even possible) 

would counteract the speedup benefit due to the parallelization. Since loop parallelization 

is the focus of this study, there is no need for this study to consider Harbulot and Gurd’s 

non-parallelizable second type of loop. 

Harbulot and Gurd recognized that weaving around advice into their third type of 

loop, with multiple exits and multiple successors, would not be possible, even 

theoretically (2006). Since around advice is required for loop parallelization, Harbulot 

and Gurd’s third type of loop is not parallelizable. Since loop parallelization is the focus 

of this study, there is no need for this study to consider Harbulot and Gurd’s non-

parallelizable third type of loop. 

In implementing a loop pointcut for their aspect-oriented compiler, Harbulot and 

Gurd (2006) did not attempt to check the parallelizability of matching join point loops. 

Checking a loop to determine whether it can be parallelized is a complex problem 
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(Kyriakopoulos & Psarris, 2004). With this study’s focus on loop parallelization, this 

study did include such verification for its loop pointcut. The primary means for detecting 

loop parallelizability is to check for the lack of statement executions in one iteration of a 

loop that are dependent on statement executions in another iteration of the loop (Blume et 

al., 1994). 

 

LoopsAJ 

Some aspect compilers perform their weaving operations at the source code level, 

while some perform their weaving operations at the bytecode level (Harbulot & Gurd, 

2006). This study’s resulting compiler wove its loop advice at the bytecode level. This 

coincides with Harbulot and Gurd’s LoopsAJ compiler and the de facto standard aspect-

oriented compiler, AspectJ (Hilsdale & Hugunin, 2004). Weaving at the bytecode level 

has several advantages. Java compilers are able to recognize different forms of loops 

(e.g., for loops, while loops, and sequential branching that jumps to prior code) and 

produce generic loop bytecode. Having generic bytecode as a starting point for an aspect 

compiler makes it easier for the aspect compiler to process loops. If source code were 

used as a starting point, then the programmer would need to either (1) first refactor the 

source code to produce a common loop structure for aspectization purposes, or (2) allow 

multiple source code loop structures (e.g., for loop, while loop) to be aspectized. If 

multiple source code loop structures were aspectized, then the resulting aspectized code 

would reflect the different styles exhibited by the source code programmers, and that 

would lead to less robust solutions (Harbulot & Gurd, 2006). 
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Most AspectJ pointcuts rely on programmer-defined names to select particular join 

points (Harbulot & Gurd, 2006). For example, the following AspectJ pointcut relies on 

the programmer-defined names Employee and set to select all the one-parameter 

public set methods in the Employee class : 

public void Employee.set*(*) 

Loop join points are harder to select because loops don’t have names. Some programmers 

use loop labels, which can partially substitute for loop names, but loop labels are not 

included in bytecode, and AspectJ, LoopsAJ and this study’s aspect compiler all rely on 

bytecode as their input source (Harbulot & Gurd, 2006). 

Harbulot and Gurd’s solution for selecting loop join points is to rely on loops’ 

exposed context (i.e., the quantity and types of loop arguments). For example, the 

following LoopsAJ advice uses the loop and args pointcuts to select loops with integer 

min, max, and step values and a double array whose elements are looped through. 

void around(int min, int max, int step, double[] x): 
  loop() && args(min , max , step , x) && 
  within(Employee.adjustSalary(..)) 
{ ... 

Note that the above within construct limits the loop selection to loops that are within 

Employee’s adjustSalary method. 

 

Loop Parallelizability 

A loop is parallelizable if iterations of its body can be executed on different 

processors without customized synchronization code and without compromising the 

loop’s original functionality (Psarris & Kyriakopoulos, 2003). For several reasons, loops 

tend to be better candidates for parallelization than sequential statements. When 
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statements are parallelized, their order of execution cannot be assumed. Usually, the 

order of statements within a sequential block tends to be critical for the correctness of the 

block’s execution. On the other hand, it is fairly common that different iterations of a 

loop body can be executed in different orders with no adverse effect on the correctness of 

the loop’s execution (Aho et al., 2007). Another parallelization advantage of loops over 

sequential statements is that each loop iteration’s execution requires approximately the 

same processing power (because each iteration processes the same loop body code), and 

that makes it relatively easy to keep processors occupied continuously in a parallel 

fashion (Aho et al., 2007). 

A disadvantage of parallelizing sequential statements is that the parallelization 

benefit is limited to the (fixed) number of statements in the sequence. On the other hand, 

if a loop body can be parallelized, the amount of parallelization scales with the size of the 

data (assuming that the loop processes data). As the amount of data increases, the number 

of loop iterations increases. As the number of loop iterations increases, the fraction of 

executed parallelized code increases. Amdahl’s Law tells us that as the fraction of 

executed parallelized code increases, program speedup will occur as a function of the 

number of parallel processors (Aho et al., 2007). 

 

How to Parallelize Loops 

Besides using a parallelizable loop pointcut with aspects (as done by this study), 

there are two other basic solutions for parallelizing loops – (1) explicit parallelization 

using Java threads and (2) calls to external library functions (Harbulot & Gurd, 2004). 
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The first of the two “other basic solutions” (explicit parallelization) is where the 

programmer implements parallelization with source code. C can spawn multiple parallel 

thread processes directly, while Java can instantiate and execute threads which run 

asynchronously on multiple processors. An example of explicit parallelization with Java 

threads is presented in Figure 3, which comes from (Harbulot & Gurd, 2004, p. 124). The 

figure shows how a new thread is instantiated by calling the Thread constructor, how it 

is executed by calling the start method, and how it is waited on for completion by 

calling the join method. 

 

 
public class Example 
{ 
  ... 
  public void sequentialExample() 
  { 
    actionl(); 
    action2(); 
  } 
 
  public void parallelExample() 
  { 
    Thread otherThread = 
      new Thread(new ActionlRunnable()); 
    otherThread.start(); 
    action2(); 
    otherThread.join() ; 
  ) 
 
  class ActionlRunnable implements Runnable 
  { 
    public void run() 
    { 
      action1(); 
    } 
  } 
} 

Figure 3.  Example program that parallelizes two actions using Java threads 
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The second of the two “other basic solutions” (calls to external library functions) 

relies on pre-built libraries dedicated to parallelization. One of the most popular standards 

used for parallel computing is the Message Passing Interface (MPI). Java programs are 

able to use the MPI with the help of the MPI for Java library. But using the MPI for Java 

library is somewhat cumbersome (Judd, Clement, Snell, & Getov, 1999). For example, 

Java’s lack of explicit pointers leads to inefficient and confusing code when copying 

multidimensional arrays and complicated objects. Due to this problem, this study will not 

compare MPI parallelized programs to aspect-oriented programs that use this study’s new 

loop pointcut. 

Another external pre-built library for handling loop parallelization is the Task 

Parallel Library (TPL), introduced by Microsoft in 2007 (Leijen & Hall) for its ASP.NET 

framework. The TPL implements a Parallel.For method that allows programmers to 

express their desire to execute a loop in a parallel fashion. For example, Figure 4 shows 

C# code that uses the Parallel.For method to parallelize the calculation of the 

product of two matrices (Leijen, Schulte, & Burckhardt, 2009). 
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The  Parallel.For method is particularly efficient in that it abstracts the number 

of threads used (Leijen et al., 2009). While the number of threads is transparent to the 

source code, the compiler attempts to match the number of threads to the number of 

available processors. So in Figure 4, it’s not true that each iteration of the 

Parallel.For loop will use its own thread, even though it might appear that way. 

Such abstraction is beneficial in that it can avoid the use of too many threads and the 

overhead that comes with them (each thread requires its own stack and bookkeeping 

information). The TPL’s Parallel.For method does not attempt to determine 

whether the designate loop is an appropriate candidate for parallelization. It is up to the 

programmer to make that determination. One safety measure that is embedded in the 

Parallel.For method is that if the targeted loop throws an exception during the 

execution of one of the loop’s iterations, the loop’s remaining iterations are terminated 

and the thrown exception is passed back to the method that called the failed thread 

(Leijen & Hall, 2007). 

void ParMatrixMult(int size, 
  double[,] m1, double[,] m2, double[,] result) 
{ 
  Parallel.For(0, size, delegate(int i) 
  { 
    for (int j=0; j<size; j++) 
    { 
      result[i, j] = 0; 
      for (int k=0; k<size; k++) 
      { 
        result[i,j] += m1[i,k] * m2[k,j]; 
      } 
    } 
  }); 
} // end ParMatrixMult 

Figure 4.  Matrix multiplication, using the pre-built Parallel.For method 
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Unfortunately, in parallelizing a program, the explicit parallelization technique and 

also the calls-to-external-library-functions technique both require significant code 

refactoring and they both lead to programs that exhibit significant code tangling 

(Harbulot & Gurd, 2004). Using aspects for parallelization also requires code refactoring 

(Harbulot, 2006), but as shown in an upcoming subsection, aspects for parallelization can 

lead to a reduction in code tangling. 

 

Annotations 

Several studies have used annotations to address the problem of how to select loop 

join points for aspectization purposes (Bik, Villacis, & Gannon, 1998; Eaddy & Aho, 

2006; Kiczales & Mezini, 2005). For example, Bik, Villacis, and Gannon used 

commented “par” annotations to specify loops targeted for parallelization. In the 

following code, the par annotation’s threads attribute specifies the number of threads that 

are to be used in the parallelization: 

/*par threads=4 */ 
for (int i=0; i<500; i++) 
{ ... 
There are several benefits to using annotations for aspects. They are relatively easy 

to understand and implement, and that leads to programs that are more robust and easier 

to maintain. The associated advice code is more reusable since it can access annotated 

methods without having to hardcode method details within the advice itself (Kiczales & 

Mezini, 2005). The primary drawback to using annotations for aspects is that they tend to 

produce less modular programs, since the cross-cutting concern annotation appears in the 

core-concern file, not the advice file (Eaddy & Aho, 2006). Since this study’s primary 

goals is to implement a loop pointcut that identifies parallelizable loops, it is 
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inappropriate to rely on explicit programmer annotations to make such identifications, 

and this study will refrain from using annotations as part of its solution. 

 

Code Tangling for Parallelized Loops 

As noted earlier, traditional loop parallelization techniques (adding thread code 

directly to the original program code), can create substantial code tangling between the 

program’s original primary concern(s) and the newly introduced parallelization concern 

(Harbulot & Gurd, 2004). This phenomenon is illustrated by the code shown in Figure 5 

and Figure 6. Figure 5, a slightly modified version of (Harbulot & Gurd, 2004, p. 125), 

shows a cipherIdea method, which performs a trivial encryption one byte at a time on 

a passed-in text1 parameter. The method uses a key parameter to perform the 

encryption and uses a text2 parameter to store the resulting encrypted message. Figure 

6 shows a refactored version of cipherIdea, with embedded parallelization code. 

Figure 5’s cipherIdea method implements the encryption concern without 

parallelization. Figure 6’s parallelized cipherIdea method also implements the 

encryption concern, but the encryption concern is surrounded by the parallelization 

concern. Specifically, Figure 6’s encryption concern is limited to the most nested loop 

inside the run method, and the rest of the cipherIdea method implements the 

parallelization concern. Thus, the two concerns are tangled within the cipherIdea 

method. 
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private void cipherIdea( 
  byte[] text1, byte[] text2, int[] key 
{ 
  int priorIndex; // index of previously encrypted bit 
  for (int i=0; i<text1.length; i+=8) 
  { 
    // perform encryption on 1 byte of text1 
    for (int j=i; j<i+8; j++) 
    { 
      priorIndex = j>=1 ? j-1: text1.length-1; 
      text2[j] = text2[priorIndex] + text1[j] + key[j-i]; 
    } 
  } // end for i 
} // end cipherIdea 

Figure 5.  Original implementation of cipherIdea, without parallelization 
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The code tangling problem for parallelized loops can be alleviated with the help of 

aspect-oriented programming. Figure 7, from (Harbulot & Gurd, 2006, p. 65), shows how 

private void cipherIdea(byte[] text1, byte[] text2, int[] key) 
{ 
  int max;  // stopping point for text1 index 
  int step; // step size between text1 index values 
  int priorIndex; // index of previously encrypted bit 
     
  max = text1.length; 
  step = NUM_OF_THREADS * 8; 
  Thread[] threads = new Thread[NUM_OF_THREADS]; 
 
  for (int n=0; n<NUM_OF_THREADS; n++) 
  { 
    Runnable r = new Runnable() 
    { 
      public void run() 
      { 
        for (int i=n; i<max; i+=step) 
        { 
          // perform encryption on 1 byte of text1 
          for (int j=i; j<i+8; j++) 
          { 
            priorIndex = j>=1 ? j-1: text1.length-1; 
            text2[j] = text2[priorIndex] + text1[j] + key[j-i]; 
          } 
        } // end for i 
      } // end run 
    }; // end anonymous Runnable object 
    threads[n] = new Thread(r); 
  } // end for 
 
  for (int n=1; n<NUM_OF_THREADS; n++) 
  { 
    threads[n].start(); 
  } 
  threads[0].run(); 
 
  try 
  { 
    for (int n=1; n<NUM_OF_THREADS; n++) 
    { 
      threads[n].join(); 
    } 
  } // end try 
  catch (InterruptedException e) 
  { } 
} // end cipherIdea 

Figure 6.  Refactored cipherIdea, with parallelization using Java threads 
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the encryption loop in Figure 5’s cipherIdea method can be parallelized without code 

tangling by using around advice from Harbulot & Gurd’s LoopsAJ aspect-oriented 

compiler. Specifically, Figure 7’s around advice implements the same parallelization 

logic as that in Figure 6, but the encryption concern is omitted. With an aspect-oriented 

system, the encryption concern, found in Figure 5, would be combined with the 

parallelization concern during the aspect-oriented weaving process. Consequently, with 

the encryption and parallelization concerns in different source code files, separation of 

concerns is increased and code tangling is decreased. 



28 

 

 

 

 

 

How to Detect Loop Parallelizability 

To determine in advance whether a loop is parallelizable, the loop’s statements are 

analyzed for cross-iteration dependence. If cross-iteration dependence is found, then the 

void around(int min, int max, int step): 
  within(LoopsAJTest) && 
  loop() && args(min, max, step) 
{ 
  int numThreads = 4; 
  Thread[] threads = new Thread[numThreads]; 
  for (int i=0; i<numThreads; i++) 
  { 
    final int t_min = min + i; 
    final int t_max = max; 
    final int t_step = numThreads * step; 
    Runnable r = new Runnable() 
    { 
      public void run() 
      { 
        proceed(t_min, t_max, t_step); 
      } 
    }; 
    threads[i] = new Thread(r); 
  } 
  for (int i=1; i<numThreads; i++) 
  { 
    threads[i].start(); 
  } 
  threads[0].run(); 
  try 
  { 
    for (int i=1; i<numThreads; i++) 
    { 
      threads[i].join(); 
    } 
  } 
  catch (InterruptedException e) 
  { } 
} // end around 

Figure 7.  Loop parallelization advice using LoopsAJ and Java threads 
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loop is not parallelizable. Cross-iteration dependence means that the execution of a 

statement in one iteration of the loop is dependent on the execution of a statement in 

another iteration of the loop (Blume et al., 1994). 

There has been extensive research on dependence analysis in order to enable the 

parallelization of computer programs. Various solutions have been found for the cross-

iteration dependency problem, with varying degrees of complexity and speed 

(Kyriakopoulos & Psarris, 2004). While the different dependence analysis techniques 

differ in terms of their computational complexity, they all rely on the need to avoid three 

types of cross-iteration dependencies – flow dependence, antidependence, and output 

dependence. Flow dependence is when a statement reads from a memory location that an 

earlier statement wrote to. Antidependence is when a statement writes to a memory 

location that an earlier statement read from. Output dependence is when a statement 

writes to a memory location that an earlier statement wrote to (Blume et al., 1994). 

Dependence analysis becomes more difficult in certain circumstances. When loops 

access arrays, it can be difficult to determine when two array references are dependent on 

each other. For example, if x[i + 1] and x[j -1] are updated in different loop iterations, 

dependence analysis requires comparing i + 1 to j – 1 (Blume et al., 1994). Nested loops 

add to the complexity as well. When array references are used in conjunction with nested 

loops, the complexity of the dependence analysis problem becomes NP-complete 

(Kyriakopoulos & Psarris, 2004). 
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JAVAB 

Bik and Gannon developed a prototype parallelization tool named JAVAB that is 

freely available for educational and research purposes (Bik & Gannon, 1997). They 

realized that more parallelizable loops could be identified by using runtime analysis, but 

in the interest of keeping things simple, they relied on compile-time analysis. JAVAB 

executes either in conjunction with a Java compiler or as a standalone bytecode-to-

bytecode transformation tool, to be run after Java compilation. 

As part of their keep-it-simple strategy in JAVAB, Bik and Gannon limited the 

detection of parallelizable loops to just “trivial loops” (Bik & Gannon, 1997). They 

defined trivial loops precisely using edges and nodes in a control-flow graph. They 

defined trivial loops more conceptually as a loop with (1) one exit point, (2) a lower 

bound with a single definition, and (3) an upper bound that is loop-invariant (i.e., the 

loop’s upper bound does not change its value inside the loop body). As described later, 

this study borrowed from JAVAB’s parallelizable loop detection mechanisms and added 

to them. 

Bik and Gannon stated that their JAVAB tool was a prototype, not a robust tool 

capable of detecting all parallelizable loops. They intended it to be used as a starting 

point for further parallelizable loop detection development (Bik & Gannon, 1998). In the 

years since Bik and Gannon’s JAVAB tool was introduced in 1997, other researchers 

have made considerable progress in the area of parallelizable loop detection. The 

following sections describe some of that progress. 
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Data Dependency in Scalar-Array-Based Loops 

Most cross-iteration dependence analysis studies have focused on detecting 

parallelizability for loops that handle arrays. The prominence of array-based loops in 

parallelizable loop studies is due to their penchant for handling numeric calculations, and 

such numeric calculations tend to benefit the most from parallelization. Bik and 

Gannon’s 1997 JAVAB tool attempted to handle both array-based loops and non-array-

based loops, but most loop iteration dependence analysis studies since 2000 have focused 

exclusively on array-based loops (Aho et al., 2007; Dig et al., 2009; Wu, Feautrier, 

Padua, & Sura, 2002).There are many real-world programs that process large amounts of 

numeric data using arrays and are therefore good candidates for loop parallelization. 

Examples are programs that handle weather forecasting, protein folding for the design of 

drugs, and fluid dynamics for the design of aeropropulsion systems (Aho et al., 2007). 

To determine whether an array-based loop is parallelizable, it is necessary to look for 

common array accesses that occur at different iterations of the loop. For example, note 

the code fragment in Figure 8. The first loop’s assignment statement, arr[i] = 

arr[i] * arr[i];, accesses the ith array element, where i is the current loop index. 

Most studies treat statements that access just the ith element and no other elements as 

being safely parallelizable because different loop iterations operate on different array 

elements. That is true for scalar arrays (i.e., arrays that hold primitive values), but it’s not 

necessarily true for arrays that hold objects. We’ll describe object arrays later on, where 

we take into account the possibility that distinct array elements hold references to 

identical memory locations. 
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In Figure 8, the second loop’s assignment statement, arr[i] = arr[i-1];, 

accesses both the ith and the (i-1)th array elements. With multiple array elements 

accessed, the second loop is more difficult to analyze in terms of cross-iteration data 

dependence. If the loop index incremented by 1 each time through the loop, then each 

loop iteration would share an array element access with one other loop iteration. 

However, since the loop index increments by 2, and the array is scalar (declared with 

int[]), there are no cross-iteration data dependences, and the loop can be safely 

parallelized. 

The data dependence analysis described above is fairly straightforward, but with 

more complicated array index expressions (more complicated than arr[i] and 

arr[i-1]), the analysis can become very difficult. Data dependence analysis problems 

involving array elements have been studied widely for decades, and such problems are 

known to be NP-complete (Aho et al., 2007). Determining whether different iterations 

access the same or different memory locations is made easier if loop limits and array 

subscript expressions are affine. An affine expression is a variable times a constant plus a 

int[] arr = new int[100]; 
... 
for (int i=0; i<100; i++) 
{ 
  arr[i] = arr[i] * arr[i]; 
} 
for (int i=1; i<100; i+=2) 
{ 
  arr[i] = arr[i-1]; 
} 

Figure 8.  Code fragment with a parallelizable array-based loop 
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constant. For example, the array index in arr[2*i+3] is an affine expression, and the 

array index in arr[i*j] is not an affine expression (Aho et al., 2007) 

The Banerjee test is a relatively popular test for determining data dependences within 

a program (Banerjee, Eigenmann, Nicolau, & Padua, 1993; Ricci, 2002). It calculates 

approximate subscript ranges of elements that can be accessed by each array access 

instruction. If the ranges overlap and a write access occurs before another access, then a 

data dependence exists. The ranges are determined by sets of inequalities, which define 

the bounds of linear/affine expressions. 

 

Data Dependency in Object-Array-Based Loops 

Most studies have detected parallelism in arrays by assuming that with i ≠ j, arr[i] 

and arr[j] point to two different memory locations. But with arrays of objects, it’s 

important to verify that the two different array elements don’t contain (1) references to 

the same object, or (2) references to two different objects where those objects have fields 

that point to common objects. In (2009), Dig et al. took those possibilities into account as 

part of their ReLooper tool, which detects array-based loops that can be safely 

parallelized and refactors them so they will run in parallel when executed. ReLooper 

performs the loop parallelization detection on a program’s bytecode, whereas it performs 

the refactorization on the program’s source code. 

Other loop parallelization studies (Marron, Mendez-Lojo, Hermenegildo, Stefanovic, 

& Kapur, 2008; Wu et al., 2002) have tracked the entire heap for every object alias, but in 

the interest of speed, ReLooper just tracks the aliases that appear within the loop arrays 

targeted for possible parallelization. 
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In its safety analysis for loop parallelization, ReLooper does not attempt to handle all 

types of loops. It just handles standard for loops and for-each loops, and each loop must 

iterate over an array or a vector. ReLooper deems a loop to be safely parallelizable if, 

within the loop, (1) there are no I/O operations, (2) all of the elements in the array (or 

vector) are traversed, and (3) there are no conflicting memory accesses. To satisfy 

constraint 2, ReLooper verifies that the loop’s index variable traverses up or down by 1 

through every element in the array and it disallows the return, break, and throw 

statements. To satisfy constraint 3, ReLooper verifies that there are no read-then-write, 

write-then-read, or write-then-write accesses to the same memory location for different 

iterations of a loop. 

In looking for conflicting memory accesses, other studies have taken the approach 

that method calls are too difficult to analyze, and have consequently assumed that all 

loops with method calls are non-parallelizable. On the other hand, ReLooper handles 

method calls by tracing them and their memory accesses as necessary. 

ReLooper’s analysis of parallelizable loop detection is conservative. That is, it flags 

all non-parallelizable loops as non-parallelizable (as shown by an empirical study), but it 

sometimes flags parallelizable loops as non-parallelizable with a warning that they might 

be parallelizable. With that in mind, users are given the opportunity to override warnings 

and allow warned-about loops to be parallelized. 

 

Loop Parallelization Speculation 

Thread-level speculation (TLS), also called speculative parallelization (SP), is a 

parallelization technique that attempts to execute loops in parallel even when they are not 
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flagged by the compiler as being safely parallelizable (Garcia-Yaguez, Llanos, & 

Gonzalez-Escribano, 2013). They are “speculated” to be parallelizable and during the 

execution process, the TLS mechanism monitors the operations of each loop iteration 

executed in parallel. If the TLS mechanism detects any dependencies between the loop 

iterations, the relevant iterations are stopped and re-executed in the proper order. The re-

execution ensures that when a dependency is found, the program still produces its correct 

result. 

In (2008), Zhong, Mehrara, Lieberman, & Mahlke claimed that the current tools for 

identifying parallelizable loops were inadequate. Specifically, they claimed that tools that 

focused on finding parallelizable loops in scientific programs (programs with scalar 

arrays that require dependence analysis across different loop iterations) and also tools that 

focused on finding parallelizable loops in non-scientific programs (programs with object 

arrays that require points-to analysis for reference variables) both identified fewer 

parallelizable loops than could be identified by (intensive) manual analysis. In response 

to that assessment, Zhong et al. developed a loop parallelization speculation tool named 

DOALL that identifies loops that have a low probability of memory dependences 

between different iterations. In running programs through their memory profiler and 

recording memory accesses, their tool categorizes loops as “speculative DOALL loops” if 

they contain zero or very few cross-iteration memory dependences, where a memory 

dependence is defined as two instructions that access the same location in memory. 

Zhong et al.’s original parallelization tool was able to identify more loops as 

(speculatively) parallelizable than other tools, but the researchers determined that even 

more loops could be made parallelizable by introducing compiler transformations which 
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focused on reducing low-level cross-iteration register and control dependences. They 

found that such compiler transformations did substantially increase the number of loops 

that could be parallelized. 

In (2009), Hammacher, Streit, Hack, and Zeller conducted a study similar to the 

Zhong et al. study (2008) in that it also developed a memory profile tool that analyzes 

program data dependences. In addition to identifying data dependences, the Hammacher 

tool finds a program’s critical path, which is the longest path of instructions in a program 

that must be executed sequentially. The critical path serves as a baseline lower bound on 

the execution time, if all other parts of the program are able to execute in a parallel 

fashion. The Zhong tool processes C programs, while the Hammacher tool analyzes Java 

programs. 

Quite a few studies have implemented various versions of the loop parallelization 

speculation technique (Hammacher et al., 2009; Sato, Inoguchi, & Nakamura, 2011; 

Tripp, Yorsh, Field, & Sagiv, 2011; Zhong et al., 2008). Unfortunately, none of those 

studies provided implementation mechanisms that could be used for this paper’s study 

because they relied on work done after the compilation process. This study implemented 

a new parallelizable loop pointcut on top of an aspect-oriented compiler. An aspect-

oriented compiler does all its work before the end of the compilation process, thus 

eliminating loop parallelization speculation as a possible technique for use in this study. 

 

Program Dependence Graphs 

In (1987), Ferrante, Ottenstein, and Warren introduced a program dependence graph 

(PDG) as a tool that can be used to help with a variety of program analysis and 
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refactoring initiatives. In modeling a program’s control dependencies, it provides hooks 

for developers to analyze different parts of a program and possibly optimize those parts. 

For example, Ferrante, Ottenstein, and Warren showed how their PDG could be used to 

modify control dependencies relating to loop unrolling operations. 

In a recent study (2011), Sadat-Mohtasham relied on PDGs as an underlying 

mechanism to implement a set of aspect-oriented pointcuts. In compiling a target 

program with an aspect-oriented compiler, Sadat-Mohtasham’s tool creates a PDG, uses 

the PDG to identify constructs within the target program, and then uses the identified 

constructs to weave advice into the resulting compiled target program. 

In his study, Sadat-Mohtasham implemented loop pointcuts, conditional pointcuts, 

and a new type of pointcut – a “transactional pointcut” (transcut). A transcut is a general-

purpose pointcut that allows a group of pointcuts to be considered as one pointcut – a 

transcut pointcut. A transcut pointcut matches a join point if the transcut’s 

contained pointcuts match with join points inside the transcut join point. The contained 

pointcuts and contained join points must be in the same order, but they do not have to be 

contiguous. The Results chapter will describe how transcuts were used in the current 

study. But for now, the focus is on how PDGs are created. An understanding of PDGs 

was necessary for the current study because the identification of parallelizable loops 

required using and modifying the PDG-creation code in Sadat-Mohtasham’s transcut 

tool. 

Since a PDG implements control dependencies, it’s necessary to formally define 

what a control dependency is. A control dependency is when one program instruction 

determines whether another program instruction executes. This can be explained best in 
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the context of a control flow graph (CFG). Note Figure 9, from (Sadat-Mohtasham, 2011, 

p. 31), which shows an example Java method and its associated CFG. Each of the figure’s 

boxes is a “node,” and each node represents a “block” of code. Each block is comprised 

of one or more “units” that execute in sequential fashion, and each unit is a bytecode 

instruction. The CFG shows the order of execution of the blocks that form the CFG’s 

method. 

 

In Figure 9, nodes g and b are control dependent on node c1 because c1’s condition 

value determines which node executes next – g or b. Now let’s present the formal 

definition of control dependency, as stated in (Ferrante et al., 1987, p. 323): 

Let G be a control flow graph. Let X and Y be nodes in G. Y is control dependent on 

X if and only if: 

Figure 9.  Example method with associated control flow graph 
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1) There exists a directed path P from X to Y with any node in P (excluding X and 

Y) post-dominated by Y, and 

2) X is not post-dominated by Y. 

The definition of control dependency relies on the definition of one node being “post 

dominated” by another node. Informally, node W post dominates node V if the only way 

to get from V to the graph’s exit is through W. Here’s the formal definition of post 

dominated, as stated in (Ferrante et al., 1987, p. 323): 

A node V is post-dominated by a node W (not including V) in G if every directed 

path from V to G’s exit node contains W. 

Since PDGs rely on control dependencies and control dependencies rely on nodes 

being post-dominated by other nodes, to create a PDG, it’s necessary to first create a 

post-dominator tree. See the post-dominator tree in Figure 10, from (Sadat-Mohtasham, 

2011, p. 32). Its nodes correspond to the nodes shown in Figure 9. In the post-dominator 

tree, each node is said to post dominate all the nodes that are descendants of it (i.e., post 

dominance doesn’t apply to just the nodes that are immediately below another node). 

 

 

Figure 10.  Post-dominator tree for the control flow graph in Figure 9 
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Figure 11 from (Sadat-Mohtasham, 2011, p. 33) shows the PDG for the method in 

Figure 9. In the PDG, each arrow represents a control dependency, such that a node at the 

head end of an arrow is control dependent on the node at the tail end of that arrow. The 

control dependency arrows come from the definition of control dependency and the 

method’s post-dominator tree. 

 

There are two types of nodes in a PDG –standard CFG nodes and region nodes 

(Ferrante et al., 1987). In Figure 11, the region nodes are represented by R0 through R6. 

In Sadat-Mohtasham’s transcut tool, each region node stores data that specifies the CFG 

nodes that are part of the region node’s region. For example, in Figure 11, the R0 region 

node represents a region containing the a and g CFG nodes. 

By definition, each region contains a group of nodes such that during any execution 

path from the entry point to the exit point, all of the nodes are executed or none of the 

 

Figure 11.  Program dependency graph for the method in Figure 9 
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nodes are executed. For example, as shown in Figure 9, Region R2’s CFG nodes, b, c3, 

and f, are either all executed (when c1 branches down) or all skipped (when c1 branches 

up) (Sadat-Mohtasham, 2011). 

The purpose of region nodes and regions is to compartmentalize different parts of a 

program so that the different parts can be analyzed more effectively. For example, this 

study’s parallizable loop pointcut implementation uses a method’s PDG regions to 

identify each loop’s starting and ending points and subsequently determine whether the 

loop has single entry and exit points. The nested nature of PDG regions is particularly 

helpful for identifying nested loops (Ferrante et al., 1987). 

In creating a PDG, CFG nodes are inserted according to their control dependencies. 

Region nodes are inserted into the CFG so that there is one region node for each branch 

path from a condition node. For a loop condition node, that means one region node above 

the condition node (for the loop-back path) and one region node below the condition node 

(for the loop-termination path). For example, in Figure 11, see nodes R1 and R2 above 

and below node c1. For an if condition node, both region nodes go below the condition 

node. For example, in Figure 11, see nodes R5 and R6 below node c3. Note that region 

nodes are not shared by condition nodes. Thus, in Figure 11, it would be inappropriate to 

omit node R3 and have nodes c1 and c2 share region node R2. In addition to region nodes 

being inserted for condition nodes, an R0 region node is inserted at the top of the PDG, to 

represent the method’s starting point. 
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Abc, Soot, and Jimple 

Since this study’s purpose was to implement a new pointcut (a parallelizable loop 

pointcut) for an aspect-oriented compiler, it was important to find an aspect-oriented 

compiler which was extensible. Because the AspectJ Compiler (ajc) was AspectJ’s 

original compiler, its primary goal was to support AspectJ’s specifications correctly. On 

the other hand, when the aspect bench compiler (abc) was built, its primary goal was to 

be extensible (Avgustinov et al., 2006). Because of abc’s focus on extensibility, the 

current study used abc as its starting-point aspect-oriented compiler. 

The abc compiler was designed and built with the help of two well-established 

compiler framework tools – polyglot for abc’s frontend and Soot for abc’s backend. 

Abc’s frontend, implemented with polyglot, provides the interface between abc’s aspect 

syntax and the rest of the compiler. Abc’s backend, implemented with Soot, provides the 

analysis and code generation necessary for the matching and weaving operations inherent 

in abc’s aspect-oriented functionality. The current study relied on abc’s polyglot frontend 

code to define the syntax for the new parallelizable loop pointcuts. The current study 

relied even more on abc’s Soot backend code. In particular, a significant amount of code 

was added to Soot’s backend code  in order to enable the matching operations between 

parallelizable loop pointcuts and parallelizable loop join points. Likewise, code was 

added to Soot’s backend code in order to enable the matching operations between args 

pointcuts (associated with parallelizable loops) and parallelizable loop join points. Also, 

code was added to Soot’s backend code in order to perform the weaving operations 

between the parallelizable loops and the multi-threading aspect code. In adding code to 
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Soot’s backend, the study relied heavily on Soot’s application programming interface 

(API). It contains many useful code-manipulation methods. 

To make extensions to abc easier to implement, Soot converts target Java programs 

to instructions from the Jimple instruction set. Jimple’s instructions are in between Java 

source code and Java bytecode in terms of complexity. Compared to the instructions in 

the Java language, Jimple instructions are simpler and there are fewer of them. That 

makes it easier for developers to analyze and manipulate a Java program’s operations 

(Einarsson & Nielsen, 2008). For example, in the current study, it was necessary to 

identify parallelizable loops, regardless of the loop’s Java construct – while, do, or 

for. With Jimple, all three Java loop constructs are represented with the same single 

construct – an if statement that jumps to the top of the loop. 

Compared to the instructions in Java bytecode, Jimple instructions can be easier to 

understand. Bytecode relies on an implicit stack for its operations, and that can lead to 

confusion. In particular, by looking at a bytecode instruction, it’s hard to know which 

previous instruction produced the value taken from the stack. And that makes it difficult 

to create a control flow graph, which is essential for many program analysis studies. On 

the other hand, Jimple instructions do not rely on an implicit stack for their operations. 

Instead, they rely on local variables to store data. That makes program analysis and the 

creation of a control flow graph easier (Lam, Bodden, Lhotak, & Hendren, 2011). 
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Chapter 3  

Methodology 

 

Methodologies Used in Prior Studies 

No single prior study was found that matched the complete domain and goals of the 

current study. However, the studies described in this section shared some of the domain 

and goals of this study, and, as such, they provided helpful background information. 

 Bik, Villacis, and Gannon (1998) conducted an experimental study that used 

annotations to specify loops targeted for parallelization. Using a benchmark set of 

programs, they compared the performance of their parallelized annotated programs with 

the performance of standard serial programs. It was similar to the current study in that it 

attempted to automate the parallelization of loops and it tested using a benchmark set of 

programs. However, unlike the current study, it did not attempt to detect parallelizable 

loops on its own, and it did not tie in with an aspect-oriented compiler. 

Harbulot and Gurd (2006) conducted an experimental study on a benchmark set of 

programs where four techniques were used to parallelize the loops in each program. The 

techniques were compared by evaluating the programs’ performances for each of the four 

techniques. The first three techniques relied on refactoring each loop so that each loop’s 

interface and execution were defined in an external class. By using an external class 

(RectangleLoopA, RectangleLoopB, and RectangleLoopC for each of the three 

techniques), the class’s instantiation could be tracked by an AspectJ aspect. The 

RectangleLoopA model relied not only on a RectangleLoopA object, but also on an 
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object that handled the execution of the loop’s body. The RectangleLoopB model 

attempted to improve performance by putting the loop body’s execution code in a 

subclass of the RectangleLoopB class. That way, external method calls were not required. 

The RectangleLoopC model attempted to improve performance further by moving nested 

for loop headers into separate methods. That enabled loop unrolling optimizations to 

occur. The Harbulot and Gurd study’s fourth technique relied on a new loop pointcut that 

they developed for an aspect-oriented compiler. Their loop pointcut meant that 

programmers did not have to refactor loops into separate classes (e.g., RectangleLoopA, 

RectangleLoopB, and RectangleLoopC). 

Harbulot and Gurd implemented their loop pointcut as part of their new LoopsAJ 

compiler, which is an extension of the abc aspect-oriented compiler. In implementing 

LoopsAJ, Harbulot and Gurd chose to use abc rather than the original aspect-oriented 

compiler, ajc, because abc was specifically designed to be extensible (Harbulot & Gurd, 

2006). 

Of all the studies that the current study relied on, the study most important to the 

current study was Sadat-Mohtasham’s transcut study. As mentioned earlier, a transcut is a 

general-purpose pointcut that allows a group of pointcuts to be considered as one pointcut 

– a transcut pointcut. Like LoopsAJ, the transcut study also relied on abc, because of its 

penchant for extensibility. The transcut study’s stated evaluation strategy was to 

“[determine whether] transcuts significantly reduce the need for refactoring to expose 

join points in real existing software” (Sadat-Mohtasham, 2011, p. 73). Sadat-Mohtasham 

carried out that evaluation strategy by using standard pointcuts as well as transcut 

pointcuts to try to identify all the statements within existing try blocks without having to 
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refactor the try block statements. The purpose of identifying such statements is so 

software developers would be able to use an aspect-oriented compiler to separate the 

statements that originally came from the try block from the error-handling code (i.e., 

the try heading and the associated catch block). As hoped for, Sadat-Mohtasham 

found that transcut pointcuts were better than standard pointcuts at being able to reduce 

the need for refactoring when attempting to match the statements within the original try 

blocks. 

The transcut study’s stated evaluation strategy (determining whether transcuts reduce 

the need for refactoring) does not coincide with the current study’s evaluation strategy. 

However, to implement their stated evaluation strategy, the transcut study was required to 

determine whether their aspect-oriented transcut pointcuts could be applied to two real-

world software systems successfully – with proper pointcut-join point matching and with 

proper weaving. In that regard, the transcut study’s methodology was similar to the 

current study’s methodology. 

 

Overview of the Methodology Used in this Study 

This study’s goal was to implement a parallelizable loop pointcut as part of an 

aspect-oriented compiler and show that the parallelizable loop pointcuts and its aspect-

oriented compiler were implemented correctly. The study was empirical in nature in that 

it tested the newly formulated software (the parallelizable-loop-pointcut aspect-oriented 

compiler) and reported test findings.  

The new parallelizable-loop-pointcut aspect-oriented compiler and a standard (non-

aspect-oriented) compiler were applied to a subset of the Edinburgh Parallel Computing 
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Center’s (EPCC’s) Java Grande Forum Benchmark Suite of programs (Smith & Bull, 

2013). The benchmark suite contains coding constructs that occur frequently in scientific 

software (Harbulot & Gurd, 2004). The benchmark suite contains two sets of “kernels” 

programs – the programs in the serial set are implemented as sequential programs using 

standard sequential code, while the programs in the multi-threaded set are implemented 

as parallel programs using threads. This study compared the multi-threaded programs 

with refactored versions of those programs. The multi-threaded programs achieved their 

parallelization via their threads. The refactored programs achieved their parallelization by 

using an aspect-oriented compiler in conjunction with the study’s new parallelizable loop 

pointcut.  

The study determined success based on whether the parallelizable-loop-pointcuts 

enabled the aspectized programs to run correctly. More specifically, the programs were 

checked for correctness by (1) comparing the original (non-aspect-oriented) benchmark 

programs’ output to the output from the refactored parallelizable-loop-pointcut programs, 

and verifying that the outputs were identical. The parallelizable-loop-pointcut compiler 

was further checked for correctness by (2) verifying that in the refactored parallelizable-

loop-pointcut programs, the parallelizable loops were detected and properly parallelized. 

The first success constraint was measured by verifying that output was the same 

from the aspect-oriented and non-aspect-oriented pairs of programs. The Java Grande 

Forum Benchmark Suite kernel programs implement relatively small (and loop intensive) 

tasks that would typically be embedded in larger application programs. As such, the 

kernel programs contain few print statements. Thus, it was necessary to add trace print 

statements to the programs that allow users to determine whether the programs have 
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completed their tasks and computed their values correctly. Both the aspect-oriented and 

non-aspect-oriented programs added the same trace print statements so the aspect-

oriented and non-aspect-oriented program pairs should, ideally, generate identical output. 

The second success constraint was measured by the parallelizable-loop-pointcut 

compiler’s ability to distinguish between parallelizable and non-parallelizable loops. 

Each of the tested benchmark programs contained both parallelizable and non-

parallelizable loops. The tested benchmark programs were fairly small, and that enabled 

each of their loops to be manually analyzed for parallelizability. The manual analysis 

involved examining each loop’s control flow and program dependencies. Later in this 

chapter, the “Detecting Whether a Loop is Parallelizable” section presents an algorithm 

that describes that manual analysis. For example, only loops with one control-flow exit 

node are deemed to be candidates for parallelization, so that characteristic was examined 

manually. As another example, for each use of a local variable within a loop (a variable 

“use” is when a variable appears in a statement, but not on the left side of an assignment), 

the loop is deemed to be a candidate for parallelization only if that variable is not 

assigned a value as part of a subsequent statement within the same loop. 

The manual analysis results were compared to the results found by running the 

parallelizable-loop-pointcut compiler. To verify that the parallelizable loops (and only the 

parallelizable loops) were found to be parallelizable by the parallelizable-loop-pointcut 

compiler, and that the parallelizable loops were executed in parallel, trace print 

statements were added to the loop pointcut aspect code. For each loop that was matched 

as a parallelizable loop, the print statements indicated the minimum (min) and maximum 

(max) values for each thread’s loop index variable. The min and max values were 
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interleaved for the different threads, so by reading the printed min and max values, the 

researcher was able to determine the number of threads executed for a particular loop. 

The same min and max loop index variable print statements were added to the loop 

threads in the non-aspect-oriented versions of the benchmark programs. With such print 

statements in place, finding identical outputs would indicate that (1) parallelizable loops 

were correctly identified as parallelizable and executed in parallel by the loop-pointcut 

aspect-oriented compiler, and (2) non-parallelizable loops were correctly identified as 

non-parallelizable by the loop-pointcut aspect-oriented compiler. 

Here are the steps that were used for this study’s methodology: 

Step 1: Define the syntax for the parallelizable loop pointcut. 

Step 2: Implement a structure that enables the detection and identification of loops with 

one exit point. 

Step 3: Implement an algorithm for detecting whether a given loop is safely 

parallelizable. 

Step 4: Implement the weaving of parallelizable loop pointcut aspects into their 

associated loop join points. 

Step 5: Provide pairs of parallelized-loop programs, with each program in a pair having 

the same functionality, but one is aspect-oriented (using the parallelizable loop 

pointcut) and one is not aspect-oriented. 

Step 6: To determine the correctness of the new parallelizable loop pointcut, compare 

the output from the parallelizable loop pointcut programs to the output from the 

non-aspect-oriented programs. 
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Step 7: To further determine the correctness of the new parallelizable loop pointcut, 

verify that the aspect-oriented compiler (1) finds the parallelizable loops (and 

not any non-parallelizable loops) to be parallelizable and (2) executes the loops 

in parallel. 

The first five steps above are rather general in nature. The following sections explain 

those steps in greater detail. 

 

Defining the Syntax for the Parallelizable Loop Pointcuts 

Step 1 involves defining the syntax for parallelizable loop pointcuts. Since this 

study’s loop pointcuts are targeted for parallelizable loops, they are named loopPar and 

outerLoopPar. The loopPar pointcut is intended to match all parallelizable loops – 

stand-alone loops, loops that surround other loops, and loops that are nested inside of 

other loops. The outerLoopPar pointcut is intended to match only parallelizable loops 

that surround other loops. This study implemented an outer loop pointcut and not an inner 

loop pointcut because parallelizing an outer loop tends to generate greater gains in 

efficiency (Microsoft, 2012). To justify parallelizing a loop, the overhead necessary to 

achieve parallelization should be offset by a sufficient amount of work being 

accomplished in the parallelized loop. An outer loop is more likely to accomplish a 

sufficient amount of work since an outer loop contains more code than its inner loop. 

This study’s new parallelizable loop pointcuts are used in conjunction with an args 

pointcut, which identifies a loop’s context. Here is the syntax for a loopPar pointcut 

with an associated args pointcut: 

loopPar() && args(min, max, step) 
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All three parameters – min, max, and step – can be accessed within the body of the 

pointcuts’ advice code. The min parameter matches the minimum value for the loop’s 

index variable. The max parameter matches the maximum value for the loop’s index 

variable. The step parameter matches the value that is added to the loop’s index variable 

at the end of each loop iteration. 

 

Detecting Loops with One Exit Node 

Step 2 involves detecting loops that have one exit node. As mentioned in the Review 

of the Literature chapter, Harbulot and Gurd (2006) classified loops into three categories 

according to their number of exit nodes and number of successor nodes: (1) a loop with 

one exit node and one successor node, (2) a loop with more than one exit node and one 

successor node, and (3) a loop with more than one successor node. They determined that 

only loops in the first category, one exit node and one successor node, were capable of 

being matched with a loop pointcut that supported (1) before, after, and around advice, 

and (2) context exposure. (Context exposure means that args pointcuts can be used in 

conjunction with loop pointcuts.) The current study has the same goal of implementing a 

loop pointcut that supports before, after, and around advice, and context exposure. Thus, 

in this study, finding loops that fit into the category of one exit node and one successor 

node was necessary. To simplify that process, it’s important to realize that with Java 

(source code, bytecode, and Jimple), if there is one exit node, then there must be only one 

successor node. That’s because Java conditional statements are limited to one branching 

target. So an exit node (implemented with a conditional statement) either goes to a 

statement within the loop or goes to a statement outside of the loop (to the single 
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successor node). Thus, in trying to identify loops that have a single exit node and a single 

successor node, this study was able to limit the identification process to finding loops 

with a single exit node. 

Correctly identifying loops with one exit node was necessary to enable the matching 

process between the parallelizable loops in a given program and the parallelizable loop 

pointcuts that might exist in the program’s aspect file. Such matching is an example of 

shadow matching, which is what an aspect compiler does to identify join points. To 

identify loops, the compiler creates a control-flow graph from its bytecode (Harbulot & 

Gurd, 2006). Note the example control-flow graph in Figure 12. 

 

After creating the control-flow graph, this study’s aspect-oriented compiler looks for 

dominators, back edges, and natural loops within the control-flow graph. A node x is a 

dominator of node y (i.e., it dominates node y) if for every path from the starting node to 

node y, the path goes through node x. An edge from y to x is a back edge if x dominates 

for (int i=0; i<10; i++) 
{ 
  System.out.print(i); 
} 
System.out.print("Done."); 

Figure 12.  A 1-exit-node, 1-successor-node loop with its associated control-flow graph 

no 

yes 

i = 0 

if (i<10) 

i++ 

print("Done.") 

print(i) 
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y. A natural loop for back edge y to x is the set of nodes along a path from x to y, 

excluding the paths that revisit node x (Aho et al., 2007; Harbulot & Gurd, 2006). After 

identifying the natural loops, the compiler then determines whether each loop is of the 

one-exit-node variety. This determination process requires knowing the number of exit 

nodes for each loop. The compiler checks for the number of exit nodes by examining the 

program’s control-flow graph. Specifically, for exit nodes, the compiler counts each node 

that has an arrow going from it to outside of the loop. 

 

Detecting Whether a Loop is Parallelizable 

Step 3 determines whether a particular loop is parallelizable. The following list 

provides an overview of the constraints checked for in this study’s loop parallelization 

detection algorithm: 

1. The loop must be trivial. 

2. Limited uses and definitions for local scalar variables. 

3. No field modifications. 

4. Safe method calls only. 

5. No array dependencies between different elements of an array. 

6. For each array reference definition, the array reference’s index expression must 

include the loop’s index variable. 

 

The constraints numbered 1, 2, 3, and 5 above came from Bik and Gannon’s loop 

parallelization detection algorithm (1997). The algorithm was presented as part of the 

documentation for their javab bytecode parallelization tool. Bik and Gannon stated that 
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their algorithm takes a conservative approach. If their algorithm indicates that a loop is 

parallelizable, then the loop is assured to be parallelizable. But for some parallelizable 

loops, their algorithm is unable to identify them as being parallelizable. This limitation is 

due to the difficulty of solving the parallelizable-loop-detection problem completely. By 

using their conservative approach, it is easier to verify that certain loops (the ones that 

follow the constraints above) are parallelizable. 

An example of a parallelizable loop that would not be identified as parallelizable by 

Bik and Gannon’s algorithm (and this study’s algorithm as well) is a loop that follows all 

of the constraints shown above except for one part of the first constraint. The first 

constraint requires the loop to be “trivial.” As explained later, one of the requirements for 

a “trivial loop” is that its index variable is assigned just one time within the loop (e.g., i = 

i + 1;). Suppose the loop index variable is assigned to itself (e.g., i = i;). In that case, the 

loop parallelization detection algorithm would not identify the loop as parallelizable even 

though the loop would actually be parallelizable. 

Since Bik and Gannon’s javab tool is not part of an aspect-oriented compiler and it 

does not use Jimple, javab’s implementation of the constraints above differs from this 

study’s implementation. The Results chapter provides a finer-grained explanation of this 

study’s loop parallelization detection algorithm implementation details. 

 

Weaving Parallelizable Loop Pointcut Aspects into Loop Join Points 

Step 4 in this study’s methodology weaves parallelizable loop pointcut aspects into 

parallelizable loop join points. To implement the weaving process, this study relies on the 

weaving functionality built into the abc aspect-oriented compiler. The abc compiler uses 
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the Soot software framework tool to generate Jimple code from Java source code 

(Avgustinov et al., 2006). Abc then performs the weaving process on the resulting Jimple 

code. Thus, as with the parallelizable loop matching process, the weaving process 

requires analyzing Jimple code. In addition, the weaving process requires adding Jimple 

code. After the weaving takes place, abc converts the resulting Jimple code to bytecode. 

Jimple is a typed, 3-address language with no reliance on a stack. With such 

characteristics, each Jimple instruction explicitly shows the instruction’s operation. Such 

explicit instructions make Jimple easier to work with during the matching process and the 

weaving process. On the other hand, if bytecode were used for these processes, there 

would be a need to determine the stack’s contents for every instruction that relied on the 

stack. Also, during the weaving process, there would be a need to add bytecode to have 

the stack behave appropriately with the newly woven code. For aspect code that uses 

arguments (i.e., the args pointcut), using Jimple provides the benefit of having the 

arguments readily available as Jimple parameters during the weaving process. On the 

other hand, if bytecode were used, then retrieving arguments would be more difficult – it 

would require searching through the stack to find them (Avgustinov et al., 2006). 

 

Creating Programs with Parallelized Loops 

Step 5 in this study’s methodology creates parallelized loops for testing purposes. To 

test the effectiveness of this study’s proposed parallelizable loop pointcut, the study 

compared aspect-oriented parallelized loops (using the new parallelizable loop pointcut) 

versus non-aspect-oriented parallelized loops. This study borrowed from Harbulot and 

Gurd’s strategy and utilized the worker object creation pattern as the basis of its loop 
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parallelization implementations (2006). The worker object creation pattern was first 

described by Laddad in (2003) as the replacement of a method call with code that (1) 

instantiates an object that contains the method as one of the object’s members, and (2) 

calls the object’s method. Laddad claimed the purpose/benefit of the worker object 

creation pattern was to be able to treat the method call as an object. Treating it as an 

object means that the method can be passed to other methods, stored, and called. Another 

benefit (and a more important benefit for this study) is that the pattern works well with 

threads. Threads were used in all the worker object creation pattern examples found as 

part of this study’s literature review (Harbulot & Gurd, 2006; Laddad, 2003). All of the 

examples used a thread object to store the method. The benefit to using a thread is that 

the called method can be executed in parallel with other threads. Typically, multiple 

method calls would be encapsulated in multiple thread objects, so that method calls can 

run in parallel. 

The code required to implement the worker object creation pattern is non-trivial, and, 

as such, if the pattern were used repeatedly, there would be a significant amount of code 

redundancy. In (2006), to avoid the code redundancy, Harbulot and Gurd used an aspect 

to implement the pattern. Specifically, they aspectized loops by using around advice for 

their targeted loops. They executed each loop iteration by embedding a proceed 

method call inside the thread object. Each proceed method call executed a subset of the 

loop’s iterations in a separate thread. This study used that same methodology when 

creating aspectized loops for the comparison of aspectized parallelized loops versus non-

aspect-oriented parallelized loops. 
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For an example implementation of that methodology, see Figure 13 and Figure 14. 

Figure 13, from (Harbulot & Gurd, 2006, p. 65), shows three loops that are not 

parallelized. Figure 14, identical to Figure 7 except that Harbulot and Gurd’s loop 

pointcut is replaced with this study’s loopPar pointcut, shows an aspect file that is 

intended to parallelize Figure 13’s loops without code tangling The three loops in Figure 

13 have the same loop signature with three int values for min, max, and step, and that 

signature matches Figure 14’s args pointcut with three int variables for min, max, 

and step. Therefore, Figure 14 applies to all three of Figure 13’s loops. Note how 

Figure 14’s advice uses four threads to execute each loop. The four threads use t_min to 

interleave each thread’s loop iteration subsets. For this study’s multiple-thread tests, the 

researcher decided to use four threads because of the current popularity of quad-core 

CPUs (e.g., AMD Phenom II X4). Testing with four threads should provide the same 

insights as testing with more than four threads. 
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int MAX = 100 ; 
for (int i=0; i<MAX; i++) 
{ 
  /* A */ 
} 
 
int j = 0 ; 
int STRIDE = 1 ; 
for (; j<MAX; j+=STRIDE) 
{ 
  /* A */ 
} 
 
int k = 0 ; 
while (k < MAX) 
{ 
  /* A */ 
  k++; 
} 

Figure 13.  Three equivalent loops that are parallelized by Figure 14’s advice 
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Resource Requirements 

Five primary resources were needed to implement and test this study’s proposed 

parallelizable-loop-pointcut compiler: source code for the transcut software tool, source 

void around(int min, int max, int step): 
  within(LoopsAJTest) && 
  loopPar() && args(min, max, step) 
{ 
  int numThreads = 4; 
  Thread[] threads = new Thread[numThreads]; 
  for (int i=0; i<numThreads; i++) 
  { 
    final int t_min = min + i; 
    final int t_max = max; 
    final int t_step = numThreads * step; 
    Runnable r = new Runnable() 
    { 
      public void run() 
      { 
        proceed(t_min, t_max, t_step); 
      } 
    }; 
    threads[i] = new Thread(r); 
  } 
  for (int i=1; i<numThreads; i++) 
  { 
    threads[i].start(); 
  } 
  threads[0].run(); 
  try 
  { 
    for (int i=1; i<numThreads; i++) 
    { 
      threads[i].join(); 
    } 
  } 
  catch (InterruptedException e) 
  { } 
} 

Figure 14.  Loop parallelization advice using the proposed loopPar pointcut 
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code for the abc compiler, the AspectJ compiler, the Java Grande  benchmark suite of test 

programs, and a computer that handles multi-threaded Java programs. 

To test this study’s new parallelizable-loop-pointcut compiler on a standard set of 

programs, this study used the EPCC group’s Java Grande Forum benchmark suite of 

programs. Specifically, this study used four programs from the “kernels” set of Java 

Grande Forum benchmark programs – seriesTest, cryptIdeaTest, sor, and sparseMat. 

To test this study’s parallelizable loop pointcuts, a single computer that handles 

multi-threaded programs was sufficient. With such an environment, parallelized loops 

were able to run subsets of their iterations on separate threads. Using an actual 

multiprocessor computing environment could have tested execution speed more 

effectively, but testing for execution speed fell outside of the scope of this project. 

 

Summary 

This Methodology chapter described how the investigation was conducted. It first 

presented methodologies used in several related studies. It then provided an overview of 

the steps necessary to carry out this study’s methodology. It fleshed out details of the 

more involved steps, such as defining the parallelizable loop pointcut’s interface and 

functionality, detecting loops with one exit node and one successor node, detecting 

whether a loop is parallelizable, and creating programs with parallelized loops. The 

Methodology chapter then presented the formats that were used in presenting the results. 

Finally, the chapter presented the study’s resource requirements. 
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Chapter 4  

Results 

 

Introduction 

This study’s primary goal was to implement a parallelizable loop pointcut, The 

study’s primary question was whether the parallelizable loop pointcut could be 

implemented correctly. This chapter provides results that show that such a loop pointcut 

can be implemented correctly. 

Detecting whether a loop is parallelizable is one of the key steps in implementing a 

parallelizable loop pointcut for an aspect-oriented compiler. The design and 

implementation of a parallelizable loop detection algorithm was one of the significant 

outcomes of this study. As such, this chapter provides an in-depth explanation of the 

parallelizable loop detection algorithm. 

Another outcome of this study was the determination of how transcut pointcuts and 

parallelizable loop pointcuts are used within an aspect file in order to check for 

parallelizable loops and weave the file’s multi-threading advice code into the core 

concerns of target Java programs. This chapter provides an example aspect which 

illustrates that pointcut usage. 

Since the detection of loop parallelizability is known to be an NP-complete problem 

(Aho et al., 2007), this study made no attempt to implement a pointcut that would detect 

every loop that was parallelizable. With that in mind, there was no attempt to test the new 

parallelizable loop pointcut for applicability with an exhaustive set of loops. Instead, the 
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new parallelizable loop pointcut was tested on four benchmark programs. Specifically, 

the study used the parallelizable loop pointcut to apply multi-threading advice to a 

benchmark set of programs that were known to be parallelizable. There were two 

versions of each benchmark program – (1) an aspect-oriented version, where the aspect-

oriented compiler’s weaver added the multi-threading functionality, and (2) a non-aspect-

oriented version, where the benchmark program’s source code directly implemented the 

multi-threading functionality. 

After describing this study’s parallelizable loop detection algorithm and the manner 

in which transcut and parallelizable pointcuts are used, this chapter describes the general 

purpose of each of the four benchmark programs. It then shows that for each benchmark 

pair of programs, the aspect-oriented version produced the same or nearly the same 

results as the non-aspect-oriented version. Next, the chapter provides the results that 

show that the new parallelizable loop pointcut was able to identify parallelizable loops in 

two of the four benchmark programs and weave multi-threading advice into the loops 

identified as parallelizable. For the other two benchmark programs, the parallelizable 

loop pointcut was unable to identify parallelizable loops. The chapter explains why the 

parallelizable loop pointcut was unable to identify those parallelizable loops as 

parallelizable. The chapter then discusses several unexpected problems that arose due to 

problems inherent in the preexisting software that this study’s solution relies on. Finally, 

the chapter provides a description of the repository that holds the software used to build 

the study’s parallelizable loop pointcut aspect-oriented compiler. 
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Detecting Whether a Loop is Parallelizable 

The following list was first presented in the Methodology chapter. It provides an 

overview of the constraints checked for in this study’s loop parallelization detection 

algorithm: 

1. The loop must be trivial. 

2. Limited uses and definitions for local scalar variables. 

3. No field modifications. 

4. Safe method calls only. 

5. No array dependencies between different elements of an array. 

6. For each array reference definition, the array reference’s index expression must 

include the loop’s index variable. 

The rest of this subsection describes each of the six constraints in detail. 

 

Constraint 1. The loop must be trivial. 

For the loop to be trivial, these characteristics must hold: 

a) One exit node. 

b) The loop condition’s index variable must not be assigned anywhere within the 

loop’s body other than right before the branch at the bottom of the loop. 

c) The loop condition compares its index to an integer constant or to a variable that’s 

not assigned anywhere within the loop. 

d) The instruction that occurs right before the branch at the bottom of the loop must 

be an instruction that increments the index variable by a positive integer constant. 



64 

 

 

 

Constraint 1a requires loops to have one exit node. As explained in the previous 

chapter, that is necessary for implementing a loop pointcut that supports before, after, and 

around advice, and context exposure. Constraints 1b, 1c, and 1d require that the loop 

index variable increments in a simple, consistent manner. Such simple, consistent 

incrementation makes it easier to parallelize such loops by assigning subsets of the loops’ 

iterations to different threads (Harbulot & Gurd, 2004). 

 

Constraint 2. Limited uses and definitions for local scalar variables. 

A “local scalar variable” is a primitive variable declared within a method. A “use” of 

a variable is an instruction that reads the value of a variable. A “definition” of a variable 

is an instruction that assigns a value to a variable. 

Local scalar variables must have limited uses and definitions as follows: 

a) For each use of a local scalar variable (but not including the loop’s index variable) 

within the loop, each of the variable’s definitions must satisfy one of the 

following: 

i. The definition is in the same block as the usage block, and before the usage 

instruction. 

or 

ii. The definition is in a different block as the usage block, and within the same 

loop, and v’ ∈ Dom(v), where v is the usage block, v’ is the block that 

contains the definition, and Dom(v) is the set of blocks that dominates block 

v. 

or 
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iii. The definition is outside the loop. 

and 

b) All scalar variables defined in the loop must be dead upon exiting the loop. 

Constraint 2a requires that for every use of a local scalar variable, the variable gets 

assigned its value either (1) within the loop and before the variable's use, or (2) outside of 

the loop. 

Constraint 2b requires that for each local scalar variable assigned within the loop, for 

each use of that definition, the use must appear within the loop, not after the loop. If the 

use appeared after the loop, then the value for the variable’s use would be dependent on 

which loop iteration executed last. If the loop were executed in parallel, the determination 

of which loop iteration executed last would be unpredictable, so the use’s value would be 

unpredictable. With such an unpredictable result, the parallel-version loop would not be 

functionally equivalent to the parallel-version loop. Consequently, the loop should not 

have been deemed parallelizable. 

This constraint assumes that the implementing language uses separate copies of local 

scalar variables within each thread. That is indeed the case for Java (Jenkov, n.d.). With 

that in mind, it is acceptable to have a definition of a variable before a use for that 

variable because then there’s no risk of different threads using the other thread’s 

definition. But on the other hand, if a variable use appears before its definition, then it’s 

possible that one thread finishes before another thread starts and then the late-starting 

thread will use the finished thread’s definition, which might cause logic errors. 
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Constraint 3. No field modifications. 

A field can be an instance variable or a class variable. If field modifications were 

allowed within candidate parallelizable loops, then points-to analysis would be required 

to find the set of uses for a field definition. Such points-to analysis can add significantly 

to the analysis’s complexity (Wu et al., 2002). Points-to analysis is when static code is 

traced to determine the object (or set of objects) that a particular reference will point to 

(or might point to) during the program’s execution. 

If a field were defined (assigned a value) within a loop, being able to track down all 

the uses for that field later on is no guarantee that there is a dependence between the uses 

and the definition. That’s because after the original assignment into the field, the field’s 

reference might be assigned a different object. If that were the case, then later uses of the 

field would access the field from a different object, not from the object whose field was 

assigned originally. 

 

Constraint 4. Safe method calls only. 

Bik and Gannon’s parallelizable loop detection algorithm used a constraint of no 

method calls at all inside the target loop (1997). Their reasoning was that method calls 

make it difficult to find the set of uses for a particular definition within the loop. That 

difficulty is exacerbated for called methods that contain field modifications and/or their 

own method calls. As explained above, if there were field modifications within the called 

method, tracking down the uses for such field modifications would require points-to 

analysis, which is known to be a relatively complex process. If there were method calls 

within the called method, then the analysis would need to take into account the entire 
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chain of potential method calls, including recursive method calls. That could add to the 

analysis’s complexity significantly. By not allowing method calls, Bik and Gannon’s 

analysis process was simplified significantly. 

In testing this study’s algorithm on benchmark programs, it became apparent that 

having a constraint of no method calls at all inside the target loop caused many of the 

targeted benchmark programs’ loops to fail the parallelizable loop test even though the 

loops could be manually identified as parallelizable. To reduce the number of false 

negatives, the researcher modified the constraint such that it allows “safe” method calls 

within the target loop, but not “unsafe” method calls. A method call is considered 

“unsafe” if (1) the called method contains a field modification(s), (2) the called method 

contains a method call, or (3) the method call contains an argument(s) that is a reference 

type. The first two criteria for unsafeness are constraints on their own and have been 

explained previously. The third criterion (having an argument that is a reference type) is 

considered unsafe because the reference means that (1) the algorithm would be required 

to track down possible field modifications to the reference argument’s object and (2) the 

reference could be an array, in which case the algorithm would be required to track down 

array element definitions and uses within the called method in order to verify compliance 

with constraints 5 and 6. 

This study’s parallelizable loop detection algorithm considers standard Java library 

methods to be safe. This is a reasonable assumption since standard Java library methods 

know nothing about variables in the loops and programs that are being tested. Thus, if a 

standard Java library method call is encountered, the algorithm makes no attempt to look 

for (1) field modifications within the called method, (2) called methods within the called 
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method, or (3) reference arguments being passed to the called method. Recognizing 

standard Java library methods as safe is particularly useful for testing purposes, where 

print methods are normally embedded in loops. Recognizing standard Java library 

methods as safe is also useful for number-crunching programs, where Math class 

methods are often embedded in loops. 

 

Constraint 5. No array dependencies between different elements of an array. 

Looking at all the array accesses that use the loop’s index variable i for the array 

element’s index, if there is at least one such access that is a definition (that’s when the 

access is at the left side of an assignment), then determine the lower bound index offset (l 

for arr[i + l]) and the upper bound index offset (u for arr[i + u]) for all the accesses for a 

particular array. Then, for the array to be parallelizable, this must hold: 

u – l < step, 

where step is the amount added to the loop’s index variable each time through the loop. 

When calculating each u and l pair, use all array references that refer to the same 

array, taking aliases into account. This requires comparing each loop array reference to 

all the other loop array references, while checking for array bases being aliases of each 

other and checking for array index expression variables being aliases of each other. 

Note the code fragment in Figure 15. It shows a loop that has two aliases, arr1 and 

arr2, for the same array. The array has two references, arr1[i] and arr2[i-1], 

with an upper bound of 0 and a lower bound of -1, respectively. The loop increments by 1 

(i++), so step equals 1. Thus, u – l < step does not hold, and the loop is not 

parallelizable. Below the loop code fragment, Figure 15 shows what would happen if the 
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loop was (incorrectly) deemed to be parallelizable, and the loop’s iterations were 

executed on separate threads. The left picture shows that if the iterations execute in the 

order i = 0, i = 1, and then i = 2, the array ends up with values of 1, 2, and 2 in its three 

elements. On the other hand, if the iterations execute in the order i = 2, i = 1, and then i = 

0, the array ends up with values of 0, 1, and 2 in its three elements. The different final 

values in the array indicate that the loop should be deemed non-parallelizable.

 

If two array references’ array bases are method parameters or aliases to method 

parameters, and the array references’ array bases are not aliases of each other, and the 

array references’ offsets are such that u – l ≥ step, then warn the user: If the relevant 

method parameters are aliases of each other, then the loop’s iterations should not be run 

in parallel. 

If an array reference uses an index expression that does not fit the format <for-loop-

index> + <integer-constant> or <for-loop-index> - <integer-constant>, then the array 

arr1 = arr2; 
for (int i=0; i<3; i++) 
{ 
  arr1[i] = i; 
  if (i >= 1) 
    arr2[i-1] = i; 
} 

Figure 15.  A loop with array references where u – l ≮ step does not hold 

0 0 1 

1 1 2 

2 2 

 

0 1 0 

1 2 1 

2 2 

 

if i = 0, 1, 2: if i = 2, 1, 0: 
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reference cannot be analyzed in terms of its upper or lower bound. In that case, the array 

reference’s containing loop is deemed non-parallelizable. 

 

Constraint 6. For each array reference definition, the array reference’s index expression 

must include the loop’s index variable. 

By having the loop’s index variable in the array reference’s index expression and by 

following Constraint 5 above (no array dependencies between different elements of an 

array), it ensures that a different array element is updated for each loop iteration. Having 

a different array element being updated is necessary because if the same array element 

were updated in different loop iterations, then after the loop finished executing in 

parallel, it would be unpredictable as to which value was assigned into that array element. 

For example, assume i is the index variable for a loop, and this statement appears within 

the loop: 

arr[3] = i; 

If the arr[3] element were used after the loop, then the use’s value would be 

unpredictable. That behavior is different from the behavior of the loop if it were executed 

sequentially. Thus, the loop should have been deemed non-parallelizable. 

If there were no uses of the array reference in the loop or after the loop, then 

parallelization would be allowed, but (1) it’s difficult to search for uses of an array 

reference (because of the potentially complex array index expression), and (2) there is no 

purpose to having a definition for an array reference and not having any uses for it. Thus, 

this constraint does not require a search for a use for such an array reference. 
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Transcut Pointcut and Parallelizable Loop Pointcut Usage 

The first thing that the parallelizable loop detection algorithm does is identify groups 

of statements that form loops. The implementation for that identification process comes 

from the transcut software tool. As explained in the Methodology chapter, the transcut 

tool’s transcut pointcut groups other pointcuts together so that a group of join points 

can be matched by the transcut pointcut. In implementing the transcut tool, Sadat-

Mohtasham implemented not only the transcut pointcut, but also the looped 

pointcut, which can be placed inside of a transcut pointcut to match loops (Sadat-

Mohtasham, 2011). This study implemented the loopPar and outerLoopPar 

pointcuts by extending the transcut tool’s Pointcut class. The looped pointcut is also 

derived from the Pointcut class. When used in aspect files, all pointcuts formed from 

the subclasses of the Pointcut class must be enclosed in a transcut pointcut, and 

that is indeed the case for the new loopPar and outerLoopPar pointcuts. 

Figure 16 shows the aspect used to parallelize loops using the study’s parallelizable 

loop pointcut. Most of the code shown is identical to the multi-threading aspect code 

shown in the Review of the Literature chapter’s Figure 7, but the transcut code at the top 

of Figure 16 is new. Note that the transcut construct encloses only one pointcut – the 

loopPar pointcut. Transcuts are normally used to enclose a group of pointcuts, but for 

the purposes of this study, they enclose only one pointcut – a loopPar pointcut or an 

outerLoopPar pointcut. 
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In Figure 16, the transcut construct at the top defines a loopPar pointcut with the 

name tc that matches all parallelizable loops. The commented-out outerLoopPar 

public aspect LoopParTestAspect 
{ 
  transcut tc() 
  {   
    // pointcut loop: outerLoopPar(); 
    pointcut loop: loopPar(); 
  } 
  
  void around(int min, int max, int step): 
    tc() && args(min, max, step) 
  { 
    int numThreads = 4; 
    Thread[] threads = new Thread[numThreads]; 
    
    for (int i=0; i<numThreads; i++) 
    { 
      final int t_min = min + i; 
      final int t_max = max; 
      final int t_step = numThreads * step; 
      
      Runnable r = new Runnable() 
      { 
        public void run() 
        { 
          proceed(t_min, t_max, t_step); 
        } 
      }; 
      threads[i] = new Thread(r); 
    } 
    
    for (int i=0; i<numThreads; i++) 
    { 
      threads[i].start(); 
    } 
 
    try 
    { 
      for (int i=0; i<numThreads; i++) 
      { 
        threads[i].join(); 
      } 
    } 
    catch (InterruptedException e) 
    { } 
  } // end around 
} // end aspect LoopParTestAspect 

Figure 16.  Advice that uses a transcut pointcut and a loopPar pointcut to 

replace parallelizable loops with multi-threaded versions of those loops 
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would match all parallelizable loops that were not nested inside other loops. In Figure 

16’s around advice, the tc pointcut is &&’d with an args pointcut. Since the tc 

pointcut represents a loopPar pointcut, the args pointcut retrieves the min, max, and 

step values for a matched parallelizable loop of this form: 

for (int i=min; i<max; i+=step) 

 The around advice’s code generates four threads and distributes the original loop’s 

iterations between each of the threads. To interleave the iterations between the threads, 

the advice code uses the min, max, and step values to create t_min, t_max, and 

t_step values for the loops in each of the generated threads. The first thread uses a 

t_min value of 0, the second thread uses a t_min value of 1, etc. All the threads use a 

t_step value of 4. Thus, the first thread uses loop index values of 0, 4, 8, 12, etc. And 

the second thread uses loop index values of 1, 5, 9, 13, etc. 

 

Description of Benchmark Programs with Parallelizable Loops 

This study tested its new parallelizable loop pointcut on four benchmark programs 

from the Java Grande Forum Benchmark Suite (Smith & Bull, 2013). The four tested 

programs came from the “Kernels” subset of the benchmark suite of programs. The 

Kernels programs were chosen because they are fairly short and their computationally 

intensive algorithms lent themselves well to multi-threaded loop implementations. For 

the purposes of this study, the four tested programs don’t have to be understood fully, but 

they do need to be understood at a high level, in order to make the results data more 

comprehensible. What follows are high-level descriptions of the four tested programs. 
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The “Series” kernel program calculates the Fourier coefficients of the equation f(x) = 

(x+1)
x
 over the interval 0 ≤ x ≤ 2. The first n Fourier coefficients are calculated by a loop 

that iterates n times. Each loop iteration executes independently of the other loop 

iterations, so that loop is parallelizable, and that loop is the one targeted for 

parallelization by the study’s parallelizable loop pointcut. 

The “Crypt” kernel program performs encryption and decryption using the IDEA 

(International Data Encryption Algorithm) algorithm. The algorithm uses several loops 

that are good candidates for parallelization. Each of the loops iterates n times through one 

or more arrays, where each array contains n elements. For example, the algorithm 

encrypts each of n byte-length messages, with each byte stored as an element in an n-

element array. 

The “SOR” kernel program performs the successive over-relaxation (SOR) algorithm 

in solving a linear system of equations. The SOR algorithm loops through a two-

dimensional array and updates array elements by relying on neighboring elements’ 

values. Since the neighboring elements’ values might have been updated in an earlier 

loop iteration, the algorithm is inherently sequential in nature, not parallel. However, 

parallelism is made possible by refactoring the algorithm so that there’s synchronization 

between elements and their neighbors. 

 The “SparseMatMult” kernel program performs matrix multiplication. It finds the 

product of all of the non-zero elements in an n x n sparse array. The SparseMatMult 

algorithm loops through all the rows in the array as part of the multiplication operation. 

To parallelize the algorithm, groups of the loop’s iterations are split among different 

threads. To help with efficiency, the number of rows processed by each thread should be 
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about the same. This partitioning of the rows to different threads is made more difficult 

by the fact that the matrix is sparse, and only the rows with non-zero elements should be 

processed. The partitioning of the rows is necessary for parallelization, but such 

partitioning can possibly cause multiple threads to update the same element in the 

resulting multiplication matrix. Such redundant updates can introduce small errors into 

the calculation. 

 

Verification that Aspect-Oriented Benchmark Programs Generate Correct Results 

For each benchmark pair of multi-threaded programs, to determine whether its 

aspect-oriented version produced the same results as its non-aspect-oriented version, the 

two program versions’ outputs were compared. Figure 17 shows those output 

comparisons. Note that for each pair of programs, the results were the same or very 

similar for the aspect-oriented and non-aspect-oriented versions of the programs. 
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Figure 17.  Output for multi-threaded programs, aspect-oriented versions versus 

non-aspect-oriented versions 

 Abbreviated trace output for aspect-

oriented program 

Trace output for non-

aspect-oriented program 

Series 

coefficient 0,0 

Computed value = 2.8729524964837996 

Reference value = 2.8729524964837996 

coefficient 1,0 

Computed value = 0.0 

Reference value = 0.0 

coefficient 0,1 

Computed value = 1.1161046676147888 

Reference value = 1.1161046676147888 

coefficient 1,1 

Computed value = -1.8819691893398025 

Reference value = -1.8819691893398025 

coefficient 0,2 

Computed value = 0.34429060398168704 

Reference value = 0.34429060398168704 

coefficient 1,2 

Computed value = -1.1645642623320958 

Reference value = -1.1645642623320958 

coefficient 0,3 

Computed value = 0.15238898702519288 

Reference value = 0.15238898702519288 

coefficient 1,3 

Computed value = -0.8143461113044298 

Reference value = -0.8143461113044298 

same 

 

 

same 

 

 

same 

 

 

same 

 

 

same 

 

 

same 

 

 

same 

 

 

same 

Crypt 

1st original byte: 1 

1st decrypted byte: 1 

1st original byte: 0 

1st decrypted byte: 0 

1st original byte: 2 

1st decrypted byte: 2 

1st original byte: 3 

1st decrypted byte: 3 

1st original byte: 0 

1st decrypted byte: 0 

1st original byte: 2 

1st decrypted byte: 2 

1st original byte: 1 

1st decrypted byte: 1 

1st original byte: 3 

1st decrypted byte: 3 

SOR 

Validation succeeded 

Gtotal = 0.4984199298207158,  

deviation = 0.0 

Validation succeeded 

Gtotal = 

0.4984222429146549, 

deviation = 

2.313093939110278E-6 

SparseMatMult 

Validation succeeded 

ytotal = 75.02484945753453, 

deviation = 0.0 

Validation succeeded 

ytotal = 

75.02484945753517,  

deviation = 

6.394884621840902E-13 
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For the Series programs, in calculating Fourier coefficients, the aspect-oriented and 

non-aspect-oriented programs generated the same results. Figure 17 indicates that the 

calculated Fourier coefficients are correct by showing the same “computed value” and 

“reference value” for each coefficient. 

For the Crypt programs, in performing encryption and decryption, the aspect-

oriented and non-aspect-oriented programs generated the same results. The four byte 

values shown in Figure 17 correspond to the first bytes encrypted and decrypted for each 

of the programs’ four threads. Figure 17 indicates that the encryptions and decryptions 

were done correctly – the figure shows the same “original byte” and “decrypted byte” 

values for each of the four pairs of values. The order of the pair values is different due to 

the multi-threaded nature of the programs. 

For the SOR programs, the aspect-oriented and the non-aspect-oriented programs 

calculated almost the same linear equation solution. The aspect-oriented program 

calculated a more accurate solution, with a deviation of 0 from the known reference 

solution, as opposed to the non-aspect-oriented program, which calculated a solution with 

a deviation of 2.313 x 10
-6

 from the known reference solution. But the aspect-oriented 

program’s more accurate solution is misleading, in that the parallelizable loop pointcut 

was unable to match any of the loops in the aspect-oriented program, so the program ran 

without multi-threading. As explained earlier, the SOR algorithm is inherently sequential 

in nature, so running the program without multi-threading led to the more accurate 

solution. 

For the SparseMatMult programs, the aspect-oriented and the non-aspect-oriented 

programs calculated almost the same matrix multiplication solution. The aspect-oriented 
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program calculated a more accurate solution, with a deviation of 0 from the known 

reference solution, as opposed to the non-aspect-oriented program, which calculated a 

solution with a deviation of 6.395 x 10
-13

 from the known reference solution. But, as with 

the SOR programs, the SparseMatMult aspect-oriented program’s more accurate solution 

is misleading, in that the parallelizable loop pointcut was unable to match any of the 

loops in the aspect-oriented program, so the program ran without multi-threading. As 

explained earlier, the SparseMatMult algorithm’s multi-threaded partitioning scheme can 

introduce small errors into the calculation. Thus, running the program without multi-

threading led to the more accurate solution. 

To fully understand how the programs’ outputs were generated, the reader is 

encouraged to examine the aspect-oriented test programs – Series, Crypt, SOR, 

SparseMatMult, and the aspect file that worked in conjunction with all four benchmark 

programs. Those programs can be found in Appendices A, B, C, D, and E. 

 

Verification of Matching Parallelizable Loop Pointcut with Parallelizable Loops 

This section examines whether the new parallelizable loop pointcut was able to 

match loops that were deemed parallelizable by manual analysis. Figure 18 shows the 

result of such an examination for each of the four aspect-oriented benchmark programs. 
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In Figure 18, note that for each loop targeted for parallelization, if the manual 

analysis indicates “yes” for parallelizable, then the trace output indicates that the loop 

was parallelized by matching the aspect-oriented compiler’s parallelizable loop pointcut. 

For example, the Series program has one loop targeted for parallelization (i.e., the Java 

Grande Forum’s multi-threaded Series program uses thread code for one loop). For the 

targeted loop in the aspect-oriented Series program, manual analysis indicated “yes” for 

parallelizability, and the output displayed four different starting values for the loop, one 

starting value for each of the four threads: min = 1, min = 2, min = 3, and min = 4. As 

explained in the Methodology chapter, this study’s aspect-oriented advice parallelizes 

loops by interleaving the loop starting points for each thread and using a loop step value 

Figure 18.  Comparison of manual analysis of loop parallelizability and 

application of a parallelizable loop pointcut 

 

Manual analysis 

indicates that the loop is 

parallelizable (y/n) 

Trace output that indicates 

whether the loop executed in a 

parallel manner 

Series yes 

min = 1 

min = 2 

min = 3 

min = 4 

(1 target loop: 

4 loop starting points for 

4 different threads) 

Crypt yes 

min2 = 1 

min2 = 0 

min2 = 2 

min2 = 3 

(1 target loop: 

4 loop starting points for 

4 different threads) 

SOR 
no 

no 

min1 = 0 

min2 = 1 

(2 target loops: 

1 loop starting point for 

each single-thread loop) 

SparseMatMult 
no 

no 

min1 = 0 

min2 = 0 

(2 target loops: 

1 loop starting point for 

each single-thread loop) 
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equal to the number of threads. So for the Series program, which uses four threads and 

uses i = 1 for its first loop iteration, the first thread’s loop executes iterations 1, 5, 9, …., 

the second thread’s loop executes iterations 2, 6, 10, …, the third thread’s loop executes 

iterations 3, 7, 11, …, and the fourth thread’s loop executes iterations 4, 8, 12, …. 

In Figure 18, note that for each loop targeted for parallelization, if the manual 

analysis indicates “no” for parallelizable, then the trace output indicates that the loop was 

not parallelized. For example, the SOR program has two loops targeted for 

parallelization. For both of the targeted loops in the aspect-oriented Series program, 

manual analysis indicated “no” for parallelizability, and the output displayed just one 

starting value for each of the two loops: min1 = 0, min2 = 1. One starting value for each 

loop means that only one thread was used for each loop. 

To fully understand how the programs’ outputs were generated, the reader is 

encouraged to examine the aspect-oriented test programs – Series, Crypt, SOR, 

SparseMatMult, and the aspect file that worked in conjunction with all four benchmark 

programs. Those programs can be found in Appendices A, B, C, D, and E. 

 

Loop Parallelizability Analysis for the Benchmark Programs 

The Java Grande Forum Benchmark Suite of programs contains versions of its 

programs that are implemented as parallel programs using threads. Although those 

programs contain loops that are executed in parallel, the comparable loops in the aspect-

oriented versions of those programs are not necessarily parallelizable. That’s because in 

creating the aspect-oriented versions of those programs, it was necessary to refactor the 

programs in a prescribed manner so that they might be able to match the parallelizable 
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loop pointcut. The Methodology chapter described the prescribed refactoring process. 

Sometimes the prescribed refactoring process led to loops that were no longer 

parallelizable. That was the case for the SOR and SparsMatMult programs, as evidenced 

by the no-parallelization results shown in Figure 18. 

Figure 19 shows three loops from the SOR program that were not matched by the 

parallelizable loop pointcut. To avoid distracting code clutter, some of the original code, 

such as print statements, was removed from the figure. The first and second loops were 

not matched by the parallelizable loop pointcut because they both violate constraint 6 

from the parallelizable loop detection algorithm presented earlier. Constraint 6 says that 

for each array reference definition, the array reference’s index expression must include 

the loop’s index variable. The first loop index variable is p, the second loop index 

variable is j and the loop contains an array reference that defines Gi[j]. Since the array 

reference’s index expression j does not include the p loop index variable or the i loop 

index variable, constraint 6 is violated for both loops. 
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The third loop in Figure 19 was not matched by the parallelizable loop pointcut 

because it violates constraint 5 from the parallelizable loop detection algorithm. 

Constraint 5 says that there must not be any array dependencies between different 

elements of an array. That constraint is violated by Gi[j] appearing on the left side of 

an assignment statement and Gi[j-1] appearing on the right side. 

Figure 20 shows two additional loops from the SOR program that were not matched 

by the parallelizable loop pointcut. The loops were not matched by the parallelizable loop 

pointcut because they both violate constraint 2 from the parallelizable loop detection 

algorithm. Constraint 2 limits the uses and definitions for local scalar variables. In 

particular, Constraint 2 requires that for every use of a local scalar variable, the variable 

gets assigned its value either from earlier in the loop’s execution or from before the loop 

was executed. In executing the compound assignment operation, Gtotal += G[i][j], 

GTotal first gets used (it gets added to G[i][j]), and then it gets defined (it gets 

for (int p=0; p<num_iterations; p++) 
{ 
  for (int i=1; i<Mm1; i++) 
  { 
    double [] Gi = G[i]; 
    double [] Gim1 = G[i-1]; 
    double [] Gip1 = G[i+1]; 
 
    for (int j=1; j<Nm1; j++) 
    { 
      Gi[j] = omega_over_four * 
        (Gim1[j] + Gip1[j] + Gi[j-1] + Gi[j+1]) + 
         one_minus_omega * Gi[j]; 

    } 
  } 
} 
 

Figure 19.  Loops in the SOR program that the aspect-oriented compiler could not 

parallelize 
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assigned an updated value). By defining Gtotal after it is used, that’s a violation of 

constraint 2. 

 

Figure 21 shows three loops from the SparseMatMult program that were not matched 

by the parallelizable loop pointcut. All three loops were not matched by the parallelizable 

loop pointcut because they violate constraint 2 from the parallelizable loop detection 

algorithm. In the figure, note the += compound assignment statement with the variable 

y[row[i]] at its left. When the aspect-oriented compiler processes a compound 

assignment statement, it generates a Jimple use statement for the variable at the left, 

followed by a Jimple definition statement for that same variable. Such a use-definition 

construct violates constraint 2, which limits the uses and definitions for local scalar 

variables. 

for (int i=min2; i<max2; i+=step2) 
{ 
  for (int j=1; j<Nm1; j++) 
  { 
    Gtotal += G[i][j]; 
  } 
} 

Figure 20.  Additional loops in the SOR program that the aspect-oriented compiler 

could not parallelize 
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Overcoming Problems Inherent in the Preexisting Software 

In trying to implement a parallelizable loop pointcut for an aspect-oriented compiler, 

a great deal of effort was required to overcome problems inherent in the preexisting 

software that this study used as a starting point. The problems involved behavior that was 

different from what this study’s researcher expected. The preexisting software was 

created primarily for research purposes, and, as such, documentation was relatively 

sparse, and the unexpected behavior wasn’t addressed in the documentation. 

As mentioned earlier, Sadat-Mohtasham’s transcut pointcut was designed to 

group pointcuts so they could be matched with a group of join points (Sadat-Mohtasham, 

2011). The transcut tool’s documentation described using an args pointcut in the normal 

aspect-oriented manner – in conjunction with other pointcuts that relied on argument 

values. For example, traditional aspect-oriented compilers use args pointcuts with (1) 

method and constructor calls to match their argument values, (2) exception handling code 

to match thrown exception objects, and (3) field assignments to match their assigned 

for (int reps=0; reps< SPARSE_NUM_ITER; reps++) 
{ 
  for (int i=0; i<nz; i++) 
  { 
    y[row[i]] += x[col[i]] * val[i]; 
  } 
} 
 . 
 . 
 . 

for (int i=0; i<nz; i++) 
{ 
  ytotal += y[row[i]]; 
} 

Figure 21.  Loops in the SparseMatMult program that the aspect-oriented compiler 

could not parallelize 
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values. The following code shows how a transcut pointcut successfully matches a 

method call (Math.sqrt) and the method call’s double argument value (x): 

 

With that example in mind, this study’s researcher used the transcut construct to 

group each of the three loop pointcuts (looped, loopPar, and outerLoopPar) with 

args pointcuts, but those attempts did not work. Specifically, the code shown in Figure 

22 did not work. The researcher tried to get that code to work by modifying the transcut 

tool’s underlying software, but failed in that attempt. The workaround was to move && 

args out of the transcut construct and into the advice construct, as shown in Figure 16. 

 

Another unexpected problem was the inability to weave new args values into a 

targeted loop’s min, max, and step values if those values are constants. For example, in 

transcut tc(double x) 
{ 
  pointcut test: 
    call (double Math.sqrt(double)) && args(x); 
} 

public aspect LoopParTestAspect 
{ 
  transcut tc(min, max, step) 
  {   
    pointcut loop: loopPar() && args(min, max, step); 
  } 
  
  void around(int min, int max, int step): 
    tc() 
  { 
    . 
    . 
    . 
  } // end around 
} // end aspect LoopParTestAspect 

Figure 22.  This pairing of a loop pointcut and an args pointcut does not work 
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the following loop heading, if there was an attempt to use the transcut and abc weaver to 

replace 0, 100, and 1 values with distinct values for separate threads, it wouldn’t work. 

for (int i=0; i<100; i++) 

The transcut and abc weaver software requires replaced values to be variables, not 

constants. The researcher tried to get constants to work by modifying the transcut and abc 

software, but failed in that attempt. The workaround was to refactor the targeted loops by 

assigning the constant values to variables above each loop and using the variables in the 

loop heading. For example: 

 

Another unexpected problem was that even after replacing loop heading constant 

values with variables, the min value did not get woven properly by the weaver. The min 

value didn’t get woven properly because the compiler generated Jimple bytecode with the 

loop’s index initialization statement appearing before the loop (which makes sense, since 

the initialization should not be repeated). In order to weave a value into the initialization 

statement (which is necessary for multi-threading), it was necessary to adjust the starting 

point for the loop’s weaving process. The starting point is controlled by the appearance of 

a Jimple NOP (no operation) statement, so the solution involved locating the loop’s 

initialization statement and inserting a NOP statement before it. 

 

int min = 0; 
int max = 100; 
int step = 1; 
for (int i=min; i<max; i+=step) 
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Software Repository 

The software used in this study can be found at 

http://captain.park.edu/jdean/nova/dissertation/parallelizableLoopAspectsSoftware.html. 

That web page provides a downloadable zip file that contains (1) the soot jar file that was 

available from the Sable research group at the time of this study’s implementation efforts, 

(2) abc jar files generated by the project’s build file, and (3) source code that was added 

to soot and abc to form the parallelizable loop pointcuts and their matching and weaving 

mechanisms. Originally, that added code came from the transcut study. The current study 

made modifications to that code and added new files. The following list shows the files 

that contain most of the new code and brief descriptions of those files. 

 

HashMutablePDG.java – 

Implements a program dependency graph for a given program. It uses the program 

dependency graph (PDG) to identify loops that are parallelizable. 

 

PDGTranscutMatcher.java – 

Uses the PDG to match pointcuts, including the new parallelizable loop pointcuts, to 

a program’s join points. 

 

RegionShadowMatch.java – 

Uses the PDG to match pointcuts in a given region. Implements the ability to retrieve 

args values for a loop join point. 

 

PDGRegion.java – 

Implements the functionality of a region in the program’s PDG. 

 

LoopedPDGNode.java – 

Implements a node in the PDG such that the node indicates the presence of a loop. 

 

LoopParPointcut.java – 

Implements the new parallelizable loop pointcut that matches parallelizable loops 

regardless of whether they are inside other loops. 
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OuterLoopParPointcut.java – 

Implements the new parallelizable loop pointcut that matches parallelizable loops 

that are not inside other loops. 

 

contextcut.parser – 

Defines the syntax for the parallelizable loop pointcuts. 

 

contextcut.ast – 

Defines the parallelizable loop pointcut expressions for the abc compiler’s abstract 

syntax tree. 

 

LoopParTest_SeriesWithoutAOP.java, LoopParTest_IDEAWithoutAOP.java, 

LoopParTest_SORWithoutAOP.java, LoopParTest_SparseMatMultWithoutAOP.java – 

Java Grande Forum benchmark suite of programs with embedded multi-threading 

code that parallelizes the parallelizable loops. 

 

LoopParTest_Series.java, LoopParTest_IDEA.java, LoopParTest_SOR.java, 

LoopParTest_SparseMatMult.java – 

Java Grande Forum benchmark suite of programs that relies on an aspect file and this 

study’s aspect-oriented compiler to parallelize the parallelizable loops. 

 

LoopParTest.java – 

An aspect file that matches parallelizable loops and replaces such loops with multi-

threading code that parallelizes the matched loops. In addition to the aspect code, this 

file also contains Java source code with numerous loops used for incremental testing 

the parallelizable loop detection algorithm. 

 

Summary 

The Results chapter started by describing each of the six constraints in this study’s 

parallelizable loop detection algorithm. The chapter then explained how transcut 

pointcuts and parallelizable loop pointcuts are used within an aspect file in order to check 

for parallelizable loops and weave the file’s multi-threading advice code into the core 

concerns of target Java programs. The chapter then described each of the four benchmark 

programs in terms of their general purpose. The chapter then showed that for each 

benchmark pair of programs, the aspect-oriented version produced the same or nearly the 

same results as the non-aspect-oriented version. Next, the chapter provided results that 



89 

 

 

 

showed that the new parallelizable loop pointcut was able to identify parallelizable loops 

in two of the four benchmark programs and weave multi-threading advice into the loops 

identified as parallelizable. That indicated that the multi-threading advice was applied 

correctly. For two of the benchmark programs, the parallelizable loop pointcut was 

unable to identify parallelizable loops, and the chapter explained why the parallelizable 

loop pointcut was unable to identify those parallelizable loops as parallelizable. Next, the 

chapter addressed several unexpected problems that arose due to problems inherent in the 

preexisting software that this study’s solution relies on. The chapter concluded by 

providing a description of the study’s software repository. 
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Chapter 5  

Conclusions, Implications, Recommendations, and Summary 

 

Conclusions 

This study’s primary goal was to implement a parallelizable loop pointcut, The 

study’s primary question was whether the parallelizable loop pointcut could be 

implemented correctly. The previous chapter’s results show that this study was able to 

implement such a loop pointcut correctly. 

The study’s stated goals were to (1) define a pointcut for loops that are safely 

parallelizable, (2) implement the defined parallelizable loop pointcut, and (3) modify an 

existing aspect-oriented compiler so that its matching and weaving mechanisms worked 

with the new parallelizable loop pointcut. The first goal, defining a parallelizable loop 

pointcut, was accomplished fully, with two loop pointcuts defined – loopPar, for 

matching all parallelizable loops, and outerLoopPar, for  matching all parallelizable 

loops that are not inside another loop. The second goal, implementing a parallelizable 

loop pointcut, was accomplished fully for both the loopPar and outerLoopPar 

pointcuts. The third goal, matching and weaving successfully with the new parallelizable 

loop pointcut, was accomplished, but to get the weaving process to work, refactoring 

target loops was necessary. Specifically, each target loop heading needs to use variables, 

not constants, for its min, max, and step values. And the variables need to be assigned 

their constant values above each loop. 
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A limitation of the study’s resulting aspect-oriented compiler is the heuristic nature 

of its parallelizable loop detection algorithm. If the algorithm identifies a loop as 

parallelizable, the study found that the loop was indeed parallelizable. But for some 

parallelizable loops, the algorithm is unable to identify them as being parallelizable. This 

limitation is due to the difficulty of solving the parallelizable-loop-detection problem 

completely. Determining whether a loop is parallelizable is known to be an NP-complete 

problem (Aho, Lam, Sethi, & Ullman, 2007; Kyriakopoulos & Psarris, 2004), so using a 

heuristic algorithm is reasonable and practical. 

Theoretically, this limitation of not being able to recognize some parallelizable loops 

as being parallelizable could be overcome by making the algorithm’s constraints less 

conservative. Here are the constraints for identifying a parallelizable loop: 

1. The loop must be trivial. 

2. Limited uses and definitions for local scalar variables. 

3. No field modifications. 

4. Safe method calls only. 

5. No array dependencies between different elements of an array. 

6. For each array reference definition, the array reference’s index expression must 

include the loop’s index variable. 

An example of how to make the algorithm more aggressive in terms of recognizing 

parallelizability for all parallelizable loops would be to omit constraint 3 and allow field 

modifications within target loops. But as explained earlier, allowing field modifications 

would require points-to analysis to ensure that the field modifications were safe for the 
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parallelization process. And points-to analysis can increase the algorithm’s complexity 

significantly (Wu et al., 2002). 

 

Implications 

This study contributed to the discipline of computer science by introducing 

parallelizable loop pointcuts to an aspect-oriented compiler. Prior to this study, several 

prototype solutions existed for loop pointcuts, but the solutions were relatively coarse. In 

particular, they were unable to differentiate between loops that are parallelizable and 

those that are not. In creating a loop pointcut that is able to identify loops that are 

parallelizable, this study’s pointcut should enable programmers to reduce the amount of 

time spent identifying loops that are parallelizable. 

Being able to identify parallelizable loops automatically, as part of an aspect-

oriented compiler’s matching and weaving processes, is particularly important because 

(1) manually identifying parallelizable loops is known to be a difficult problem and (2) 

aspectizing parallelized loops can lead to a reduction in code tangling and an increase in 

separation of concerns. 

By implementing an aspect pointcut that targets parallelizable loops, this study 

should make it easier for programmers to introduce safe parallelization to their programs 

and therefore should make it more likely that such parallelization will occur. The primary 

benefit of parallelizing loops is that it can lead to programs that execute faster. This 

speed-up is particularly evident when scientific computation “number crunching” is 

involved. 
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The study’s researcher had some difficulty finding enough useful, real-world 

programs that could be parallelized by the study’s parallelizable loop pointcut aspect-

oriented compiler. Two of the four chosen test programs from the Java Grande Forum 

Benchmark Suite were parallelized manually, but the loops were not recognized as 

parallelizable by the parallelizable loop pointcut. Theoretically, it should have been 

possible to refactor the programs so they use loops that are matched by the parallelizable 

loop pointcut. But such refactoring would defeat one of the main points of aspect-

oriented programming, which is to allow programs to exist in their natural form, without 

having to refactor them to accommodate concerns that are different from the programs’ 

primary concerns. 

 

Recommendations 

This study has reinforced the notion that abc, soot, and Jimple are useful tools for 

programming language and compiler research efforts. The abc compiler relies on soot for 

its underlying backend software. Soot converts back and forth between Java source code 

and Jimple and between Jimple and bytecode. Jimple was designed to overcome the 

inherent difficulty of analyzing and working with Java bytecode. One thing in particular 

that makes bytecode difficult to work with is its reliance on the stack to hold intermediate 

values. Jimple uses a three-address instruction set with no reliance on a stack, which 

makes a program’s flow of data easier to analyze (Lam et al., 2011). 

A drawback to using abc, soot, and Jimple is that their documentation is somewhat 

sparse. The best resources for help are the soot and Jimple API libraries and the soot and 

abc forums. 
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As noted earlier, a limitation of this study’s parallelizable loop pointcut aspect-

oriented compiler is that its parallelizable loop detection algorithm is conservative in its 

attempt to identify parallelizable loops. In particular, the array-dependency test is 

conservative. For example, it doesn’t allow for the possibility of skipping array accesses 

(e.g., odd and even array element accesses) (Aho et al., 2007). 

To improve the data dependence analysis, and make it more aggressive in terms of 

identifying parallelizable loops, future studies could use Aho, et al.’s data dependence 

analysis algorithm (2007), which is based on the work of (Maydan, Hennessy, & Lam, 

1991). The data dependence analysis algorithm was designed to solve a set of equations 

that define data dependencies between iterations of a loop. If the equations’ solution finds 

no data dependencies, then the loop is deemed safe for parallelization. The most 

straightforward way to solve the set of equations is with integer linear programming, but 

integer linear programming is an NP-complete problem (Aho et al., 2007). With that in 

mind, the data dependence analysis algorithm relies on heuristic techniques to solve the 

equations. 

The set of equations consists of equalities as well as inequalities. The data 

dependence analysis algorithm’s first step is to use the Greatest Common Divisor (GCD) 

test to check for an integer solution to the equality equations. If there is no such solution, 

then there are no data dependencies. If there is a solution, the solved-for values are 

plugged into the inequality equations, which make the inequalities easier to solve. 

The data dependence analysis algorithm’s second step is to use a battery of heuristic 

tests that work together to determine whether there is a solution to the inequality 
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equations. The heuristic tests are the independent-variables test, the acyclic test, the loop-

residue test, and the memorization test, and they are described in (Aho et al., 2007). 

 

Summary 

The primary goal of this study was to implement a parallelizable loop pointcut for an 

aspect-oriented compiler. To achieve that goal, the researcher designed and implemented 

an algorithm that determines whether a given loop is parallelizable. Determining whether 

a loop is parallelizable is known to be a very difficult problem (Aho et al., 2007; 

Kyriakopoulos & Psarris, 2004), so much of this study’s effort focused on that issue. A 

secondary goal of this study was to modify an existing aspect-oriented compiler so that 

its matching and weaving mechanisms worked with the new parallelizable loop pointcut. 

Being able to aspectize the parallelization of loops is particularly important because 

loop parallelization code is a heterogeneous concern, and heterogeneous concerns tend to 

have tangled code (Trifu & Kuttruff, 2005). By aspectizing the parallelization of loops, 

this study’s parallelizable loop pointcut has made it easier to reduce code tangling with 

loop parallelization code. And a reduction in code tangling can lead to improvements in 

maintenance, debugging, and code reuse (Eaddy & Aho, 2006). 

By implementing an aspect pointcut that targets parallelizable loops, this study has 

made it easier for programmers to introduce safe parallelization to their programs, and 

therefore should make it more likely that such parallelization occurs. The benefit of such 

parallelization is made clear by Amdahl’s Law, which states that the execution speed of a 

parallelized program is a function of f, the fraction of the program’s executed code that is 
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parallelized, and p, the number of processors employed to run the program (Aho et al., 

2007): 

1

(1− 𝑓) + (𝑓 𝑝⁄ )
 

The 1 – f term dominates the denominator, so as f increases, the speed increases as well. 

To a lesser degree, as p increases, the speed increases. According to (Aho et al., 2007), 

programs typically spend most of their time executing loops, so improving the 

performance of loops can have a significant impact on the overall performance of 

programs. 

This study’s focal construct, the loop, is more difficult to map to a pointcut(s) than 

other constructs because loops don’t have standard arguments (like method arguments) or 

identifiers that can be used to identify them (Harbulot & Gurd, 2006). If pointcut join 

points were identified at the source code level, then there would be a need for different 

pointcuts for while, do, and for loops. In that case, programmers’ personal preferences for 

loop types would impact which pointcuts were used, and the types of pointcuts used 

could impact the effectiveness of a particular program’s aspectization (Harbulot & Gurd, 

2006). To avoid such programmer-specific variability, this study identified pointcut join 

points at the bytecode level, rather than at the source code level. 

This study’s literature review found only a few studies that implemented loop 

pointcuts that matched at the bytecode level. One such example was Harbulot and Gurd’s 

LoopsAJ aspect-oriented compiler. It was particularly appealing as a possible starting 

point for this study because LoopsAJ differentiates between loops with different numbers 

of exit points, and that differentiation is known to be helpful when identifying loops that 

are parallelizable (Bik & Gannon, 1997; Harbulot & Gurd, 2006). 
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Another study that implemented loop pointcuts that matched at the bytecode level 

was the transcut study, conducted by (Sadat-Mohtasham, 2011). The current study found 

that the transcut tool was better to work with than the LoopsAJ tool. Transcut was built 

using abc, Soot, and Jimple. Abc is an aspect-oriented compiler whose hallmark is 

extensibility. Soot is a well-established software framework tool. Abc uses Soot to 

implement abc’s backend. The backend provides the analysis and code generation 

necessary for the matching and weaving operations inherent in abc’s aspect-oriented 

functionality. To help with the analysis and manipulation of Java programs, Soot converts 

Java target programs to Jimple code. Jimple has an instruction set that is in between high-

level Java source code and low-level bytecode in terms of its complexity. 

The transcut tool (and, consequently, this study) relies on a program dependency 

graph (PDG) to represent a program’s control dependencies, using nodes for program 

instructions and regions and edges for connections between them. With a PDG, a 

connection arrow goes from node A to node B if node B is dependent on node A. Such 

connections and dependencies are particularly important for identifying and analyzing 

loops. 

The study’s primary question was whether a parallelizable loop pointcut could be 

implemented correctly. This study provided results that showed that such a loop pointcut 

was implemented correctly. Specifically, the study showed that for a set of target 

benchmark programs, the parallelizable-loop-pointcut aspect-oriented compiler produced 

the same or nearly the same results as a non-aspect-oriented compiler. Also, the study 

showed that for the same set of target benchmark programs, the parallelizable-loop-

pointcut aspect-oriented compiler was able to identify parallelizable loops in two of the 
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four benchmark programs and weave multi-threading advice into the loops identified as 

parallelizable. The inability to identify the other two benchmark programs as 

parallelizable was due to the difficulty of solving the parallelizable-loop-detection 

problem completely. 

As part of the implementation process for the parallelizable loop pointcut, the study 

achieved a secondary outcome – the design and implementation of an algorithm that 

detects whether a loop is parallelizable. Such a detection process is known to be a 

difficult problem, so the algorithm was heuristic in nature. Another secondary outcome of 

this study was the determination of how transcut pointcuts and parallelizable loop 

pointcuts can be used within an aspect file to check for parallelizable loops and weave the 

file’s multi-threading advice code into the core concerns of target Java programs. This 

study provided an example aspect which illustrated that pointcut usage. 
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Appendix A  

Benchmark File LoopParTest_Series.java – a Target for Aspect-

Oriented Parallelization 

 

The following code is from the LoopParTest_Series.java file. It relies on an aspect file 

and this study’s aspect-oriented compiler to parallelize the parallelizable loops. The non-

aspect-oriented version of the file came from the Java Grande Forum benchmark suite of 

programs. 

 

/** This class runs the Series program using threads with AOP. 
 *  
 *  @author John Dean 
 *  March 3, 2013 
 */ 
 
import java.util.Random; 
 
public class LoopParTest_Series 
{ 
  public static void main(String[] args) 
  { 
    int arrayRows = 10000;  
    double[][] testArray; 
 
    testArray = new double[2][arrayRows]; 
 
    double omega;       // Fundamental frequency. 
 
    // Calculate the fourier series. Begin by calculating A[0]. 
    testArray[0][0] = 
      trapezoidIntegrate( 
        (double) 0.0, (double) 2.0, 1000, (double) 0.0, 0) / 
          (double) 2.0; 
 
    // Calculate the fundamental frequency. 
    // ( 2 * pi ) / period...and since the period 
    // is 2, omega is simply pi. 
 
    omega = (double) 3.1415926535897932; 
 
    int min = 1; 
    int max = arrayRows; 
    int step = 1; 
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    for (int i=min; i<max; i+=step) 
    { 
      if (i <= min) 
      { 
     System.out.println("min = " + min);   
        System.out.println("max = " + max);   
        System.out.println("step = " + step);   
      } 
    
      // Calculate A[i] terms. Note, once again, that we 
      // can ignore the 2/period term outside the integral 
      // since the period is 2 and the term cancels itself 
      // out. 
 
      // 1 = cosine term, 2 = sine term 
      testArray[0][i] = 
        trapezoidIntegrate( 
          (double) 0.0, (double) 2.0, 1000, omega * (double) i, 1); 
      testArray[1][i] = 
        trapezoidIntegrate( 
          (double) 0.0, (double) 2.0, 1000, omega * (double) i, 2); 
    } // end for 
 
    double ref[][] = 
      {{2.8729524964837996, 0.0}, 
       {1.1161046676147888, -1.8819691893398025}, 
       {0.34429060398168704, -1.1645642623320958}, 
       {0.15238898702519288, -0.8143461113044298}}; 
 
    for (int i=0; i<4; i++) 
    { 
      for (int j=0; j<2; j++) 
      { 
     double error = Math.abs(testArray[j][i] - ref[i][j]); 
     if (error > 1.0e-12) 
     { 
       System.out.println("Validation failed"); 
     } 
     else 
     { 
       System.out.println("Validation succeeded"); 
     } 
 
     System.out.println("coefficient " + j + "," + i); 
     System.out.println("Computed value = " + testArray[j][i]); 
     System.out.println("Reference value = " + ref[i][j]); 
      } // end for 
    } // end for 
  } // end main 
  
  //************************************************************* 
  
  // This method performs a simple trapezoid integration on the 
  // function (x+1)**x. 
  // x0,x1 set the lower and upper bounds of the integration. 
  // nsteps indicates # of trapezoidal sections. 
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  // omegan is the fundamental frequency times the series member #. 
  // select = 0 for the A[0] term, 1 for cosine terms, and 2 for 
  // sine terms. Returns the value. 
 
  private static double trapezoidIntegrate( 
    double x0, double x1, int nsteps, double omegan, int select) 
  { 
    double x;               // Independent variable. 
    double dx;              // Step size. 
    double rvalue;          // Return value. 
    double fn = 0.0;        // the function 
 
    // Initialize independent variable. 
    x = x0; 
 
    // Calculate stepsize. 
    dx = (x1 - x0) / (double) nsteps; 
 
    // Initialize the return value. 
    switch (select) 
    { 
      case 0: 
     fn = Math.pow(x0 + 1.0, x0); break; 
      case 1: 
     fn = Math.pow(x0 + 1.0, x0) * Math.cos(omegan * x0); break; 
      case 2: 
     fn = Math.pow(x0 + 1.0, x0) * Math.sin(omegan * x0); break; 
      default: 
     fn = 0.0; 
    } 
 
    rvalue = fn / (double) 2.0; 
    
    // Compute the other terms of the integral. 
    if (nsteps != 1) 
    { 
      --nsteps;               // Already done 1 step. 
      while (--nsteps > 0) 
      { 
        x += dx; 
        switch (select) 
     { 
       case 0: 
      fn = Math.pow(x + 1.0, x); break; 
       case 1: 
      fn = Math.pow(x + 1.0, x) * Math.cos(omegan * x); break; 
       case 2: 
      fn = Math.pow(x + 1.0, x) * Math.sin(omegan * x); break; 
       default: 
      fn = 0.0; 
        } 
        rvalue += fn; 
      } 
    } 
 
    switch (select) 
    { 



102 

 

 

 

      case 0: 
     fn = Math.pow(x1 + 1.0, x1); break; 
      case 1: 
     fn = Math.pow(x1 + 1.0, x1) * Math.cos(omegan * x1); break; 
      case 2: 
     fn = Math.pow(x1 + 1.0, x1) * Math.sin(omegan * x1); break; 
      default: 
     fn = 0.0; 
    } 
 
    rvalue = (rvalue + fn / 2.0) * dx; 
    return rvalue; 
  } // end trapezoidIntegrate 
} // end class LoopParTest_Series   
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Appendix B  

Benchmark File LoopParTest_IDEA.java – a Target for Aspect-

Oriented Parallelization 

 

The following code is from the LoopParTest_IDEA.java file. It relies on an aspect file 

and this study’s aspect-oriented compiler to parallelize the parallelizable loops. The non-

aspect-oriented version of the file came from the Java Grande Forum benchmark suite of 

programs. 

 

/** This class runs the IDEA encryption and decryption program using 
 * threads with AOP. 
 *  
 *  @author John Dean 
 *  March 9, 2013 
 */ 
 
import java.util.*; 
 
class LoopParTest_IDEA 
{ 
  int array_rows;  
 
  byte[] plain1;       // Buffer for plaintext data. 
  byte[] crypt1;       // Buffer for encrypted data. 
  byte[] plain2;       // Buffer for decrypted data. 
 
  short[] userkey;     // Key for encryption/decryption. 
  int[] Z;             // Encryption subkey (userkey derived). 
  int[] DK;            // Decryption subkey (userkey derived). 
 
  public static void main(String[] args) 
  { 
    LoopParTest_IDEA test; 
  
    test = new LoopParTest_IDEA(); 
    test.run(); 
  } // end main 
 
  public void run() 
  { 
    array_rows = 10000; 
 buildTestData(); 
 Do(); 
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  int min2 = 0; 
    int max2 = array_rows; 
    int step2 = 1; 
   
    for (int i=min2; i<max2; i+=step2) 
    { 
      if (i <= min2) 
      { 
        System.out.println("min2 = " + min2);   
        System.out.println("max2 = " + max2);   
        System.out.println("step2 = " + step2);   
      } 
      if (plain1[i] != plain2[i]) 
      { 
     System.out.println("Validation failed"); 
     System.out.println("Original Byte " + i + " = " + plain1[i]); 
     System.out.println("Encrypted Byte " + i + " = " + crypt1[i]);  
     System.out.println("Decrypted Byte " + i + " = " + plain2[i]); 
      } 
       
      // If the 1st byte is a success, display it.  
      else if (i <= min2) 
      { 
     System.out.println("1st original byte: " + plain1[i]); 
     System.out.println("1st encrypted byte: " + crypt1[i]); 
     System.out.println("1st decrypted byte: " + plain2[i]); 
      } 
    } // end for 
     
    System.out.println( 
      "IDEA encryption/decryption finished.\n" + 
      " If no \"validation failed\" messages displayed," + 
      " then validation succeeded."); 
  } // end run 
 
  void Do() 
  { 
 cipher_idea(plain1, crypt1, Z);     // Encrypt plain1. 
    cipher_idea(crypt1, plain2, DK);    // Decrypt. 
  } 
 
  void buildTestData() 
  { 
    plain1 = new byte [array_rows]; 
    crypt1 = new byte [array_rows]; 
    plain2 = new byte [array_rows]; 
 
    Random rndnum = new Random(136506717L); 
 
    userkey = new short [8];  // User key has 8 16-bit shorts. 
    Z = new int [52];         // Encryption subkey (user key derived). 
    DK = new int [52];        // Decryption subkey (user key derived). 
 
    for (int i = 0; i < 8; i++) 
    { 
      userkey[i] = (short) rndnum.nextInt(); 
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    } 
 
    calcEncryptKey(); 
    calcDecryptKey(); 
 
    // Fill plain1 with "text." 
    for (int i = 0; i < array_rows; i++) 
    { 
      plain1[i] = (byte) i;  
    } 
  } 
 
  private void calcEncryptKey() 
  { 
    int j;                       // Utility variable. 
 
    for (int i = 0; i < 52; i++) // Zero out the 52-int Z array. 
      Z[i] = 0; 
 
    for (int i = 0; i < 8; i++)  // First 8 subkeys are userkey. 
    { 
      Z[i] = userkey[i] & 0xffff;     // Convert "unsigned" 
                                        // short to int. 
    } 
 
    for (int i = 8; i < 52; i++) 
    { 
        j = i % 8; 
        if (j < 6) 
        { 
            Z[i] = ((Z[i -7]>>>9) | (Z[i-6]<<7)) // Shift and combine 
                    & 0xFFFF;                    // Just 16 bits. 
            continue;                            // Next iteration. 
        } 
 
        if (j == 6)    // Wrap to beginning for second chunk. 
        { 
            Z[i] = ((Z[i -7]>>>9) | (Z[i-14]<<7)) 
                    & 0xFFFF; 
            continue; 
        } 
 
         // j == 7 so wrap to beginning for both chunks. 
 
        Z[i] = ((Z[i -15]>>>9) | (Z[i-14]<<7)) & 0xFFFF; 
    } 
  } 
 
  private void calcDecryptKey() 
  { 
    int j, k;                // Index counters. 
    int t1, t2, t3;          // Temps to hold decrypt subkeys. 
 
    t1 = inv(Z[0]);          // Multiplicative inverse (mod x10001). 
    t2 = - Z[1] & 0xffff;    // Additive inverse, 2nd encrypt subkey. 
    t3 = - Z[2] & 0xffff;    // Additive inverse, 3rd encrypt subkey. 
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    DK[51] = inv(Z[3]);      // Multiplicative inverse (mod x10001). 
    DK[50] = t3; 
    DK[49] = t2; 
    DK[48] = t1; 
 
    j = 47;                  // Indices into temp and encrypt arrays. 
    k = 4; 
    for (int i = 0; i < 7; i++) 
    { 
        t1 = Z[k++]; 
        DK[j--] = Z[k++]; 
        DK[j--] = t1; 
        t1 = inv(Z[k++]); 
        t2 = -Z[k++] & 0xffff; 
        t3 = -Z[k++] & 0xffff; 
        DK[j--] = inv(Z[k++]); 
        DK[j--] = t2; 
        DK[j--] = t3; 
        DK[j--] = t1; 
    } 
 
    t1 = Z[k++]; 
    DK[j--] = Z[k++]; 
    DK[j--] = t1; 
    t1 = inv(Z[k++]); 
    t2 = -Z[k++] & 0xffff; 
    t3 = -Z[k++] & 0xffff; 
    DK[j--] = inv(Z[k++]); 
    DK[j--] = t3; 
    DK[j--] = t2; 
    DK[j--] = t1; 
  } 
 
  //************************************************************* 
 
  private void cipher_idea(byte [] text1, byte [] text2, int [] key) 
  { 
    int i1 = 0;                 // Index into first text array. 
    int i2 = 0;                 // Index into second text array. 
    int ik;                     // Index into key array. 
    int x1, x2, x3, x4, t1, t2; // Four "16-bit" blocks, two temps. 
    int r;                      // Eight rounds of processing. 
 
    int min1 = 0; 
    int max1 = text1.length; 
    int step1 = 8; 
 
    for (int i = min1; i < max1; i += step1) 
    { 
      if (i <= min1) 
      { 
        System.out.println("min1 = " + min1);   
        System.out.println("max1 = " + max1);   
        System.out.println("step1 = " + step1);   
      } 
 
      ik = 0;                 // Restart key index. 
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      r = 8;                  // Eight rounds of processing. 
 
      // Load eight plain1 bytes as four 16-bit "unsigned" integers. 
      // Masking with 0xff prevents sign extension with cast to int. 
 
      // The following compound assignment operators prevent the 
      // parallelizable loop pointcut from matching this loop. 
     
      x1 = text1[i1++] & 0xff;         // 16-bit x1 from 2 bytes, 
      x1 |= (text1[i1++] & 0xff) << 8; // assuming low-order byte 1st. 
      x2 = text1[i1++] & 0xff; 
      x2 |= (text1[i1++] & 0xff) << 8; 
      x3 = text1[i1++] & 0xff; 
      x3 |= (text1[i1++] & 0xff) << 8; 
      x4 = text1[i1++] & 0xff; 
      x4 |= (text1[i1++] & 0xff) << 8; 
 
      do 
      { 
        x1 = (int) ((long) x1 * key[ik++] % 0x10001L & 0xffff); 
        x2 = x2 + key[ik++] & 0xffff; 
        x3 = x3 + key[ik++] & 0xffff; 
        x4 = (int) ((long) x4 * key[ik++] % 0x10001L & 0xffff); 
 
        t2 = x1 ^ x3; 
        t2 = (int) ((long) t2 * key[ik++] % 0x10001L & 0xffff); 
        t1 = t2 + (x2 ^ x4) & 0xffff; 
        t1 = (int) ((long) t1 * key[ik++] % 0x10001L & 0xffff); 
        t2 = t1 + t2 & 0xffff; 
        x1 ^= t1; 
        x4 ^= t2; 
        t2 ^= x2; 
        x2 = x3 ^ t1; 
        x3 = t2;        // Results of x2 and x3 now swapped. 
      } while(--r != 0);  // Repeats seven more rounds. 
 
      x1 = (int) ((long) x1 * key[ik++] % 0x10001L & 0xffff); 
      x3 = x3 + key[ik++] & 0xffff; 
      x2 = x2 + key[ik++] & 0xffff; 
      x4 = (int) ((long) x4 * key[ik++] % 0x10001L & 0xffff); 
 
      text2[i2++] = (byte) x1; 
      text2[i2++] = (byte) (x1 >>> 8); 
      text2[i2++] = (byte) x3;            // x3 and x2 are switched 
      text2[i2++] = (byte) (x3 >>> 8);    // only in name. 
      text2[i2++] = (byte) x2; 
      text2[i2++] = (byte) (x2 >>> 8); 
      text2[i2++] = (byte) x4; 
      text2[i2++] = (byte) (x4 >>> 8); 
    }   // End for loop. 
  }   // End routine. 
 
  //************************************************************* 
 
  private int mul(int a, int b) throws ArithmeticException 
  { 
    long p;             // Large enough to catch 16-bit multiply 
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                        // without hitting sign bit. 
    if (a != 0) 
    { 
      if(b != 0) 
      { 
        p = (long) a * b; 
        b = (int) p & 0xFFFF;       // Lower 16 bits. 
        a = (int) p >>> 16;         // Upper 16 bits. 
 
        return (b - a + (b < a ? 1 : 0) & 0xFFFF); 
      } 
      else 
        return ((1 - a) & 0xFFFF);  // If b = 0, then same as 
                                    // 0x10001 - a. 
    } 
    else                            // If a = 0, then return 
      return((1 - b) & 0xFFFF);     // same as 0x10001 - b. 
  } 
 
  //************************************************************* 
 
  private int inv(int x) 
  { 
    int t0, t1; 
    int q, y; 
 
    if (x <= 1)         // Assumes positive x. 
      return(x);        // 0 and 1 are self-inverse. 
 
    t1 = 0x10001 / x;   // (2**16+1)/x; x is >= 2, so fits 16 bits. 
    y = 0x10001 % x; 
    if (y == 1) 
      return((1 - t1) & 0xFFFF); 
 
    t0 = 1; 
    do 
    { 
      q = x / y; 
      x = x % y; 
      t0 += q * t1; 
      if (x == 1) return(t0); 
      q = y / x; 
      y = y % x; 
      t1 += q * t0; 
    } while (y != 1); 
 
    return((1 - t1) & 0xFFFF); 
  } 
} // end LoopParTest_IDEA 
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Appendix C  

Benchmark File LoopParTest_SOR.java – a Target for Aspect-Oriented 

Parallelization 

 

The following code is from the LoopParTest_SOR.java file. It relies on an aspect file and 

this study’s aspect-oriented compiler to parallelize the parallelizable loops. The non-

aspect-oriented version of the file came from the Java Grande Forum benchmark suite of 

programs. 

 

/** This class runs the SOR program using threads with AOP. 
 *  
 *  @author John Dean 
 *  February 25, 2013 
 */ 
 
import java.util.Random; 
 
public class LoopParTest_SOR 
{ 
  private static final int JACOBI_NUM_ITER = 100; 
  private static final long RANDOM_SEED = 10101010; 
 
  public static void main(String[] args) 
  { 
    double Gtotal = 0.0; 
 
    double omega = 1.25; 
    double[][] G = randomMatrix(1000, 1000, new Random(RANDOM_SEED)); 
    int num_iterations = JACOBI_NUM_ITER; 
   
    int M = G.length; 
    int N = G[0].length; 
 
    double omega_over_four = omega * 0.25; 
    double one_minus_omega = 1.0 - omega; 
                  
    // update interior points 
    int Mm1 = M-1; 
    int Nm1 = N-1; 
 
    int min1 = 0; 
    int max1 = num_iterations; 
    int step1 = 1; 
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    for (int p=min1; p<max1; p+=step1) 
    { 
      if (p <= min1) 
      { 
     System.out.println("min1 = " + min1);   
     System.out.println("max1 = " + max1);   
     System.out.println("step1 = " + step1);   
      } 
 
      for (int i=1; i<Mm1; i++) 
      { 
     double [] Gi = G[i]; 
        double [] Gim1 = G[i-1]; 
        double [] Gip1 = G[i+1]; 
      
        for (int j=1; j<Nm1; j++) 
        { 
          Gi[j] = omega_over_four * (Gim1[j] + Gip1[j] + Gi[j-1] + 
   Gi[j+1]) + one_minus_omega * Gi[j]; 
        } 
      } 
    } 
     
    int min2 = 1; 
    int max2 = Nm1; 
    int step2 = 1; 
 
    for (int i=min2; i<max2; i+=step2) 
    { 
      if (i <= min2) 
      { 
        System.out.println("min2 = " + min2);   
        System.out.println("max2 = " + max2);   
        System.out.println("step2 = " + step2);   
      } 
 
      for (int j=1; j<Nm1; j++) 
      { 
        Gtotal += G[i][j]; 
      } 
    } 
 
    double dev = Math.abs(Gtotal - 0.4984199298207158); 
      
    if (dev > 1.0e-5 ) 
    { 
      System.out.println("Validation failed"); 
    } 
    else 
    { 
      System.out.println("Validation succeeded"); 
    } 
      
    System.out.println( 
      "Gtotal = " + Gtotal + ", deviation = " + dev); 
  } // end main 
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  //************************************************************* 
  
  private static double[][] randomMatrix(int M, int N, Random r) 
  { 
    double[][] A = new double[M][N]; 
 
    for (int i=0; i<N; i++) 
    { 
      for (int j=0; j<N; j++) 
      { 
        A[i][j] = r.nextDouble() * 1e-6; 
      }       
    } 
    return A; 
  } 
} // end class LoopParTest_SOR 
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Appendix D  

Benchmark File LoopParTest_ SparseMatMult.java – a Target for 

Aspect-Oriented Parallelization 

 

The following code is from the LoopParTest_SparseMatMult.java file. It relies on an 

aspect file and this study’s aspect-oriented compiler to parallelize the parallelizable loops. 

The non-aspect-oriented version of the file came from the Java Grande Forum benchmark 

suite of programs. 

 

/** This class runs the SparseMatMult program. 
 * It was created for the purpose of attempting to use AOP to add 
threads. 
 * 
 *  @author John Dean 
 *  February 27, 2013 
 */ 
 
import java.util.Random; 
 
public class LoopParTest_SparseMatMult 
{ 
  private double ytotal = 0.0; 
 
  private int size; 
  private static final long RANDOM_SEED = 10101010; 
 
  private static final int datasizes_M[] = {50000,100000,500000}; 
  private static final int datasizes_N[] = {50000,100000,500000}; 
  private static final int datasizes_nz[] = {250000,500000,2500000}; 
  private static final int SPARSE_NUM_ITER = 200; 
 
  Random r = new Random(RANDOM_SEED); 
 
  double [] x; 
  double [] y; 
  double [] val; 
  int [] col; 
  int [] row; 
 
  //****************************************************** 
 
  public void setSize(int size) 
  { 
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    this.size = size; 
  } 
 
  //****************************************************** 
 
  public void initialize() 
  { 
    x = randomVector(datasizes_N[size], r); 
    y = new double[datasizes_M[size]]; 
    val = new double[datasizes_nz[size]]; 
    col = new int[datasizes_nz[size]]; 
    row = new int[datasizes_nz[size]]; 
 
    for (int i=0; i<datasizes_nz[size]; i++) 
    { 
      // generate random row index (0, M-1) 
      row[i] = Math.abs(r.nextInt()) % datasizes_M[size]; 
 
      // generate random column index (0, N-1) 
      col[i] = Math.abs(r.nextInt()) % datasizes_N[size]; 
 
      val[i] = r.nextDouble(); 
    } 
  } // end initialize 
 
  //****************************************************** 
 
  private static double[] randomVector(int N, Random r) 
  { 
    double A[] = new double[N]; 
 
    for (int i=0; i<N; i++) 
    { 
      A[i] = r.nextDouble() * 1e-6; 
    } 
 
    return A; 
  } // end randomVector 
 
  //****************************************************** 
 
  public void test() 
  { 
 int nz = val.length; 
 
 int min1 = 0; 
 int max1 = SPARSE_NUM_ITER; 
 int step1 = 1; 
 
    for (int reps=min1; reps<max1; reps+=step1) 
 { 
   if (reps <= min1) 
   { 
     System.out.println("min1 = " + min1); 
     System.out.println("max1 = " + max1); 
     System.out.println("step1 = " + step1); 
   } 
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   for (int i=0; i<nz; i++) 
   { 
        y[row[i]] += x[col[i]] * val[i]; 
   } 
 } 
 
 int min2 = 0; 
 int max2 = nz; 
 int step2 = 1; 
 
    for (int i=min2; i<max2; i+=step2) 
    { 
      if (i <= min2) 
      { 
        System.out.println("min2 = " + min2); 
        System.out.println("max2 = " + max2); 
        System.out.println("step2 = " + step2); 
      } 
         
      ytotal += y[row[i]]; 
    } 
  } // end test 
 
  //****************************************************** 
 
  public void validate() 
  { 
    double refval[] = 
      {75.02484945753453,150.0130719633895,749.5245870753752}; 
    double dev = Math.abs(ytotal - refval[size]); 
 
    if (dev > 1.0e-10) 
    { 
      System.out.println("Validation failed"); 
    } 
    else 
    { 
      System.out.println("Validation succeeded"); 
    } 
 
    System.out.println( 
      "ytotal = " + ytotal + ", deviation = " + dev); 
  } // end validate 
   
  //****************************************************** 
 
  public static void main(String argv[]) 
  { 
    LoopParTest_SparseMatMult smm = new LoopParTest_SparseMatMult(); 
    smm.setSize(0); 
 smm.initialize(); 
 smm.test(); 
 smm.validate(); 
  } 
} // end LoopParTest_SparseMatMult   
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Appendix E  

LoopParTest.java – An Aspect File that Matches Parallelizable Loops 

 

The following code is from the LoopParTest.java file. It contains an aspect that matches 

parallelizable loops and replaces such loops with multi-threading code that parallelizes 

the matched loops. 

 

public class LoopParTest 
{ 
  public static void main(String[] args) 
  { 
    int min = 0; 
    int max = 10; 
    int step = 1; 
   
    for (int i=min; i<max; i+=step) 
    { 
      System.out.println("min = " + min);   
      System.out.println("max = " + max);   
      System.out.println("step = " + step);   
    } 
  } // end main 
} // end class LoopParTest 
 
//**************************************************** 
 
public aspect LoopParTestAspect 
{ 
  transcut tc() 
  {   
    // pointcut loop: outerLoopPar(); 
    pointcut loop: loopPar(); 
  } 
  
  void around(int min, int max, int step): 
    tc() && args(min, max, step) 
  { 
    int numThreads = 4; 
    Thread[] threads = new Thread[numThreads]; 
    
    for (int i=0; i<numThreads; i++) 
    { 
      // Compiler rule: 
      // Within an inner class, if a local variable is used but not 
      // declared, then it must be final. The scope of a variable 
      // declared within a loop is a single loop iteration. Thus,  
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      // final variables' values can be re-assigned (see below). 
 
      final int t_min = min + i; 
      final int t_max = max; 
      final int t_step = numThreads * step; 
      
      Runnable r = new Runnable() 
      { 
        public void run() 
        { 
          proceed(t_min, t_max, t_step); 
        } 
      }; 
      threads[i] = new Thread(r); 
    } 
    
    for (int i=0; i<numThreads; i++) 
    { 
      threads[i].start(); 
    } 
 
    try 
    { 
      for (int i=0; i<numThreads; i++) 
      { 
        threads[i].join(); 
      } 
    } 
    catch (InterruptedException e) 
    { } 
  } // end around 
} // end aspect LoopParTestAspect  
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