
C# Programming: From Problem Analysis to Program Design, 2nd ed. 11-1

Chapter 11

Debugging and Handling Exceptions

At a Glance

Instructor’s Manual Table of Contents

♦ Chapter Overview

♦ Chapter Objectives

♦ Instructor Notes

♦ Quick Quizzes

♦ Discussion Questions

♦ Projects to Assign

♦ Key Terms

C# Programming: From Problem Analysis to Program Design, 2nd ed. 11-2

Lecture Notes

Chapter Overview

This chapter introduces you to one of the tools available in Visual Studio, the Debugger, which

can be used to observe the run-time environment and locate logic errors. Using the Debugger,

you can stop program execution and inspect the values stored in memory.

This chapter also introduces a special type of error, called an exception. Exceptions are usually

associated with error conditions that cause abnormal terminations if they are not handled. The

try…catch…finally structured exception-handling techniques are demonstrated for dealing with

these unexpected conditions.

Chapter Objectives

In this chapter, students will:

• Learn about exceptions, including how they are thrown and caught

• Gain an understanding of the different types of errors that are found in programs

• Look at debugging methods available in Visual Studio

• Discover how the Debugger can be used to find run-time errors

• Become aware of and use exception-handling techniques to include try...catch...finally

clauses

• Explore the many exception classes and learn how to write and order multiple catch

clauses

Instructor Notes

ERRORS

Visual Studio integrated development environment (IDE) reports errors in your program as soon

as it is able to detect a problem. Compiler errors, associated with a language rule violation, are

the easiest to discover and eliminate.

Run-Time Errors

Sometimes a program stops during execution. Other times, output is produced, but the output

might not be correct all the time. Logic errors are normally associated with programs that run

but produce incorrect results.

Debugging in C#

Visual Studio has a Debugger that enables you to observe the run-time behavior of your

program and help locate logic errors. The Debugger lets you break, or halt, the execution of the

program to examine the code, evaluate variables in the program, and view the memory space

used by your application.

C# Programming: From Problem Analysis to Program Design, 2nd ed. 11-3

You can step through an application, checking the values of variables as each line is executed,

set breakpoints that when reached, cause the program to be suspended so you can examine, and

even change, the value of variables.

To use the Debugger, run your program by selecting the Start Debugging option from the

Debug menu.

Breakpoints

Breakpoints are markers that are placed in an application, indicating where the program should

halt execution. When the break occurs, the program and the Debugger are said to be in break

mode. To set a breakpoint, select Toggle Breakpoint from the Debug menu or use the F9

keyboard shortcut.

Continue

After reviewing the variables and expressions, pressing F5 or selecting Continue from the

Debug menu takes the program out of break mode and restores it to a run-time mode. If more

than one breakpoint is set, selecting Continue causes the program to execute from the halted

line until it reaches the second breakpoint.

Stepping Through Code

The Debug menu offers Step Into (F11), Step Over (F10), and Step Out (Shift+F11) commands

for stepping through code while you are in break mode. The Step Into command halts at the first

line of code inside a called method. The Step Over command executes the entire method called

before it halts. If you are executing statements inside a method and want to return to the calling

method, this third command, Step Out, is useful. Step Out causes the rest of the program

statements in the method to be executed and then returns control to the method that called it.

Watches

The Watch window lets you type in one or more variables or expressions that you want to

observe while the program is running. Unlike the Locals window, which shows all variables

currently in scope, you selectively identify the variables or expressions for the Watch window.

Quick Quiz

1. True or False: Run-time errors are detected by the compiler.

Answer: False

2. A ___________ is a marker that is placed in an application, indicating where the program

should halt execution.

 Answer: breakpoint

3. True or False: Unlike a Locals window, a Watch window can examine any variable.

Answer: True

4. Identify two of the three ways you can step through an application using the Debugger.

 Answer: Step Into and Step Over

C# Programming: From Problem Analysis to Program Design, 2nd ed. 11-4

EXCEPTIONS

Some circumstances are beyond the control of the programmer. Given perfect situations for

running applications, programs may perform beautifully. But, some circumstances are beyond

the control of the programmer, and unless provisions are made for handling exceptions, your

program may crash or produce erroneous results.

There are a number of things you can do to keep your program from crashing. For example,

you can include if statements that check values used as input to ensure the value is numeric,

prior to parsing or converting the string value to its numeric equivalent.

You may receive an error message indicating "Unhandled exception" during run time with the

entire application halting. Usually no errors are detected when the program is compiled. It is

only when the application runs that the program crashes and the message is displayed.

Sometimes the message will indicate what caused the problem. If the program is running

within Visual Studio, the problem code may be highlighted in yellow with buttons available to

stop, break or stop debugging, or continue.

Raising an Exception

When a program encounters an error that it cannot recover from, it raises or throws an

exception. Execution halts in the current method and the Common Language Runtime (CLR)

attempts to locate an exception handler to handle the exception. An exception handler is a

block of code that is executed when an exception occurs.

If an exception handler is found in the current method, control is transferred to that code. If no

method is found in the current method, that method is halted and the exception is thrown back

to the parent method to handle it. If more than two methods are used, the exception continues

to be thrown backwards until it reaches the topmost method. If none of the methods includes

code to handle the error, the entire application is halted. This can be very abrupt.

Bugs, Errors, and Exceptions

In some instances, you can use selection statements, such as if…else, to programmatically

prevent your programs from crashing. Bugs differ from exceptions in that they are normally

labeled “programmer mistakes” that should be caught and fixed before an application is

released. In addition to bugs, programs may experience errors because of user actions. These

actions may cause exceptions to be thrown. Entering the wrong type of data from the keyboard

is an example of a common user mistake.

A program starts execution in the Main() method. From Main(), it calls on other methods,

which can also call on other methods, and so on. When execution reaches the bottom of a given

method, control is returned to the method that called it. This continues until control eventually

returns to the end of the Main() method, where the program finishes its execution. A stack is

used to keep up with the execution chain. When an unhandled exception message is displayed

in Visual Studio, click the Details button to view a stack trace of methods with the method that

raised the exception listed first. A stack trace is a listing of all the methods that are in the

execution chain when the exception is thrown. If none of the methods listed in the stack trace

include code to handle the type of exception that is encountered, the unhandled exception

message is displayed and the program is halted.

C# Programming: From Problem Analysis to Program Design, 2nd ed. 11-5

Quick Quiz

1. True or False: Bugs are unexpected conditions that should be treated as exceptions.

Answer: False

2. A listing of all the methods that are in the execution chain when the exception is thrown is

called a ___________.

 Answer: stack trace

3. True or False: All program errors should be treated as exceptions.

Answer: False

4. How might you write program statements to keep division from zero from crashing your

program?

 Answer: Use the if…else statement to check the divisor. If it is zero, do not do the division.

EXCEPTION-HANDLING TECHNIQUES

If an event that creates a problem happens frequently, it is best to write program statements,

using conditional expressions, to check for the potential error and provide program instructions

for what to do when that problem is encountered. Exceptions are those events from which your

program would not be able to recover, such as attempting to read from a data file that does not

exist.

Try…Catch…Finally Blocks

The code that may create a problem is placed in the try block. The code to deal with the problem

(the exception handler) is placed in catch blocks, which are also called catch clauses. The code

that you want executed whether an exception is thrown or not is placed in the finally block.

More than one catch clause may be included. One is required. If you include an exception type

as part of the argument list, only exceptions that match the type listed are handled by that catch

clause. The finally clause is also optional.

Control is not returned back into the try block after an exception is thrown. The statement that

creates a problem in the try block is the last one tried in the try clause.

Generic Catches

If you omit the argument list with the catch clause, it is considered a generic catch. Any

exception that is thrown is handled by executing the code within that catch block. The problem

with using a generic catch is you are never quite sure what caused the exception to be thrown.

You can debug more easily if you know what caused the exception to be thrown.

Exception Object

When an exception is thrown, an object is created. The base class for exceptions is Exception; it

is part of the System namespace. Exception objects have properties and methods.

C# Programming: From Problem Analysis to Program Design, 2nd ed. 11-6

The catch clause may list an exception class name and an object identifier inside parentheses

following the catch keyword. In order to use any of the properties of the exception object that is

created, you must have an object name. Using the catch { } without an exception type does not

give you access to an object.

A property of the base class, Message, returns a string describing the exception. The Message

property, associated with the object name identified in the catch clause's parenthesized argument

list, is used inside the catch clause to display a message describing the exception. By specifying

more than one exception filter, you can write code in the catch clauses that is specific to the

particular exception thrown.

Quick Quiz

1. The ___________ property of the base exception class can be used to display a string

describing the exception.

 Answer: Message

2. True or False: The base class for all exception classes is Exception.

Answer: True

3. True or False: The argument to the catch clause is the exception class identifier and an

object of that type.

 Answer: True

4. What is the disadvantage of using generic catch clauses?

Answer: You may not know exactly what caused the exception to be thrown. No object is

available to display information about the exception.

EXCEPTION CLASSES

There are a number of different types of exceptions that can be thrown.

Derived Classes of the Base Exception Class

User-defined exceptions derive from ApplicationException exception class and system

supplied exceptions derive from the SystemException class.

SystemException Class

SystemException adds no functionality to classes. Except for its constructor, the

SystemException class has no additional properties or methods other than those derived from

the Exception and Object classes. Over 70 classes derive from the SystemException class.

Review Table 11-2 for a short list of some of the more common exceptions that are thrown. In

addition to these 70 classes, a number of other classes derive from these classes. For example,

one of the derived classes of the System.ArithmeticException class is the

System.DivideByZeroException class.

C# Programming: From Problem Analysis to Program Design, 2nd ed. 11-7

Filtering Multiple Exceptions

Multiple catch clauses can be included with a single try clause. If more than one is included,

the order of placement of these clauses is important. They should be placed from the most

specific to the most generic. Because all exception classes derive from the Exception class, if

you are including the Exception class, it should always be placed last.

Custom Exceptions

You can write your own exception classes. The only requirement is that custom exceptions

must derive from the ApplicationException class. Creating an exception class is no different

from creating any other class.

Throwing an Exception

An exception object is instantiated when “an exceptional condition occurs.” With user-defined

exceptions, the CLR does not throw the exception. Instead, the exception is thrown by the

program using the throw keyword. When the object is thrown in a method, the exception object

propagates back up the call chain, first stopping at the method that called it to see if a catch is

available to handle it.

Input Output (IO) Exceptions

Exceptions are extremely useful for applications that process or create stored data. The primary

exception class for files is System.IO.IOException. System.IO.IOException derives from the

SystemException class. An IO.IOException exception is thrown when a specified file or

directory is not found, if you attempt to read beyond the end of a file, or if there are problems

loading or accessing the contents of a file. Review Table 11-3 for a list of classes derived from

the IO.IOException class.

Quick Quiz

1. True or False: User-defined exceptions derive from SystemException class.

Answer: False

2. True or False: To filter more than one exception, include the most general first, followed by

the most specific.

Answer: True

3. The primary exception class for deal with input/output files is the ____________class.

Answer: System.IO.IOException

4. How does throwing an exception that derives from the SystemException class differ from

throwing one that derives from the ApplicationException class?

Answer: With user-defined exceptions derived from the ApplicationException, the CLR

does not throw the exception. Instead, the exception is thrown by the program using the

throw keyword. The CLR throws exceptions derived from the SystemException class.

C# Programming: From Problem Analysis to Program Design, 2nd ed. 11-8

PROGRAMMING EXAMPLE: ICW WATERDEPTH APPLICATION

This example demonstrates exception-handling techniques. Three classes are constructed for the

application. One of the classes is a programmer-defined custom exception class. It inherits

methods and properties from the ApplicationException class and is included to illustrate

throwing an exception using program statements. The graphical user interface enables the user

to enter location name, state where it is located, mile number, and four separate days of water

depth at low and high tide. When invalid data is entered, an exception is thrown.

Two additional classes are defined for the application. The business logic for the application is

separated from the presentation details. The class that defines the graphical user interface makes

use of a try...catch block with multiple catch clauses. This class is used to input the data. After

the data is retrieved, it is used to instantiate an object of the third class, the ShoalArea class.

Output from the application is displayed in a Windows dialog box.

Discussion Questions

Some interesting topics of discussion in this chapter include:

• How can you use the Debugger to help you desk check a solution?

• When should you write program statements such as if…else to deal with potential

problems versus writing try…catch…finally clauses?

• Why would you ever need to write a custom exception class?

Projects to Assign

 All of the Multiple Choice Exercises, Problems 1-20

 Odd numbered Short Answer Exercises, Problems 21 - 25

 Programming Exercises, Problems 2, 6, 8, and 9

Key Terms

 Breakpoint: selected line in your program that when reached, the program is

suspended or placed in break mode

 bug: normally labeled “programmer mistakes” that should be caught and fixed before

an application is released

 catch clause: code written to deal with an exception; also called the exception handler

or catch blocks

 checked exception: type of exception that must include exception handling techniques

if you use a specific construct

 debugging: methodical process of finding and reducing bugs or defects in a computer

program

 errors: problems created for the program due to user actions

 exception handler: a block of code that is executed when an exception occurs

C# Programming: From Problem Analysis to Program Design, 2nd ed. 11-9

 exceptions: unexpected conditions usually associated with error conditions that cause

abnormal terminations if they are not handled

 generic catch clause: any exception that is thrown is handled by executing the code

within that catch block

 logic error: form of run-time error normally associated with programs that run but

produce incorrect results.

 raise an exception: program encounters an error such as division by zero during run

time that the program cannot recover from

 stack trace: a listing of all the methods that are in the execution chain when an

exception is thrown

 Step Into command: halts at the first line of code inside a called method

 Step Out command: returns control to the method that called it when you are

executing statements inside a method

 Step Over command: executes the entire method called before it halts

 thrown back: when the current method does not contain an exception handler, that

method is halted, and the parent method that called the method gets the exception to see

if it can handle the exception

 throws an exception: program encounters an error such as division by zero during run

time that the program cannot recover from

 unhandled exception: when the CLR handles the exception by halting the application

