Chem 1120 Pretest 3 Sprin 2015

Multiple Choice

Identify the choice that best completes the statement or answers the question.

Chapter 19 Values

The following equilibrium constants will be useful for the problems in this chapter.

Substance	Constant	Substance	Constant
HCO ₂ H	$K_{\rm a} = 1.8 \times 10^{-4}$	H_2CO_3	$K_1 = 4.2 \times 10^{-7}$
HNO ₂	$K_{\rm a} = 4.5 \times 10^{-4}$		$K_2 = 4.8 \times 10^{-11}$
HOC1	$K_{\rm a} = 3.5 \times 10^{-8}$	$(COOH)_2$	$K_1 = 5.9 \times 10^{-2}$
HF	$K_{\rm a} = 7.2 \times 10^{-4}$		$K_2 = 6.4 \times 10^{-5}$
HCN	$K_{\rm a} = 4.0 \times 10^{-10}$	CH ₃ COOH	$K_{\rm a} = 1.8 \times 10^{-5}$
H_2SO_4	K_1 = very large	HOCN	$K_{\rm a} = 3.5 \times 10^{-4}$
	$K_2 = 1.2 \times 10^{-2}$	$C_6H_5NH_2$	$K_{\rm b} = 4.2 \times 10^{-10}$
HOBr	$K_a = 2.5 \times 10^{-9}$	NH ₃	$K_{\rm b} = 1.8 \times 10^{-5}$

- 1. A(n) _____ solution contains a conjugate acid-base pair with both the acid and the base in reasonable concentrations.
 - a. saturated
 - b. electrolytic
 - c. buffer
 - d. titrated
 - e. equivalence
 - 2. Calculate the $[H_3O^+]$ of a solution that is 0.20 *M* in HF and 0.10 *M* in NaF.
 - a. $3.2 \times 10^{-4} M$
 - b. $4.0 \times 10^{-6} M$
 - c. $1.4 \times 10^{-3} M$
 - d. $6.3 \times 10^{-5} M$
 - e. $5.0 \times 10^{-3} M$
- 3. Which one of the following combinations **cannot** produce a buffer solution?
 - a. HNO₂ and NaNO₂
 - b. HCN and NaCN
 - c. HClO₄ and NaClO₄
 - d. NH_3 and $(NH_4)_2SO_4$
 - e. NH_3 and NH_4Br
 - 4. If 0.40 g of solid NaOH is added to 1.0 liter of a buffer solution that is 0.10 M in CH₃COOH and 0.10 M in NaCH₃COO, how will the pH of the solution change?
 - a. The pH increases from 4.74 to 4.83.
 - b. The pH decreases from 7.00 to 4.83.
 - c. The pH does not change.
 - d. The pH decreases from 4.74 to 4.65.
 - e. The pH increases from 4.74 to 7.00.

- 5. It is desired to buffer a solution at pH = 4.30. What molar ratio of CH_3COOH to NaCH₃COO should be used?
 - a. 1.2/1
 - b. 0.8/1
 - c. 0.12/1
 - d. 2.8/1
 - e. 6.2/1
- 6. The nonionized form of an acid indicator is yellow, and its anion is blue. The K_a of this indicator is 10^{-6} . What will be the approximate pH range over which this indicator changes color?
 - a. 3–5
 - b. 4–6
 - c. 5–7
 - d. 8–10
 - e. 9–11

ID: A

- 8. Which of the following solubility product expressions is **incorrect**?
 - a. Cu_2S , $K_{sp} = [Cu^+][S^{2-}]$
 - b. $\operatorname{Co}_2 S_3, K_{\mathrm{sp}} = [\operatorname{Co}^{3+}]^2 [\operatorname{S}^{2-}]^3$
 - c. $Ni(CN)_2, K_{sp} = [Ni^{2+}][CN^{-}]^2$
 - d. AuI, $K_{sp} = [Au^+][I^-]$
 - e. $Cr(OH)_3, K_{sp} = [Cr^{3+}][OH^{-}]^3$

- At 25°C, 1.4 × 10⁻⁵ mole of Cd(OH)₂ dissolves to give 1.0 liter of saturated aqueous solution. What is the solubility product for Cd(OH)₂?
 - a. 1.7×10^{-5}
 - b. 2.9×10^{-10}
 - c. 1.1×10^{-14}
 - d. 5.8×10^{-15}
 - e. 4.1×10^{-12}
- 10. Which of the following has the <u>lowest</u> molar solubility in water at 25°C?
 - a. Ni(CN)₂, $K_{\rm sp} = 3.0 \times 10^{-23}$
 - b. ZnS, $K_{\rm sp} = 1.1 \times 10^{-21}$
 - c. PbS, $K_{\rm sp} = 8.4 \times 10^{-28}$
 - d. $Co_3(AsO_4)_2, K_{sp} = 7.6 \times 10^{-29}$
 - e. CaF₂, $K_{\rm sp} = 3.9 \times 10^{-16}$
 - 11. Calculate the concentration of carbonate ion in a saturated solution of calcium carbonate to which calcium chloride has been added until $[Ca^{2+}] = 0.015 M$ at 25°C. K_{sp} for CaCO₃ = 2.8×10^{-9} .
 - a. $4.2 \times 10^{-11} M$
 - b. $1.9 \times 10^{-7} M$
 - c. $1.2 \times 10^{-5} M$
 - d. $6.3 \times 10^{-13} M$
 - e. $1.5 \times 10^{-2} M$
 - 12. A solution contains 0.05 M Au⁺, 0.05 M Cu⁺, and 0.05 M Ag⁺ ions. When solid NaCl is added to the solution, what is the **order** in which the chloride salts will begin to precipitate? $K_{sp(AgCl)} = 1.8 \times 10^{-10}$, $K_{sp(AuCl)} = 2.0 \times 10^{-13}$, $K_{sp(CuCl)} = 1.9 \times 10^{-7}$
 - a. AuCl > AgCl > CuCl
 - b. AuCl > AgCl > NaCl
 - c. AgCl > CuCl > AuCl
 - d. CuCl > AgCl > AuCl
 - e. NaCl > CuCl > AgCl
 - 13. A solution is 0.0010 *M* in both Ag⁺ and Au⁺. Some solid NaCl is added slowly until the second solid compound just begins to precipitate. What is the concentration of Au⁺ ions at this point? K_{sp} for AgCl = 1.8 × 10⁻¹⁰ and for AuCl is 2.0 × 10⁻¹³.
 - a. $2.0 \times 10^{-10} M$
 - b. $4.5 \times 10^{-7} M$
 - c. $1.8 \times 10^{-7} M$
 - d. $3.0 \times 10^{-4} M$
 - e. $1.1 \times 10^{-6} M$

- 14. Solid silver nitrate is added slowly to a solution that is 0.0010 *M* in sodium chloride and 0.0010 *M* in sodium bromide. What % of the bromide ions remain in solution, i.e., unprecipitated, just before silver chloride begins to precipitate? K_{sp} for AgCl = 1.8×10^{-10} , K_{sp} for AgBr = 3.3×10^{-13}
 - a. 0.18%
 - b. 0.018%
 - c. 0.0010%
 - d. 0.00010%
 - e. 0.0018%
 - 15. If a solution is to be made 0.010 M in Mg(NO₃)₂ and 0.20 M in aqueous NH₃, how many mol/L of NH₄Cl are required to prevent the precipitation of Mg(OH)₂ at 25°C? The K_b for aqueous NH₃ is 1.8×10^{-5} and the K_{sp} for Mg(OH)₂ is 1.5×10^{-11} .
 - a. 0.054
 - b. 0.56
 - c. 0.092
 - d. 1.8
 - e. 0.86
 - 16. In **any** electrochemical cell, the cathode is **always** _____
 - a. the positive electrode.
 - b. the negative electrode.
 - c. the electrode at which some species gains electrons.
 - d. the electrode at which some species loses electrons.
 - e. the electrode at which oxidation occurs.
 - 17. The electrolysis of an aqueous sodium chloride solution using inert electrodes produces gaseous chlorine at one electrode. At the other electrode gaseous hydrogen is produced, and the solution becomes basic around the electrode. Which of the following is the equation for the cathode half-reaction in this electrolytic cell?
 - a. $2Cl^- \rightarrow Cl_2 + 2e^-$
 - b. $2H_2O + 2e^- \rightarrow H_2 + 2OH^-$
 - c. $Cl_2 + 2e^- \rightarrow 2Cl^-$
 - d. $H_2 + 2OH^- \rightarrow 2H_2O + 2e^-$
 - e. none of these
 - 18. An aqueous copper(II) sulfate solution is electrolyzed for 45 minutes. A 3.2 ampere current is used. What mass of copper is produced?
 - a. 0.95 g
 - b. 1.9 g
 - c. 2.8 g
 - d. 4.6 g
 - e. 5.5 g

Chapter 21 Values

A table of standard electrode potentials is necessary for many of the following question(s).

- 19. Which of the following shorthand galvanic cell notations for the zinc copper standard cell is correct? $Cu^{2+} + Zn \rightarrow Zn^{2+} + Cu$
 - a. $Cu^{2+} | Cu || Zn | Zn^{2+}$
 - b. $Cu^{2+} | Cu || Cu || Cu^{2+}$
 - c. $Cu^{2+} | 2e^{-} | | 2e^{-} | Zn$
 - d. $Zn | Zn^{2+} || Cu^{2+} | Cu$
 - e. Zn | Cu²⁺ || Zn²⁺ | Cu
 - 20. A voltaic cell is constructed by immersing a strip of copper metal in $1.0 M \text{ CuSO}_4$ solution and a strip of aluminum in $0.50 M \text{ Al}_2(\text{SO}_4)_3$ solution. A wire and a salt bridge complete the circuit. The aluminum strip loses mass, and the concentration of aluminum ions in the solution increases. The copper electrode gains mass, and the concentration of copper ions decreases. What is the cell potential?
 - a. +1.28 V
 - b. +2.00 V
 - c. +2.34 V
 - d. +2.50 V
 - e. +3.66 V

21. Calculate the cell potential for the following voltaic cell. Cr|Cr³⁺ $(1.0 \times 10^{-2} M)$ ||Co²⁺ $(1.0 \times 10^{-5} M)$ |Co

- a. +0.35 V
- b. +0.91 V
- c. +0.57 V
- d. +0.28 V
- e. -1.13 V
- 22. What is ΔG^0 at 25°C for the reaction below? ($F = 96,500 \text{ J/V} \bullet \text{mol } e^-$) Cu²⁺ + Cd \rightarrow Cu + Cd²⁺
 - a. -71.1 kJ
 - b. -143 kJ
 - c. 597 kJ
 - d. 193 kJ
 - e. +71.1 kJ
- 23. The equilibrium constant, at 25°C, for the reaction below is 1.99×10^{20} . What is E^0 for this reaction? NO₃⁻ + 3H⁺ + Cu \rightarrow Cu²⁺ + HNO₂ + H₂O
 - a. 0.090 V
 - b. 0.60 V
 - c. 0.88 V
 - d. 1.05 V
 - e. 0.21 V

24. What is the molecular formula for heptane?

- a. C_7H_{14}
- b. C_7H_{12}
- c. C₉H₁₈
- $d.\quad C_7H_{16}$
- e. C₉H₂₀

25. Which of the following is the correct formula for 2-methyl-1-butene?

e. ether

Chem 1120 Pretest 3 Sprin 2015 Answer Section

MULTIPLE CHOICE

1.	ANS:	С	PTS:	1	TOP:	The Common Ion Effect and Buffer Solutions	
2.	ANS:	С	PTS:	1	TOP:	The Common Ion Effect and Buffer Solutions	
3.	ANS:	С	PTS:	1	TOP:	Buffering Action	
4.	ANS:	А	PTS:	1	TOP:	Buffering Action	
5.	ANS:	D	PTS:	1	DIF:	Harder Question	
	TOP:	Preparation of	Buffer	Solutions			
6.	ANS:	С	PTS:	1	TOP:	Acid-Base Indicators	
7.	ANS:	В	PTS:	1	TOP:	Strong Acid/Strong Base Titration Curves	
8.	ANS:	А	PTS:	1	TOP:	Solubility Product Constants	
9.	ANS:	С	PTS:	1	TOP:	Determination of Solubility Product Constants	
10.	ANS:	С	PTS:	1	TOP:	Uses of Solubility Product Constants	
11.	ANS:	В	PTS:	1	TOP:	Uses of Solubility Product Constants	
12.	ANS:	А	PTS:	1	TOP:	Fractional Precipitation	
13.	ANS:	E	PTS:	1	TOP:	Fractional Precipitation	
14.	ANS:	А	PTS:	1	TOP:	Fractional Precipitation	
15.	ANS:	С	PTS:	1			
	TOP:	Simultaneous Equilibria Involving Slightly Soluble Compounds					
16.	ANS:	С	PTS:	1	TOP:	Electrodes	
17.	ANS:	В	PTS:	1	TOP:	The Electrolysis of Aqueous Salt Solutions	
18.	ANS:	С	PTS:	1			
	TOP:	Counting Electrons: Coulometry and Faraday's Law of Electrolysis					
19.	ANS:	D	PTS:	1	TOP:	The Zinc – Copper Cell	
20.	ANS:	В	PTS:	1	TOP:	Uses of Standard Electrode Potentials	
21.	ANS:	А	PTS:	1	TOP:	The Nernst Equation	
22.	ANS:	В	PTS:	1	TOP:	The Relationship of E°cell to Delta G° and K	
23.	ANS:	В	PTS:	1	TOP:	The Relationship of E°cell to Delta G° and K	
24.	ANS:	D	PTS:	1	TOP:	Alkanes and Cycloalkanes	
25.	ANS:	А	PTS:	1	TOP:	Alkenes	
26.	ANS:	В	PTS:	1	TOP:	Aldehydes and Ketones	