Outline:

- review of HW1.
- when does a dynamical system have a unique solution?
- state-space and transfer-function representations of LTI systems.
- state-space canonical forms.
- matrix computation: determinants.

1 Fundamental Theorem of Differential Equations

Knowing the existance of a solution is the first step towards getting the answer. For ME 232, the following theorem addresses the question of whether a dynamical system has a unique solution or not.

Theorem 1. Consider $\dot{x}=f(x, t), x\left(t_{0}\right)=x_{0}$, with:

- $f(x, t)$ piecewise continuous in t
- $f(x, t)$ Lipschitz continuous in x
then there exists a unique function of time $\phi(\cdot): \mathbb{R}_{+} \rightarrow \mathbb{R}^{n}$ which is continuous almost everywhere and satisfies
- $\phi\left(t_{0}\right)=x_{0}$
- $\dot{\phi}(t)=f(\phi(t), t), \forall t \in \mathbb{R}_{+} \backslash D$, where D is the set of discontinuity points for f as a function of t.

Note:

- piecewise continuous: continuous except at finite points of discontinuity.
- exercise: are these functions piecewise continuous?- $f(t)=|t|$ and

$$
f(x, t)= \begin{cases}A_{1} x, & t \leq t_{1} \\ A_{2} x, & t>t_{1}\end{cases}
$$

- Lipschitz continuous: if $f(x, t)$ satisfies the following cone-shape constraint:

$$
\|f(x, t)-f(y, t)\| \leq k(t)\|x-y\|
$$

where $k(t)$ is piecewise continuous.

- exercise: is $f(x)=A x+B$ Lipschitz continuous?

2 State-space and transfer-function descriptions of LTI systems

- why are we learning them? [history of control engineering and connections with future courses]
- relations between the two:

Table 1: Relations between state-space (ss) and transfer-function (tf) system representations

ss	tf
$\dot{x}(t)=A x(t)+B u(t), y(t)=C x(t)+D u(t)$	$G(s)=C(s I-A)^{-1} B+D$
$x(k+1)=A x(k)+B u(k), y(k)=C x(k)+D u(k)$	$G(z)=C(z I-A)^{-1} B+D$

3 Canonical forms

$$
G=\frac{b_{2} s^{2}+b_{1} s+b_{0}}{s^{3}+a_{2} s^{2}+a_{1} s+a_{0}}
$$

- Controllable canonical form

$$
A=\left[\begin{array}{ccc}
& 1 & \\
-a_{0} & -a_{1} & -a_{2}
\end{array}\right], B=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right], C=\left[\begin{array}{lll}
b_{0} & b_{1} & b_{2}
\end{array}\right], D=0
$$

- understanding the formula: the transfer function is given by $G(s)=C(s I-A)^{-1} B+D$, where the poles of the system come from $\operatorname{det}(s I-A)=0$. Suppose we don't know the order of a_{0}, a_{1} and a_{2} in the last row of A, and use \star as a temporary representation in A. Looking at

$$
\operatorname{det}(s I-A)=\operatorname{det}\left[\begin{array}{ccc}
s & -1 & \\
& s & -1 \\
\star & \star & s+\star
\end{array}\right]
$$

we see that the only way for s^{2} to appear is from the term $s^{2}(s+\star)$ in the determinant computation. Hence the location of $-a_{2}$ has to be at the bottom right corner of A.

- exercise: write down the controllable canonical form for the following systems
* $G(s)=\frac{s^{2}+1}{s^{3}+2 s+10}$
* $G(s)=\frac{b_{0} s^{2}+b_{1} s+b_{2}}{s^{3}+a_{0} s^{2}+a_{1} s+a_{2}}$
- Observable canonical form

$$
A=\left[\begin{array}{lll}
-a_{2} & 1 & \\
-a_{1} & & 1 \\
-a_{0} & &
\end{array}\right], B=\left[\begin{array}{l}
b_{2} \\
b_{1} \\
b_{0}
\end{array}\right], C=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right], D=0
$$

- Diagonal form: for systems described by

$$
G(s)=\frac{k_{1}}{s-p_{1}}+\frac{k_{2}}{s-p_{2}}+\frac{k_{3}}{s-p_{3}}
$$

one state-space form is

$$
A=\left[\begin{array}{lll}
p_{1} & & \\
& p_{2} & \\
& & p_{3}
\end{array}\right], B=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], C=\left[\begin{array}{lll}
k_{1} & k_{2} & k_{3}
\end{array}\right], D=0
$$

- Jordan form: if

$$
G(s)=\frac{k_{1}}{s-p_{1}}+\frac{k_{2}}{\left(s-p_{m}\right)^{2}}+\frac{k_{3}}{s-p_{m}}
$$

then one state-space form of the system is

$$
A=\left[\begin{array}{ccc}
p_{1} & & \\
& p_{m} & 1 \\
& & p_{m}
\end{array}\right], B=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], C=\left[\begin{array}{lll}
k_{1} & k_{2} & k_{3}
\end{array}\right], D=0
$$

- understanding the formula: why $B=[1,0,1]^{T}$? What if

$$
G(s)=\frac{k_{1}}{\left(s-p_{1}\right)^{2}}+\frac{k_{1}}{s-p_{1}}+\frac{k_{2}}{\left(s-p_{m}\right)^{2}}+\frac{k_{3}}{s-p_{m}}
$$

- Modified Jordan form: this is for systems with complex poles:

$$
G(s)=\frac{k_{1}}{s-p_{1}}+\frac{\alpha s+\beta}{(s-\sigma)^{2}+\omega^{2}}
$$

we have

$$
A=\left[\begin{array}{ccc}
p_{1} & & \\
& \sigma & \omega \\
& -\omega & \sigma
\end{array}\right], B=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], C=\left[\begin{array}{lll}
k_{1} & k_{2} & k_{3}
\end{array}\right], D=0
$$

4 Review and preparation for the next few lectures

4.1 Computing determinants

- 2×2 matrices:

$$
\operatorname{det}\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=a d-b c
$$

- 3×3 matrices:

$$
\begin{aligned}
\operatorname{det}\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & k
\end{array}\right] & =a \operatorname{det}\left[\begin{array}{ll}
e & f \\
h & k
\end{array}\right]-b \operatorname{det}\left[\begin{array}{ll}
d & f \\
g & k
\end{array}\right]+c \operatorname{det}\left[\begin{array}{ll}
d & e \\
g & h
\end{array}\right] \\
& =a e k+b f g+c d h-g e c-b d k-a h f
\end{aligned}
$$

