)	First Job	Come F Arrival	CPU Cycles) <u>Finish</u>	Wait	Turnaround
	А	0	10			
	В	1	2			
	С	2	3			
	D	3	1			
		4	5			
	GAN	TT CHAF	RT:	A	VG WAIT:	AVG TURN:

4-2) Shortest Job Next (SJN)

Job	<u>Arrival</u> C	CPU Cycles	<u>Finish</u>	<u>Wait</u>	Turnaround
А	0	10			
В	1	2			
С	2	3			
D	3	1			
E	4	5			

GANTT CHART:	AVG WAIT:	AVG TURN:

Cosc 2610 Chapter 4) OPERATING	SYSTEMS SS MANAGEMENT	Homework #	3 Name	:
4-3) Shor Jol	rtest Rema b <u>Arrival</u>	ining Time (SRT) <u>CPU Cycles</u>	<u>Finish</u>	<u>Wait</u>	Turnaround
А	N 0	10			
В	3 1	2			
С	; 2	3			
D) 3	1			
E	4	5			
GA	ANTT CHAR	RT:	AVG V	VAIT:	AVG TURN:
Г					

4-4)	RR v Job	vith time Arrival	e quantum of 2 CPU Cycles	<u>Finish</u>	<u>Wait</u>	Turnaround
	А	0	10			
	В	1	2			
	С	2	3			
	D	3	1			
	Е	4	5			

GANTT CHART:	AVG WAIT:	AVG TURN:

3.

- A) Is this system deadlocked?
- B) Are there any blocked processes?
- C) What is the resulting graph after reduction by P1? Draw in workspace below.
- D) What is the resulting graph after reduction by P2? Draw in workspace below.
- E) Both P1 and P2 have requested R2:

i.What is the status of the system if P2's request is granted before P1's?

ii.What is the status of the system if P1's request is granted before P2's?

Draw C

Draw D

Homework #3

NAME ____

5-2) Consider the following directed resource graph:

- C) Three process P1, P2, and & P3 are requesting resources from R2:
 - i. Which requests would you satisfy to minimize the number of processes involved in the deadlock?
 - ii. Which requests would you satisfy to maximize the number of processes involved in the deadlock?
- D) Can the graph be reduced partially or totally?.
- E) Can the deadlock be resolved without selecting a victim?

Homework #3

NAME _____

5-3) Assume all devices are of the same type. For each of the following

- determine the remaining needs for each job
- determine whether each of the systems is safe or unsafe
- If system is in a safe state, list the sequence of requests and releases that will make it possible for all process to run to completion.
- If the system is in an unsafe state, show how it's possible for deadlock to occur.

A) System number 1 has 12 devices; only 1 is available.

Job Number		Devices Allocated	Maximum Required	Remaining Needs
	1	5	6	
	2	4	7	
	3	2	6	
	4	0	2	

SAFE or UNSAFE?

B) System number 2 has 14 devices; only 2 are available.

Job Number	Devices Allocated	Maximum Required	Remaining Needs
1	5	8	
2	3	9	
3	4	8	

SAFE or UNSAFE?

C) System number 3 has 12 devices; only 2 are available.

Job Number	Devices Allocated	Maximum Required	Remaining Needs
1	5	8	
2	4	6	
3	1	4	

SAFE or UNSAFE?