
UCB Math 228A, Fall 2009: Problem Set 2

Due September 25

1. Determine the region of absolute stability for the θ–method

un+1 = un + hf(tn + θh, (1 − θ)un + θun+1)

for enough θ ∈ [0, 1] to make the general picture clear. Note that this method includes explicit
Euler, the trapezoidal method, and implicit Euler as special cases. For which θ ∈ [0, 1] is the
method A–stable? How about A(α)–stable?

2. Show that the difference method

un+1 = un + a1f(tn, un) + a2f(tn + α2, un + δ2f(tn, un)), (1)

cannot have local truncation error O(h4) for any choice of constants a1, a2, α2, and δ2.

3. Consider the ODE

u′(t) = λ(u − cos t) − sin t, u(0) = u0, (2)

with the exact solution

u(t) = eλt(u0 − 1) + cos t. (3)

Write a function p2 3(lambda,u0,h) that solves (2) for 0 ≤ t ≤ 3, using the two methods

Backward Euler: un+1 = un + hf(tn+1, un+1),

Trapezoidal Method: un+1 = un +
h

2
(f(tn, un) + f(tn+1, un+1)).

The code should produce a plot of the two computed solutions and the true solution. Run
your code with λ = −106, u0 = 1.5, and stepsize h = 0.1, and explain the results in terms of
R(z) for the two methods.

4. a) Write a function p2 4a that plots the stability regions of the 6-step BDF method:

147un+6 − 360un+5 + 450un+4 − 400un+3 + 225un+2 − 72un+1 + 10un = 60hf(un+6),
(4)

and the TR-BDF2 method:

k1 = un +
h

4
(f(un) + f(k1)), (5)

un+1 =
1

3
(4k1 − un + hf(un+1)). (6)

b) Write a function p2 4b(n) that computes the matrices A produced by the scripts heat1d
and conv1d on the course web page for a given value of n, and plots their eigenvalues in
the complex plane with axis equal. For n = 100, determine which of the two methods
above is appropriate for which matrix (BDF6 is more accurate, so use it if possible).

c) Write two functions heat1dimpl(n,dt) and conv1dimpl(n,dt) that solve the original
problems using the new methods and the given timestep. Use the final times T = 0.2
and T = 1.0, respectively, and plot the solution at the final time. Set all the six starting
solutions in BDF6 equal to the initial condition, i.e., u1 = u2 = · · · = u5 = u0. Test the
methods using the timesteps ∆t = 10−3 for the heat equation and ∆t = 10−2 for the
convection equation.

Turn page −→



5. The double spring pendulum in the figure consists of two par-
ticles of mass m connected by linear springs. The force in each
spring is given by F = kspr(L−L0), where kspr is the spring con-
stant, L the current length, and L0 the equilibrium length. The
direction of this force is along the orientation of the spring, and
the force is repulsive when L < L0 and attractive if L > L0. The
total force on each particle is equal to the vector sum of the forces
from the attached springs, plus the gravitational force of mg in
the negative y-direction. Use the constant values m = L0 = 1
and g = 10.

(0, 0)

(x1, y1)

(x2, y2)

a) Derive the equations of motion for the system in the form of a system of first order
differential equations. Implement them in a MATLAB function of the form

function f = fpend(u,kspr)

where u is a vector with the 8 components x1, y1, x2, y2 and their first derivatives.

b) Write a function that solves the system using RK4, of the form

function rk4pend(u0,dt,kspr)

where u0 is the initial condition, dt is the timestep, and kspr is the spring constant.
Plot the pendulum after each timestep using the pendplot.m function on the course web
page. You can test your function using the command

rk4pend([1;0;1;1;0;0;0;0],0.02,100);

and verify that the motion looks realistic.

c) Write a function

function trbdf2pend(u0,dt,kspr)

that solves the system using the implicit TR-BDF2 method. Use Newton iterations
with a linearization of fpend for each stage. Output the norms of each Newton update,
similar to the function pendulum impl on the course web page. Like before, plot using
pendplot.m. Test it using the command

trbdf2pend([1;0;1;1;0;0;0;0],0.02,1e6);

Code Submission: E-mail the MATLAB files p2 3.m, p2 4a.m, p2 4b.m, heat1dimpl.m, conv1dimpl.m,
fpend.m, rk4pend.m, trbdf2pend.m, and any supporting files to Trevor at potter@math.berkeley.edu
as a zip-file named lastname firstname PS#.zip, for example potter trevor 2.zip.


