Linear Modelin . )

Probability Theory s Fitted Value and Residual

Axioms

Basic Principles for probability modeling and computation

Law of Total Probability & Bayesian Theorem .

Data Summaries and EDA The fitted value of y,denoted ¥

Distributions ,

{http://www.socr.ucla.edu/htmls/SOCRfDistributions.htm Za

)

. and the residual terms :
Experiments & Demos

()http://www.socr.ucla.edu/htmls/SOCR?Experiments.html e=y-y=y-Xp
nx1 * * *

Statistical Inference Since population s unknonw, we estimate o> from sample :
Hypothesis Testing & Confidence intervals 5
Parameter Estimation

Parametric vs. Non-parametric inference
(http://www.socr.ucla.edu/htmls/SOCR_Analyses.html)

CLT & LLN
Linear modeling
« Simple linear regression, Multiple linear regression
* ANOVA & GLM

Multiple Regression in Matrix Form Interpreting Multiple Regression Model

V= B+ Bix; + Byx,, + For a multiple regression model :

AR AR Y= Bo+ Bix, + foxy, +e,

f; should be interpreted as change in y when 1 unit
change is observed in x, and x, is kept constant. This
statement is not very clear when x, and x, are

= Misunderstanding: g, always measures the effect of x;
on E(y), independent of other x variables.

Misunderstanding: a statistically significant g value
establishes a cause and effect relationship between x
and y.

Multiple Regression and LSE Properties of Coefficient Estimate

general multiple regre model

It can be shown
20 2 -1

o P)=0(X'X)
pxp

. 3)=p
Min SSE = (y, : E(/?’) B )
= V(B) =

In matrix notation

Xp+& where V(g)=
¢ X,)

~ Is based on
e (x » model

The LSE solution for B will be : assumptions.
) Why?

O'ﬂ‘

Co /;’ ‘/;’, )= L"”rr:

In the simplest case when there is only one x,




Properties of Coefficient Estimate
= Proof

(0,6°1 )

Leasts quares solution is : /f’ =(XX) XY =
E(8)=E((xx) x7Y)=(XX) XE(Y)=(XX) X’

General Property of Matrices :
Var)=Var(4 Var(Y,,)4
9 Uw (( X

Properties of Coefficient Estimate

= Example: Suppose that

[171000100)

10100100

10010100

10001010

10001010 3

11000010 5 0 194- 0167 -0.24
10100010 - -0396 -0216
10100010 2 0194 0128
10010001 96 0.194 0524 00141
10001001 -013 247 -0216 0128 0.0141 0.0366 |
11000001 -
11000001

= Then:

Properties of Coefficient Estimate

Properties of Coefficient Estimate

= Example:

0 0
0 0 0
0.322 -0.313-0.414-0.13
0.194-0.339-0.167-0.2
72 -0.396-0.216
0194 0128
-0414 - 396 0194 0524 00141
5 0128 0.0141 0.0366 |
82,1.47,1.05,2.04,4.3)
e contrastk=(0-1100000 (0-1100000)xh =
(0-1100000)
Note that k could have b. (00100000)
'b) = k'Var(b)k = k'Var(b)k K'(XX )k

Y'Y —b'XY =0.0031 = s°(e)=0.0005.

Confidence Intervals and Tests of Hypotheses for s

One - tailed test Two - tailed test
H,y: f=0 H,y: f=0
H,:B>00r(B<0) H,:B#0

test statis , where s = sample SD

Rejection region :

t>t (ort<t, ) [t]>¢,

t,, is based on [n- (p + 1)]df, p is number of independent variables in the model

Two-way ANOVA

Two treatment factors, with g and b levels
There ate 7 < /<glevels of

b levels of factor 2
gb combinations of levels (4£)

N independent observations




Univariate Analysis of Variance
Two-way Fixed Effects Model with Interaction

The ANOVA model (Linear Model) can be wtitten as:

Vi = H+T;+ B + 7y ey,

p is the grand mean

T is the fixed effect for factor 1, 1 <[<g levels of factor
B is fixed effect of factor 2, 1 levels of fac

v is the interaction

r replicates

The Expected Response

>
g

b g b
=2 B =2ru=2rx=0
k=1 I=1 k=1

are independent N(0, ¢?)

In other words

Hypotheses tested by ANOVA:

1) Does the effect of one factor on the response
variable(s) depend on level of the other factor?

H,: There is no interaction between Factor 1 and
Factor 2
My = Hyye = My + pyge =0

2) Do the levels of Factor 1 differ in the effects on the
response variable(s)

Ho: There is no main effect of Factor 1 on the
response
H =My == /U;L

3) Do the levels of Factor 2 differ in their effects on
the response variable(s)

/Ll.l :lu,fl == Iu_p

ANOVA Table & Variance
Decomposition

ANOVA in Matrix Notation

ss of the complexity of the ANOVA model, we can
s it in matrix notation
y=Xp+e
ix of 0’s and 1s that follows the expetimental plan and

model




The General Linear Model

yis the column vector of Xis the (N x 1) “design
tespor for N ‘

POL matrix”
individuals

b is a vector of parameters eis a vector of

GML vs. Multiple Regression

The general purpose of multiple regression is to quantify the relationship
between several independent (or predictor) variables (X) and one
dependent (or response) variable (Y).

Y = by + byX; + b,X; + ... + bX,

There are k predictors (X) and the regression coefficients (b

represent the independent contributions of each inde pende

the prediction of the dependent variable, i.e., X7 is (partially) conetated
with the Y variable, after controlling for all other independent variables.

Example: we can find a significant positive correlation between brain
volume and height in the population (i.e., short people have smaller
brains). Let’s add the variable Gender into the multiple regression
equation, this correlation would probably disappear. This is because
women, on the average, have smaller head-size than men; they are also
shorter on the average than men. Thus, after we remove thi gender
difference by entering Gender into the equation, the relationship between
Brain Volume and height may disappear, as brain volume may not make
any unique contribution to the prediction of height, above and beyond
what it shares in the prediction with variable Gender. I.e., controlling for:
the variable Gender, the partial correlation between brain volume and
height is zero.

GML - Multiple Re

The multiple regression model in matrix notation then can be
expressed as

Y=Xb+e
b is a column vector of 1 (for the intercept) + k unknowi
regression coefficients. Recall that the goal of multiple ession
is to minimize the sum of the squared residuals. Regression
coefficients that satisfy this criterion are found by solving the set
of normal equations
X'Xb = XY
If the X variables are linearly independent (i.e., they are
nonredundant, yielding an X’X matrix which is of full rank) there is
a unique solution to the normal equations.
Premultiplying both sides of the matrix formula for the normal
equations by the inverse of X'X gives
(X'X)'X'Xb = (XX)'X'Y = b =(XX)'XY

3 basic matrix operations

matrix transposition, exchange the rows and columns of a matrix

each row and column combination of two conformable

matrix multiplication, sum of the products of the elements for .=
~

matrix inversion, which involves finding the matrix equivalent of a®-—"

numeric reciprocal, that is, the matrix that satisfies

GML vs. Multiple Regtession
The multiple regression limitations:

It can be used to analyze only a single dependent
able

It cannot provide a solution for the regression
coefficients when the X variables are not approx
linearly independent (the inverse of X'X therefore
does not exist).

These restrictions can be overcome by transforming

the multiple regression model into the general linear
model.

GML

eral linear model differs from the multiple regression
model is in terms of the number of dependent variables that can
be analyzed. The Y vector of n observations of a single Y variable
can be replaced by a Y matrix of n observations of m different Y
variables (in fact replaced with linear combinations of responses).

Similarly, the b vector of regression coefficients for a single Y
variable can be replaced by a b matrix of regression coefficients,
with one vector of b coefficients for each of the m dependent
variables.

These substitutions yield what is sometimes called the multivariate
regression model - the matrix formulations of the multiple and
multivariate regression models are identical, except for the
number of columns in the Y and b matrices.

The method for solving for the b coefficients is also identical, that
is, m different sets of regression coefficients are separately found __
for the m different deendent variables in the multivariate
regression model.

GML

The general linear model also differs from the multiple regression
model in its ability to provide a solution for the normal equations

en the X variables are not linearly independent and the
inverse of X'X does not exist. Redundancy of the X variables may
be incidental (e.g., two predictor variables are perfectly
correlated), accidental (e.g., two copies of the same variable) or
designed (e.g., indicator variables with exactly opposite values
might be used in the analysis, as when both Male and Female
predictor variables are used in representing Gender).

Finding the regular inverse of a non-full-rank matrix is analogous to
finding the reciprocal of 0 in ordinary arithmetic. No such inverse
or reciprocal exists because division by 0 is not permitted. This
problem is solved in the general linear model by using a

d in solving the normal
equations. s any matrix A that satisfies




GML

A generalized inverse is unique and coincides with the regular
inverse if the matrix Ais full rank.

A generalized inverse for a non-full-rank matrix can be computed by
zeroing the elements in redundant rows and columns of the matrix.

Suppose that an X'X matrix with r non-redundant columns is
partitioned as

411

where A, is an r by r matrix of rank r. Then the regular inverse of
A11 exists and a generalized inverse of X'X is

where each 0 (null) matrix is a matrix of 0's (zeroes) and has the
same dimensions as the corresponding A matrix.

GML

There are infinitely many generalized inverses of a non-full-rank X'X
matrix. Thus, infinitely many solutions to the normal equations. So, the
regression coefficients can change depending on the particular generalized
inverse chosen for solving the normal equations. However, many results
obtained using the general linear model have invariance properties (e.g.,
correlation is linearly invariant).

Example: If both Male and Female predictor variables with exactly opposite
values are used in an analysis to represent Gender, it is essentially arbitrary
as to which predictor variable is considered to be redundant (e.g., Male can
be considered to be redundant with Female, or vice versa).

The predicted values and the corresponding residuals for males and females
will be unchanged -- no matter which predictor variable is considered to be
redundant, no ‘matter which corresponding generalized inverse is used in
solving the normal equations, and no matter which resulting regression
equation is used for computing predicted values on the de)

iabl Using the general linear model, finding a particular arbitrary
solution to the normal equations is pnmanly a means to accounting for
responses effects on the depe

GML

In multiple ession model, the X variables are continuous. The general
linear model is frequently apphed to analyze

« ANOVA or MANOVA design with cz tor variables

« ANCOVA or MANCOVA design with both categorical and continuous predictor

variables

« Multiple or multivariate regression design with continuous predictor variables.
Example: Gender is clearly a nominal level variable. There are two basic
methods by which Gender can be coded into one or more (non-offensive)
predictor variables, and analyzed using the general linear model.
Standard model of categorical predictors. Males and females can be assigned
any two distinct values on a single predictor variable. Typically, the values
corresponding to group membership are chosen to facilitate interpretation of
the regression coefficient associated with the predictor variable. For example,
the two groups are assigned values of 1 and -1 on the predictor variable, so
that if the regression coefficient for the variable is positive, the group coded
as 1 on the predlctor variable will have a higher predicted value (i.e., a higher
group mean) on the dependent variable, and if the regression coefficient is
negative, the group coded as -1 on the pledlctol variable will have a higher
predicted value on the dependent variable. An advantage is that since each
group is coded with a value one away from zero - helps in interpreting the
magnitude of differences in predicted values between groups, because
regression coefficients reflect the units of change in the dependent variable
for each unit change in the predictor variable.

GML

Overparameterized model of categorical predictors.

The second basic method for recoding categorical predictors is the indicator
variable approach. In this method a separate predictor variable is coded for
each group identified by a categorical predictor variable. Example, females
might be assigned a value of 1 and males a value of 0 on a first predictor
variable identifying membership in the female Gender group. Males would
then be assigned a value of 1 and females a value of 0 on a second predictor
variable identifying membership in the male Gender group.

This method of recoding categorical predictor variables will almost always lead
to X'X matrices with redundant columns, and thus require a generalized
inverse for solving the normal equations. As such, this method is often called
the overparametenzed model for representing categorical predictor variables,
because it results in more columns in the X'X than are necessary for
determining the relationships of categorical predictor variables to responses
on the dependent variables.

The general linear model can be used to perform analyses with
predictor variables which are coded using either Standard of
Overparameterized models.

tegorical

GML -

The general linear model can be expressed as

“alculations

Example: Y1=Systolic
Y2=Diastolic Pressure
MAP=(Y1+2*Y2)/3

YM =Xb +e Mean Arterial Pressure

Here Y, X, b, and e are multivariate response, Desing matrix, parameter
matrix, residual matrix and Mis an m x s matrix of coefficients defining s
linear transformation of the d E The normal equatwons are

X'Xb = X'YM
d a solution for the normal equations is given by b = (X'X)X'YM
The inverse of X'X is a generalized inverse if X'X contains redundant columns

Allows for analyzing linear combinations of multiple dependent variables, add
a method for dealing with redundant predictor variables and recoded
orical predic tor variables, and the major limitations of multiple
n are overcome by the general linear model.

“alculations

X]nxk [b fox1

€

nxXm

-l




GML — ANOVA example

A design with a single categorical predictor variable is called a one-way ANOVA
design. For example, a study of 4 different populations (NC, MCI, AD-1, AD-2),
with four levels for the factor disease.

In general, consider a single categorical predictor variable A with 1 case in
each of its 4 categories. Using the Standard model coding of A into 3
quantitative contrast variables, the matrix X defining the between design is

41 1 0 0
41 0 10
74‘{ 1 -1 -10

A1 -1 -1 -1

% X

That is, cases in groups A1, A2, A3 and A4 are all assigned values of 1 on X0
(the intercept), the case in group A7 is assigned a value of 1 on X7 and a value
0 on other X’s, the case in group A2 is assigned a value of 1 on X2 and a value
0 on other X’s, and the case in group A3 is assigned a value of -1 on X7 and X2..

GML — ANOVA example

If there were 1 case in group A1, 2 cases in group
A2, 1 case in group A3, and 3 cases in A4,
the X matrix would be

The first subscript for A identifies the group and the second gives the replicate
number. Usually replicates are not shown when describing ANOVA designs

One-way designs with an equal number of cases in each group, Standard
Model coding yields X7 ... Xk variables all of which have means of 0.

GML — ANOVA example

Using the Underparameterized model to represent A, the X matrix defining the
between design is just

1
0
0

The X matrix serves two purposes:
« Specifies the coding for the levels of the original predictor variables on the
X variables used in the analysis
« Shows the between variable design.

Least Squares Estimates of b

Elaboration of Matrix Elements

Design Matrix

0---1 1---0 0---0---1

0---1 0--1 0---0---0--- N

ich column of the design matrix corresponds with the

appropriate element of the parameter vector.




A ti f ANOVA
ssumptions o Full Model

s Normal distribution
= Independence of residuals
= Homoscedasticity of Vz

« Variances are = Equal

Regression Analysis Properties of Population Model

= Most widely applied technique for assessing relationships among Postulates the condition means are linear functions of

vatiables he X,
= Used to investigate relationship between a response (dependent) !
variable and one or more predictor (independent) variables. The f3’s are known as regression coefficients.
ssion analysis is concerned with estimating and predicting The i
population mean value of the response v eY on the . . . - X
s of known (fixed) values of one or more predictor (or Ql”PC describes the Chﬂngt in'Y for a fixed unit
lanatory) variable(s) nge in X

The Population-based Regression Model Assumptions of Regression Anal

E(Y/Xl ) = ﬁo + ﬂle = Y’s are normally distributed

m X’s are fix

= Residuals (€;) are normal, independent random

B, B, are unknown, but fixed parameters

B, - intercept

0>

B, — slope

Y; :E(Y/Xi)+5i




Sample-based Regression Model Matrix Notation for Linear
Regression

B, /X,)=by +byX Y=XB+e

L We can estimate the regression parameters using

the simple e

How to estimate b, and

m Use Ordinary Least Squates approach. ] LetRignt
) —Right-Left

* ie., minimize error sum of squares.

n iy

A2 1t 21 e s e Tt 8 o1 otz
21 31 41 51 61 71 81 91 101111 121

minimize Ze i

*Correlation - Spec of General Linear Model
ation with squ wave function
fficient describes match bef 1 observation and expectation, -1 <R < 1. R is “almost”

t

~Limited by choice of HDR
~Poorly chosen HDR can significantly impair po
ariation around HDR
ability contributing to noise (c.g., scanner drift) - such variability is usualy

removed in prepro steps

*Does not model interactions be St vents

ANOVA Table for Regression Form of the GLM

SOUCE OfF S IVican:

N Time Points
N Time Points




General Linear Model for fMRI
Implementation of GLM in SPM 3] "t

of
plus residu B,
(what predictors "2

can’t account for). -
n X
+ +
3 x .
Trial

residuals

s
5 % m Group (ApYoung)

+

Xm ROl

fMRI signal

. . Advantages of General Linear Model (GLM
The Problem of Multiple Comparisons 2 (581

. Can perform data
; P o on 0. o i without the need to
s ' Do . _ average the data itself
oy p \ Allows you to counterbalance

;‘; : Fei e A orders
2Ly ¥ \ TRAT | \ WERY | . Allows you to

" : R N . Can perform more
Srona P (e.g., 2 factor ANOVA with interactions)
Easier to work with (do one GLM vs. many T-
tests and/or correlations) )

The Problem of Multip image data GLM Parameter Estimates

CO”‘] ' - smoothing design

matrix

corrected p-values

realignment & =
8 random field theory

motion
correction




General Linear Model Approach

Voxel timeseries GLM design matrix  parameters error vector
data vector Exampl
Stimulus

Subject
Run
Trial
Group
+
ROI

Hand

Hemi

| Tissue

Options for Multiple Comparisons

= Statistical Correction
 Gaussian Field Theory (Worsley, et al.)
» False discovery rate (Taylor, et al.)
» Bonferroni (Dinov, et al.)
o Tukey (Mills, et al.)
= Cluster Analyses (Miller, et al.)
= ROI Approaches (e.g., CCB Probabilistic Atlas; Mega, et al. )

Why Use
Nonparametric Statistics?

Parametric tests are based upon assumptions that
may include the following:

= What happens when we are not sure that these
assumptions have been satisfied?
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