
1

Linear ModelingLinear Modeling
•• Probability TheoryProbability Theory

•• AxiomsAxioms
•• Basic Principles for probability modeling and computationBasic Principles for probability modeling and computation
•• Law of Total Probability & Bayesian TheoremLaw of Total Probability & Bayesian Theorem
•• Data Summaries and EDAData Summaries and EDA
•• Distributions Distributions 

((http://http://www.socr.ucla.edu/htmls/SOCR_Distributions.htmwww.socr.ucla.edu/htmls/SOCR_Distributions.htm
ll))

•• Experiments & Demos Experiments & Demos 
((http://http://www.socr.ucla.edu/htmls/SOCR_Experiments.htmlwww.socr.ucla.edu/htmls/SOCR_Experiments.html
))

•• Statistical InferenceStatistical Inference
•• Hypothesis Testing & Confidence intervalsHypothesis Testing & Confidence intervals
•• Parameter EstimationParameter Estimation
•• Parametric vs. NonParametric vs. Non--parametric inference parametric inference 

((http://http://www.socr.ucla.edu/htmls/SOCR_Analyses.htmlwww.socr.ucla.edu/htmls/SOCR_Analyses.html))
•• CLT & LLNCLT & LLN

•• Linear modelingLinear modeling
•• Simple linear regression, Multiple linear regressionSimple linear regression, Multiple linear regression
•• ANOVA & GLMANOVA & GLM

Multiple Regression in Matrix FormMultiple Regression in Matrix Form
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Multiple Regression and LSEMultiple Regression and LSE
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Interpreting Multiple Regression ModelInterpreting Multiple Regression Model

For a multiple regression modelFor a multiple regression model：：

ββ11 should be interpreted as change in should be interpreted as change in yy when 1 unit when 1 unit 
change is observed in change is observed in xx11 and and xx22 is kept constant. This is kept constant. This 
statement is not very clear when statement is not very clear when xx11 and and xx22 are are not not 
independentindependent.  .  

MisunderstandingMisunderstanding: : ββii always measures the effect of always measures the effect of xxii

on E(on E(yy), independent of other ), independent of other xx variables.variables.

MisunderstandingMisunderstanding: a statistically significant : a statistically significant ββ value value 
establishes a cause and effect relationship between establishes a cause and effect relationship between xx
and and yy..
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Properties of Coefficient EstimateProperties of Coefficient Estimate

It can be shown that:It can be shown that:

In the simplest case when there is only one x, In the simplest case when there is only one x, 
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Properties of Coefficient EstimateProperties of Coefficient Estimate
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Properties of Coefficient EstimateProperties of Coefficient Estimate

Example: Suppose thatExample: Suppose that

Then:Then:
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Properties of Coefficient EstimateProperties of Coefficient Estimate
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Properties of Coefficient EstimateProperties of Coefficient Estimate

Example:Example:

Confidence Intervals and Tests of Hypotheses for Confidence Intervals and Tests of Hypotheses for ββ’’ss

modelthe  in variables tindependen of number is p 1)]df,(p-[n on based is 
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TwoTwo--way ANOVAway ANOVA

Two treatment factors, with Two treatment factors, with gg and and bb levelslevels

There are There are 1 1 ≤≤ ll≤≤gg levels of factor 1levels of factor 1

1 1 ≤≤ kk≤≤bb levels of factor 2levels of factor 2

gbgb combinations of levels combinations of levels (l,k)(l,k)

NN independent observationsindependent observations
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The ANOVA model (Linear Model) can be written as:

lkrlkkllkr ey ++++= γβτμ
μ is the grand mean

τ is the fixed effect for factor 1,  1 ≤ l≤g levels of factor 1

β is fixed effect of factor 2,        1 ≤ k≤b levels of factor 2

γ is the interaction

r replicates

UnivariateUnivariate Analysis of VarianceAnalysis of Variance

TwoTwo--way Fixed Effects Model with Interactionway Fixed Effects Model with Interaction

The Expected ResponseThe Expected Response

0
1111
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====
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lk
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l
l γγβτ

Noise: elkr are independent N(0, σ2)

In other wordsIn other words

InteractionInteraction++
Effect of Effect of 

Factor 1Factor 1++
Effect of Effect of 

Factor 1Factor 1++
Overall Overall 

levellevel==
Mean Mean 

ResponseResponse

γγlklk++ββkk++ττll++μμ==E(yE(y
lkrlkr) ) 

Hypotheses tested by ANOVAHypotheses tested by ANOVA::
1)  Does the effect of one factor on the response 1)  Does the effect of one factor on the response 

variable(s) depend on level of the other factor?variable(s) depend on level of the other factor?

HH00:  There is no interaction between Factor 1 and :  There is no interaction between Factor 1 and 
Factor 2Factor 2

2)  Do the levels of Factor 1 differ in the effects on the 2)  Do the levels of Factor 1 differ in the effects on the 
response variable(s)response variable(s)

HH00:  There is no main effect of Factor 1 on the :  There is no main effect of Factor 1 on the 
responseresponse

3)  Do the levels of Factor 2 differ in their effects on 3)  Do the levels of Factor 2 differ in their effects on 
the response variable(s)the response variable(s)

0=+−− ′′′′ klklkllk μμμμ

..2.1 pμμμ === L

p... μμμ === L21

ANOVA Table & Variance ANOVA Table & Variance 

DecompositionDecomposition

gbn(ngbn(n -- 1)1)
Total Total 

(Corrected)(Corrected)

gb(ngb(n –– 1)1)Residual (error)Residual (error)

(g(g--1)(b1)(b––1)1)InteractionInteraction

b b -- 11Factor 2Factor 2

g g -- 11Factor 1Factor 1

FF--ratiosratios
Degrees of Degrees of 

FreedomFreedom
Sum of Squares (SS)Sum of Squares (SS)

Source of Source of 

VariationVariation
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ANOVA in Matrix NotationANOVA in Matrix Notation

Regardless of the complexity of the ANOVA model, we can Regardless of the complexity of the ANOVA model, we can 

express it in matrix notationexpress it in matrix notation

yy = = XXββ + + εε
XX is a matrix of 0is a matrix of 0’’s and 1s that follows the experimental plan and s and 1s that follows the experimental plan and 

itsits’’ linear modellinear model
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The General Linear ModelThe General Linear Model

y is the column vector of 
responses for N 

individuals

X is the (N × r) “design 
matrix”

b is a vector of parameters e is a vector of residuals

eXby +=

GML vs. Multiple RegressionGML vs. Multiple Regression
The general purpose of The general purpose of multiple regressionmultiple regression is to quantify the relationship is to quantify the relationship 
between several independent (or predictor) variables (X) and onebetween several independent (or predictor) variables (X) and one
dependent (or response) variable (Y).dependent (or response) variable (Y).

Y = bY = b00 + b+ b11XX11 + b+ b22XX22 + ... + + ... + bbkkXXkk

There are There are kk predictors (X) and the regression coefficients (predictors (X) and the regression coefficients (bb11 …… bbkk) ) 
represent the represent the independentindependent contributions of each contributions of each independent variableindependent variable to to 
the prediction of the the prediction of the dependent variabledependent variable, i.e., , i.e., X1X1 is (partially) correlated is (partially) correlated 
with the with the YY variable, after controlling for all other variable, after controlling for all other independent variablesindependent variables..

ExampleExample: we can find a significant positive correlation between brain : we can find a significant positive correlation between brain 
volume and height in the population (i.e., short people have smavolume and height in the population (i.e., short people have smaller ller 
brains). Letbrains). Let’’s add the variable Gender into the s add the variable Gender into the multiple regressionmultiple regression
equation, this correlation would probably disappear. This is becequation, this correlation would probably disappear. This is because ause 
women, on the average, have smaller headwomen, on the average, have smaller head--size than men; they are also size than men; they are also 
shorter on the average than men. Thus, after we remove this gendshorter on the average than men. Thus, after we remove this gender er 
difference by entering Gender into the equation, the relationshidifference by entering Gender into the equation, the relationship between p between 
Brain Volume and height may disappear, as brain volume may Brain Volume and height may disappear, as brain volume may not not make make 
any unique contribution to the prediction of height, above and bany unique contribution to the prediction of height, above and beyond eyond 
what it shares in the prediction with variable Gender. I.e., conwhat it shares in the prediction with variable Gender. I.e., controlling for trolling for 
the variable Gender, the the variable Gender, the partial correlationpartial correlation between brain volume and between brain volume and 
height is zero. height is zero. 

GML GML -- Multiple RegressionMultiple Regression
The The multiple regressionmultiple regression model in matrix notation then can be model in matrix notation then can be 
expressed asexpressed as

YY = = XbXb + + ee

bb is a column vector of 1 (for the intercept) + is a column vector of 1 (for the intercept) + kk unknown unknown 
regression coefficients. Recall that the goal of regression coefficients. Recall that the goal of multiple regressionmultiple regression
is to minimize the sum of the squared residuals. Regression is to minimize the sum of the squared residuals. Regression 
coefficients that satisfy this criterion are found by solving thcoefficients that satisfy this criterion are found by solving the set e set 
of of normal equationsnormal equations

X'XbX'Xb = = X'YX'Y

If the If the X X variables are linearly independent (i.e., they are variables are linearly independent (i.e., they are 
nonredundantnonredundant, yielding an , yielding an X'XX'X matrix which is of full rank) there is matrix which is of full rank) there is 
a unique solution to the normal equations. a unique solution to the normal equations. 

PremultiplyingPremultiplying both sides of the matrix formula for the normal both sides of the matrix formula for the normal 
equations by the inverse of equations by the inverse of X'XX'X givesgives

((X'XX'X))--11X'Xb = (X'X)X'Xb = (X'X)--11X'Y   X'Y   b = (X'X)b = (X'X)--11X'YX'Y

3 basic matrix operations3 basic matrix operations

•• matrix transposition, exchange the rows and columns of a matrix matrix transposition, exchange the rows and columns of a matrix 

•• matrix multiplication, sum of the products of the elements for matrix multiplication, sum of the products of the elements for 
each row and column combination of two conformableeach row and column combination of two conformable

•• matrix inversion, which involves finding the matrix equivalent omatrix inversion, which involves finding the matrix equivalent of a f a 
numeric reciprocal, that is, the matrix that satisfiesnumeric reciprocal, that is, the matrix that satisfies

GML vs. Multiple RegressionGML vs. Multiple Regression

The The multiple regressionmultiple regression limitations:limitations:

It can be used to analyze only a single It can be used to analyze only a single dependent dependent 
variablevariable

It cannot provide a solution for the regression It cannot provide a solution for the regression 
coefficients when the coefficients when the XX variables are not approx variables are not approx 
linearly independent (the inverse of X'X therefore linearly independent (the inverse of X'X therefore 
does not exist). does not exist). 

These restrictions can be overcome by transforming These restrictions can be overcome by transforming 
the the multiple regressionmultiple regression model into the model into the general linear general linear 
modelmodel..

GMLGML
The general linear model differs from the The general linear model differs from the multiple regressionmultiple regression
model is in terms of the number of model is in terms of the number of dependent variablesdependent variables that can that can 
be analyzed. The be analyzed. The Y Y vector of vector of nn observations of a single observations of a single Y Y variable variable 
can be replaced by a can be replaced by a YY matrix of matrix of nn observations of observations of mm different different YY
variables (in fact replaced with linear combinations of responsevariables (in fact replaced with linear combinations of responses). s). 

Similarly, the Similarly, the b b vector of regression coefficients for a single vector of regression coefficients for a single YY
variable can be replaced by a variable can be replaced by a bb matrix of regression coefficients, matrix of regression coefficients, 
with one vector of with one vector of b b coefficients for each of the coefficients for each of the m m dependent dependent 
variablesvariables. . 

These substitutions yield what is sometimes called the multivariThese substitutions yield what is sometimes called the multivariate ate 
regression model regression model –– the matrix formulations of the multiple and the matrix formulations of the multiple and 
multivariate regression models are identical, except for the multivariate regression models are identical, except for the 
number of columns in the number of columns in the YY and and b b matrices. matrices. 

The method for solving for the The method for solving for the bb coefficients is also identical, that coefficients is also identical, that 
is, is, mm different sets of regression coefficients are separately found different sets of regression coefficients are separately found 
for the for the mm different different dependent variablesdependent variables in the multivariate in the multivariate 
regression model. regression model. 

GMLGML
The general linear model also differs from the The general linear model also differs from the multiple regressionmultiple regression
model in its ability to provide a solution for the normal equatimodel in its ability to provide a solution for the normal equations ons 
when the when the XX variables are not linearly independentvariables are not linearly independent and the and the 
inverse of inverse of X'XX'X does not exist. Redundancy of the does not exist. Redundancy of the X X variables may variables may 
be be incidentalincidental (e.g., two predictor variables are perfectly (e.g., two predictor variables are perfectly 
correlated), correlated), accidentalaccidental (e.g., two copies of the same variable) or (e.g., two copies of the same variable) or 
designeddesigned (e.g., indicator variables with exactly opposite values (e.g., indicator variables with exactly opposite values 
might be used in the analysis, as when both might be used in the analysis, as when both MaleMale and and Female Female 
predictor variables are used in representing predictor variables are used in representing GenderGender). ). 

Finding the regular inverse of a nonFinding the regular inverse of a non--fullfull--rank matrix is analogous to rank matrix is analogous to 
finding the reciprocal of 0 in ordinary arithmetic. No such invefinding the reciprocal of 0 in ordinary arithmetic. No such inverse rse 
or reciprocal exists because division by 0 is not permitted. Thior reciprocal exists because division by 0 is not permitted. This s 
problem is solved in the general linear model by using a problem is solved in the general linear model by using a 
generalized inverse of the generalized inverse of the X'X X'X matrixmatrix in solving the normal in solving the normal 
equations. A generalized inverse (equations. A generalized inverse (AA--) is any matrix A that satisfies) is any matrix A that satisfies

AAAA--A = AA = A
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GMLGML

A generalized inverse is unique and coincides with the regular A generalized inverse is unique and coincides with the regular 
inverse if the matrix inverse if the matrix AA is full rank. is full rank. 

A generalized inverse for a nonA generalized inverse for a non--fullfull--rank matrix can be computed by rank matrix can be computed by 
zeroing the elements in redundant rows and columns of the matrixzeroing the elements in redundant rows and columns of the matrix. . 

Suppose that an Suppose that an X'XX'X matrix with matrix with rr nonnon--redundant columns is redundant columns is 
partitioned aspartitioned as

where where AA1111 is an is an r r by by r r matrix of rank matrix of rank rr. Then the regular inverse of . Then the regular inverse of 
A11A11 exists and a generalized inverse of exists and a generalized inverse of X'XX'X isis

where each where each 0 0 (null) matrix is a matrix of 0's (zeroes) and has the (null) matrix is a matrix of 0's (zeroes) and has the 
same dimensions as the corresponding same dimensions as the corresponding AA matrix. matrix. 
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GMLGML

There are infinitely many generalized inverses of a nonThere are infinitely many generalized inverses of a non--fullfull--rank rank X'XX'X

matrix. Thus, infinitely many solutions to the normal equations.matrix. Thus, infinitely many solutions to the normal equations. So, the So, the 
regression coefficients can change depending on the particular gregression coefficients can change depending on the particular generalized eneralized 
inverse chosen for solving the normal equations. However, many rinverse chosen for solving the normal equations. However, many results esults 
obtained using the general linear model have invariance propertiobtained using the general linear model have invariance properties (e.g., es (e.g., 
correlation is linearly invariant). correlation is linearly invariant). 

ExampleExample: If both : If both MaleMale and and FemaleFemale predictor variables with exactly opposite predictor variables with exactly opposite 
values are used in an analysis to represent values are used in an analysis to represent GenderGender, it is essentially arbitrary , it is essentially arbitrary 
as to which predictor variable is considered to be redundant (e.as to which predictor variable is considered to be redundant (e.g., g., Male Male can can 
be considered to be redundant with be considered to be redundant with FemaleFemale, or vice versa). , or vice versa). 

The predicted values and the corresponding residuals for males aThe predicted values and the corresponding residuals for males and females nd females 
will be unchanged will be unchanged ---- no matter which predictor variable is considered to be no matter which predictor variable is considered to be 
redundant, no matter which corresponding generalized inverse is redundant, no matter which corresponding generalized inverse is used in used in 
solving the normal equations, and no matter which resulting regrsolving the normal equations, and no matter which resulting regression ession 
equation is used for computing predicted values on the equation is used for computing predicted values on the dependent dependent 
variablesvariables. Using the general linear model, finding a particular arbitrary. Using the general linear model, finding a particular arbitrary
solution to the normal equations is primarily a means to accountsolution to the normal equations is primarily a means to accounting for ing for 
responses effects on the responses effects on the dependent variablesdependent variables..

GMLGML

In In multiple regressionmultiple regression model, the model, the X X variables are continuous. The general variables are continuous. The general 
linear model is frequently applied to analyzelinear model is frequently applied to analyze

•• ANOVA or MANOVA design with ANOVA or MANOVA design with categorical predictorcategorical predictor variablesvariables

•• ANCOVA or MANCOVA design with both categorical and continuous prANCOVA or MANCOVA design with both categorical and continuous predictor edictor 
variablesvariables

•• Multiple or multivariate regression design with continuous prediMultiple or multivariate regression design with continuous predictor variables. ctor variables. 

ExampleExample: : GenderGender is clearly a nominal level variable. There are two basic is clearly a nominal level variable. There are two basic 
methods by which methods by which GenderGender can be coded into one or more (noncan be coded into one or more (non--offensive) offensive) 
predictor variables, and analyzed using the general linear modelpredictor variables, and analyzed using the general linear model. . 

Standard model of Standard model of categoricalcategorical predictorspredictors.. Males and females can be assigned Males and females can be assigned 
any two distinct values on a single predictor variable. Typicallany two distinct values on a single predictor variable. Typically, the values y, the values 
corresponding to group membership are chosen to facilitate intercorresponding to group membership are chosen to facilitate interpretation of pretation of 
the regression coefficient associated with the predictor variablthe regression coefficient associated with the predictor variable. For example, e. For example, 
the two groups are assigned values of 1 and the two groups are assigned values of 1 and --1 on the predictor variable, so 1 on the predictor variable, so 
that if the regression coefficient for the variable is positive,that if the regression coefficient for the variable is positive, the group coded the group coded 
as 1 on the predictor variable will have a higher predicted valuas 1 on the predictor variable will have a higher predicted value (i.e., a higher e (i.e., a higher 
group mean) on the group mean) on the dependent variabledependent variable, and if the regression coefficient is , and if the regression coefficient is 
negative, the group coded as negative, the group coded as --1 on the predictor variable will have a higher 1 on the predictor variable will have a higher 
predicted value on the predicted value on the dependent variabledependent variable. An advantage is that since each . An advantage is that since each 
group is coded with a value one away from zero group is coded with a value one away from zero -- helps in interpreting the helps in interpreting the 
magnitude of differences in predicted values between groups, becmagnitude of differences in predicted values between groups, because ause 
regression coefficients reflect the units of change in the regression coefficients reflect the units of change in the dependent variabledependent variable
for each unit change in the predictor variable. for each unit change in the predictor variable. 

GMLGML

OverparameterizedOverparameterized model ofmodel of categorical predictorscategorical predictors..

The second basic method for recoding The second basic method for recoding categorical predictorscategorical predictors is the indicator is the indicator 
variable approach. In this method a separate predictor variable variable approach. In this method a separate predictor variable is coded for is coded for 
each group identified by a each group identified by a categorical predictorcategorical predictor variable. Example, females variable. Example, females 
might be assigned a value of 1 and males a value of 0 on a firstmight be assigned a value of 1 and males a value of 0 on a first predictor predictor 
variable identifying membership in the female variable identifying membership in the female GenderGender group. Males would group. Males would 
then be assigned a value of 1 and females a value of 0 on a secothen be assigned a value of 1 and females a value of 0 on a second predictor nd predictor 
variable identifying membership in the male variable identifying membership in the male GenderGender group. group. 

This method of recoding This method of recoding categorical predictorcategorical predictor variables will almost always lead variables will almost always lead 
to to X'X X'X matrices with redundant columns, and thus require a generalized matrices with redundant columns, and thus require a generalized 
inverse for solving the normal equations. As such, this method iinverse for solving the normal equations. As such, this method is often called s often called 
the the overparameterizedoverparameterized model for representing model for representing categorical predictorcategorical predictor variables, variables, 
because it results in more columns in the because it results in more columns in the X'X X'X than are necessary for than are necessary for 
determining the relationships of determining the relationships of categorical predictorcategorical predictor variables to responses variables to responses 
on the on the dependent variablesdependent variables. . 

The general linear model can be used to perform analyses with The general linear model can be used to perform analyses with categorical categorical 
predictorpredictor variables which are coded using either Standard of variables which are coded using either Standard of 
OverparameterizedOverparameterized models. models. 

GML GML -- CalculationsCalculations

The general linear model can be expressed asThe general linear model can be expressed as

YM = YM = XbXb + e+ e

Here Here YY, , XX,, bb, and , and ee are multivariate response, are multivariate response, DesingDesing matrix, parameter matrix, parameter 
matrix, residual matrix and matrix, residual matrix and MM is an is an mm x x s s matrix of coefficients defining matrix of coefficients defining ss
linear transformation of the linear transformation of the dependent variablesdependent variables. The normal equations are . The normal equations are 

X'XbX'Xb = X'YM= X'YM

and a solution for the normal equations is given byand a solution for the normal equations is given by b = (X'X)b = (X'X)--X'YMX'YM

The inverse of The inverse of X'XX'X is a generalized inverse if is a generalized inverse if X'XX'X contains redundant columnscontains redundant columns

Allows for analyzing linear combinations of multiple Allows for analyzing linear combinations of multiple dependent variablesdependent variables, add , add 
a method for dealing with redundant predictor variables and recoa method for dealing with redundant predictor variables and recoded ded 
categorical predictorcategorical predictor variables, and the major limitations of variables, and the major limitations of multiple multiple 
regressionregression are overcome by the general linear model. are overcome by the general linear model. 

Example: Y1=Systolic

Y2=Diastolic Pressure

MAP=(Y1+2*Y2)/3

Mean Arterial Pressure

GML GML -- CalculationsCalculations

[ ] [ ] [ ] [ ] [ ] 11 ××××× += kkknsmmn bXMY ε
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A design with a single A design with a single categorical predictorcategorical predictor variable is called a onevariable is called a one--way ANOVA way ANOVA 

design. For example, a study of 4 different populations (NC, MCIdesign. For example, a study of 4 different populations (NC, MCI, AD, AD--1, AD1, AD--2), 2), 

with four levels for the factor with four levels for the factor disease. disease. 

In general, consider a single In general, consider a single categorical predictorcategorical predictor variable variable AA with 1 case in with 1 case in 

each of its 4 categories. Using the Standard model coding of A ieach of its 4 categories. Using the Standard model coding of A into 3 nto 3 

quantitative contrast variables, the matrix quantitative contrast variables, the matrix XX defining the between design isdefining the between design is

That is, cases in groups That is, cases in groups A1A1, , A2A2, , A3A3 and A4 are all assigned values of 1 on and A4 are all assigned values of 1 on X0X0

(the intercept), the case in group (the intercept), the case in group A1A1 is assigned a value of 1 on is assigned a value of 1 on X1X1 and a value and a value 

0 on other 0 on other XX’’ss, the case in group , the case in group A2A2 is assigned a value of 1 on is assigned a value of 1 on X2X2 and a value and a value 

0 on other 0 on other XX’’ss, and the case in group , and the case in group A3A3 is assigned a value of is assigned a value of --1 on 1 on X1X1 and and X2X2. . 

GML GML –– ANOVA exampleANOVA example
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GML GML –– ANOVA example           ANOVA example           

If there were 1 case in group If there were 1 case in group A1A1, 2 cases in group, 2 cases in group

A2A2, 1 case in group , 1 case in group A3A3, and 3 cases in A4, , and 3 cases in A4, 

the the XX matrix would be matrix would be 

The first subscript for The first subscript for A identifies the group and the second A identifies the group and the second gives the replicate gives the replicate 

number. Usually replicates are not shown when describing ANOVA number. Usually replicates are not shown when describing ANOVA designdesignss

OneOne--way designs with an equal number of cases in each group, way designs with an equal number of cases in each group, Standard Standard 

Model codingModel coding yields yields X1 X1 …… XkXk variables all of which have means of 0. variables all of which have means of 0. 
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3210

43

41

41

31

22

21

11

XXXX

A

A

A

A

A

A

A

X

                      

1   -1   -1   -1

1   -1   -1   -1

1   -1   -1   -1

10    0          1

0    10          1

0    10          1

00          1     1

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪

⎬

⎫

=

GML GML –– ANOVA example           ANOVA example           

Using the Using the UnderparameterizedUnderparameterized modelmodel to represent A, the to represent A, the XX matrix defining the matrix defining the 

between design is justbetween design is just

The The XX matrix serves two purposes:matrix serves two purposes:

•• Specifies the coding for the levels of the original predictor vaSpecifies the coding for the levels of the original predictor variables on the riables on the 

X X variables used in the analysisvariables used in the analysis

•• Shows the between variable design.Shows the between variable design.
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Least Squares Estimates of Least Squares Estimates of bb

( ) yXXXb ′′= −1

Elaboration of Matrix ElementsElaboration of Matrix Elements

The transpose of the parameter vector is (r×1):

[ ]μγγγγββττ ,,, 111111 gbgbbgb LLLLL=′

lkrlkkllkr ey ++++= γβτμ
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1

   

11

1

1

×
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

r

b

bg

b

g

μ

γ

γ
β

β

τ

τ

L

L

L

L



7

Assumptions of ANOVAAssumptions of ANOVA

Normal distributionNormal distribution

Independence of residualsIndependence of residuals

HomoscedasticityHomoscedasticity of Variancesof Variances

•• Variances are Variances are ≈≈ EqualEqual

Regression AnalysisRegression Analysis

Most widely applied technique for assessing relationships among Most widely applied technique for assessing relationships among 
variablesvariables

Used to investigate relationship between a Used to investigate relationship between a responseresponse (dependent) (dependent) 
variable and one or more variable and one or more predictorpredictor (independent) variables.(independent) variables.

Regression analysis is concerned with estimating and predicting Regression analysis is concerned with estimating and predicting 
the population mean value of the response variable Y on the the population mean value of the response variable Y on the 
basis of known (fixed) values of one or more predictor (or basis of known (fixed) values of one or more predictor (or 
explanatory) variable(s)explanatory) variable(s)

The PopulationThe Population--based Regression Modelbased Regression Model

( ) ii XXYE 10 ββ +=

β0, β1 are unknown, but fixed parameters

β0, - intercept

β1 – slope

( ) iii XYEY ε+=

Full ModelFull Model

ε
i
is referred to as an:  Error or  Residual

( ) iii XYEY ε+=

Properties of Population ModelProperties of Population Model

Postulates the condition means are linear functions of Postulates the condition means are linear functions of 

the Xthe Xii..

The The ββ’’s are known as regression coefficients.s are known as regression coefficients.

The intercept gives E(Y|X=0) The intercept gives E(Y|X=0) 

The slope describes the change in Y for a fixed unit The slope describes the change in Y for a fixed unit 

change in Xchange in X

Assumptions of Regression AnalysisAssumptions of Regression Analysis

YY’’s are normally distributeds are normally distributed

XX’’s are fixed, s are fixed, 

Residuals (Residuals (eeii) are normal, independent random ) are normal, independent random 

variables.variables.
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SampleSample--based Regression Modelbased Regression Model

( ) XbbXYE
ii 10 +=

or

iii eXbbY ++= 10

How to estimate bHow to estimate b
00 and band b

11.  .  

Use Ordinary Least Squares approach.Use Ordinary Least Squares approach.

�� i.e., minimize error sum of squares.i.e., minimize error sum of squares.

minimize ∑
=

n

i

ie
1

2ˆ

ANOVA Table for RegressionANOVA Table for Regression

Residual SS/ Residual SS/ 

Residual Residual dfdf

n n -- 22Total SSTotal SS--

Regression SSRegression SS

ResidualResidual

Regression SS/ Regression SS/ 

Regression Regression dfdf

11Linear Linear 

RegressionRegression

n n ––1 1 Total Total 

Mean Mean 

SquareSquare
DFDF

Sum of Sum of 

SquaresSquares
Source of Source of 

VariationVariation

[ ]YYi −

[ ]YYi −ˆ

[ ]YYi
ˆ−

∑ 2y

( )
∑
∑

2

2

x

xy

Matrix Notation for Linear Matrix Notation for Linear 

RegressionRegression

εβ += XY
We can estimate the regression parameters using 

the simple expression:

[ ] yXXX ′′= −1β̂
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Example of am Example of am fMRIfMRI StudyStudy

�Correlation - Special case of General Linear Model

�Blocked t-test is equivalent to correlation with square wave function

�Correlation coefficient describes match between observation and expectation, -1 ≤ R ≤ 1. R is “almost”

linearly invariant!

�Problems with using the correlation:

�Limited by choice of HDR

�Poorly chosen HDR can significantly impair power

�Assume random variation around HDR

�Does not model variability contributing to noise (e.g., scanner drift) - such variability is usually 

removed in preprocessing steps

�Does not model interactions between successive events

Form of the GLMForm of the GLM
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Implementation of GLM in SPMImplementation of GLM in SPM

Model Parameters

Im
a
g
e
s

The Problem of Multiple ComparisonsThe Problem of Multiple Comparisons

P < 0.001  (32 voxels)P < 0.01  (364 voxels)P < 0.05  (1682 voxels)Original fMRI data

t = 2.10,   p < 0.05 (uncorrected) t = 3.60,   p < 0.001 (uncorrected) t = 7.15,   p < 0.05,         

Bonferroni Corrected

The Problem of Multiple The Problem of Multiple 

ComparisonsComparisons

General Linear Model for General Linear Model for fMRIfMRI

Adapted from Brain Voyager course slides

Parse out variance in the 
voxel’s time course to   
the contributions of six 
predictors plus residual 
noise (what predictors 
can’t account for).

+

fMRI signal residuals

+

β1   ×

β2   ×

=

β6   ×

…

+

+

+

+

β3   ×

β4   ×

β5   ×

Design Matrix Examples:

Stimulus

Subject

Run   

Trial  

Group (AD/Young)

ROI  

Advantages of General Linear Model (GLM)Advantages of General Linear Model (GLM)

•• Can perform data Can perform data analysis within and analysis within and 
between subjectsbetween subjects without the need to without the need to 
average the data average the data itselfitself

•• Allows you to counterbalance Allows you to counterbalance random random 
stimulistimuli ordersorders

•• Allows you to Allows you to exclude segments of runs with exclude segments of runs with 
artifactsartifacts

•• Can perform more Can perform more sophisticated analysessophisticated analyses
(e.g., 2 factor ANOVA with interactions) (e.g., 2 factor ANOVA with interactions) 

•• Easier to work with (do one GLM vs. many TEasier to work with (do one GLM vs. many T--
tests and/or correlations)tests and/or correlations)

GLMGLM Parameter Estimates

realignment &

motion

correction

smoothing

normalization

GLM
model fitting

statistic image

corrected p-values
random field theory

image data

design

matrix

Brain Atlas –
anatomical
reference

smoothing
kernel

Statistical
Parametric Map

Slide courtesy of Andrew Holmes’ SPM notes
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General Linear Model ApproachGeneral Linear Model Approach

= +

Y = X               × β        +         ε

Voxel timeseries

data vector

GLM design matrix parameters error vector

α
μ
β3
β4
β5
β6
β7
β8
β9

×

Example:

Stimulus

Subject

Run   

Trial  

Group 

ROI  

Hand 

Hemi

Tissue  

Options for Multiple ComparisonsOptions for Multiple Comparisons

Statistical CorrectionStatistical Correction

•• Gaussian Field Theory (Gaussian Field Theory (WorsleyWorsley, et al.), et al.)

•• False discovery rate (Taylor, et al.)False discovery rate (Taylor, et al.)

•• BonferroniBonferroni (Dinov, et al.)(Dinov, et al.)

•• TukeyTukey (Mills, et al.)(Mills, et al.)

Cluster Analyses (Cluster Analyses (MMüüllerller, et al.), et al.)

ROI Approaches (ROI Approaches (e.g., CCB Probabilistic Atlas; Mega, et ale.g., CCB Probabilistic Atlas; Mega, et al.).)

Why Use Why Use 

Nonparametric Statistics?Nonparametric Statistics?

Parametric tests are based upon assumptions that Parametric tests are based upon assumptions that 

may include the following:may include the following:

•• The data have the The data have the same variancesame variance, regardless of the , regardless of the 

treatments or conditions in the experiment.treatments or conditions in the experiment.

•• The data are The data are normally distributednormally distributed for each of the for each of the 

treatments or conditions in the experimenttreatments or conditions in the experiment..

What happens when we are not sure that these What happens when we are not sure that these 

assumptions have been satisfied?assumptions have been satisfied?


